

UNIVERSITY CERTIFICATE IN ECONOMETRICS

2017 · Edition 2

Course : Microeconometrics for policy evaluation

Part 1 - Panel Data Models

Vincent Vandenberghe

OUTLINE

- 1. Introduction
- 2. The omitted variable/endogeneity problem
- 3. Experimental methods
- 4. Quasi-experimental methods
 - Short panel analysis (day 1)
 - What are panels,
 - Panels and unobserved time and individual effects models
 - Fixed effects (FE) models: first differencing, mean centering
 - Assessing the relevance of FE (Hausman , Mundlak tests, ...) vs random effect models
 - Beyond fixed effects using panels: dynamic models
 - Policy evaluation/treatment analysis (day 2)

Main Stata commands

- 1. reg
- 2. xtreg/areg [in combination with ttset/xtset]
- 3. xtdescribe, xtline....
- 4. hausman

Cameron, A. C. & Trivedi, P. K. (2010). *Microeconometrics using Stata*. College Station: Stata Press.

1. INTRODUCTION

- The aim of this course is to review (& implement with STATA 14) some of the most commonly used methods to infer causal relationship using non experimental data
- Key is to identify the *causal* impact of some variable X^T on y
 - *y* the outcome variable (wage, health, score, GDP per capita...)
 - X^{T} the "treatment" ie the variable (or the policy) of interest (eg. one extra year of education, employment vs. unemployment, transfers to an underdeveloped territory...)
- Practical examples (ie. base on "real" micro evidence), including some directly related to our research
- Detailed STATA code + results available
- And students are invited to exercise

MATERIAL @ YOUR DISPOSAL

MOODLE@UCL: LECME2FC

```
TOPIC 2\Panels\

ECcourse1.ppt

Code...\Stata_code\

#1EC_data.do

#1EC_Ex.do

#1EC_Ex_corr.do

#1EC_Extra.do

#1EC_FE.do
```

(+ corrected version at the end)

Data.zip

the various data sets @ your disposal

via the web: https://perso.uclouvain.be/vincent.vandenberghe/Stata_EC/Stata_EC1.html

- * Does education contribute to firms' productivity? And how much?
- * Is there gender wage discrimination in the Belgian private economy? An how important is it?
- * Do wages impact firm-level employment?

Mincer suggests human capital impacts wage *W*. It is aquired via two channels

- Schooling (*S*)
- On-the-job learning/experience (NB: *EXP=t-S*))

[Eq. 1] $InW = \alpha + \beta . S + \gamma . EXP + \delta . EXP^2 + \epsilon$

and is β a good approximation of the **return** of an additional year of schooling as

[Eq. 2] $\beta = \partial \ln W / \partial S = (\partial W / W) / \partial S \approx (W_{S+1} - W_S) / W_S$ for dS = 1

A crucial (unrealistic?) assumption in Mincer equation is that the term ε_t is a pure random shock (i.e. its mean is equal to zero)

In truth, it could contain unmeasured/unobserved differences in innate ability

Econometricans show that β estimates can be biased if two conditions hold true

*there is an omitted variable that is a significant determinant of the dependent variable (e.g. ability, motivation influences wages); * and it is correlated with one or more of the included independent variables (e.g. schooling) Consider a log linear (true) model (y=logW) of the form

[Eq. 3] $y = X \beta + Z \delta + \mu$ where

* X is a vector containing explanatory variables (=> schooling variable S);

* *Z* is omitted (unobserved) data [e.g. motivation, ability...] which is potentially partially correlated with y_i (i.e. partial correlation $\delta \neq 0$) and X (=> *S*)

* the error terms *u* is an unobservable but random variable having expected value 0 (conditionally on *X* and *Z*);

The problem is that the OLS estimated parameters based only on the observed X,Y vectors of values (but omitting Z), is given by:

[Eq. 4]
$$\hat{\beta} = (X'X)^{-1}X'Y$$

Substituting for Y based on the true/assumed linear model => Eq.5, $\hat{\beta} = (X'X)^{-1}X'(X\beta + Z\delta + U)$

[Eq. 5]
$$= (X'X)^{-1}X'X\beta + (X'X)^{-1}X'Z\delta + (X'X)^{-1}X'U$$
$$= \beta + (X'X)^{-1}X'Z\delta + (X'X)^{-1}X'U.$$

Taking expectations, $E((X'X) - {}^{1}X')E(U)$ falls out => X'U has zero expectation (no correlation between U and X)

Remains in addition to the true B

[Eq. 6] $E(X'X)^{-1}X'Z)E(\delta)$

10

Its magnitude is function of

i) $\delta =$ correlation between *y* and *Z*

ii) $(X'X)^{-1}X'Z = >$ partial correlation between X (that comprises S_i) and Z

More specifically, if $\delta > 0$ (earnings and ability are positively correlated and $(X'X)^{-1}X'Z > 0$ (the higher the ability, the higher the chosen level of education) ; OLS would be *upward* biased.

Experimental research design offer the most plausibly unbiased estimates

But experiments are frequently infeasible due to cost or moral objections – e.g no one proposes to randomly assign smoking to individuals to assess health risks or to randomly assign divorce status to parents so as to measure the impacts on their children

4.1. What are short panels?

Panel= time series where "individuals" (persons, firms, countries...) are observed several times consecutively (y_{it}, X_{it})

Short (vs. long) panel : not many time periods (*t:* 1.....*T*) but many individuals (*i*=1.....*N*) ; small *T* but large *N*

	vatid	year	lnay	medu
1.	200068636	2008	4.942388	
2.	200068636	2009	5.105524	11.44
з.	200068636	2010	5.106514	11.51
4.	200068636	2011	4.932135	11.95
5.	200068636	2012	5.148784	12.15
6.	200362111	2008	4.768067	12.49
7.	200362111	2009	4.82522	12.49
8.	200362111	2010	4.921506	12.36
9.	200362111	2011	4.876973	12.66
10.	200362111	2012	4.890286	12.76
11.	200362210	2008	4.52434	-
12.	200362210	2009		-
13.	200362210	2010		
14.	200362210	2011		•
15.	200362210	2012		•
16.	200952524	2008	5.000585	11.41
17.	200952524	2009	5.063892	11.58
18.	200952524	2010	4.983079	11.49
19.	200952524	2011	5.028475	11.53

4.2. Panels as a way to account for unobserved individual fixed effects (FE)

The idea of using panel methods to identify a causal impact of "treatment" is to use an individual *i* as its own control, by including information from multiple points in time

Suppose that the omitted variable $Z_i a$ varies only across "individuals" and *b*) for, a given "individual", is constant over the duration of the panel => it is a fixed effect (FE)

[Eq. 7] $y_{it} = X^T_{it}\beta + \varepsilon_{it}$ where $\varepsilon_{it} = Z_i + U_{it}$ Mean-centering [or first differencing] of all data $(y_{it} - y_{i'}, X^T_{it}, X^T_{i'}, ...)$ amonts to "purging" (unobserved) fixed effects Z_i

[Eq. 8] $\varepsilon_{it} - \varepsilon_{i} = Z_i - Z_i + \mu_{it} - \mu_{i}$.

where, by definition, the average of time-invariant constant Z_i is equal to that constant ... and disappears

The results from the FE estimation can be interpreted as follows; treatment matters if on average, **within** "individuals", a change of the intensity of the "treatment" ($X_{it}^{T} - X_{i}^{T}$), results in a statistically significant change of outcome ($y_{it} - y_{i}$.)

→ #1EC_FE.do/1/Case 1

list vatid year lnay lnak medu if _n<60 & medu~=.

vatid	year	lnay	lnak	medu
200068636	2009	5.105524	7.511604	11.44
200068636	2010	5.106514	7.564138	11.51
200068636	2011	4.932135	7.612374	11.95
200068636	2012	5.148784	7.669642	12.15
200362111	2008	4.768067	6.816887	12.49
				12.49
				12.36
				12.66
				12.76
200952524	2008	5.000585	6.922398	11.41
				11.58
				11.49
				11.53
200952524	2012	4.955201	6.759745	11.57
201105843	2008	4.007389	6.412219	13.92
	2009			13.93
201105843	2010	4.008789	6.447455	13.85
201105843	2011	4.163989	7.256665	13.95
201105843	2012	4.20403	7.324895	13.93
201107922	2008	3.468315	3.967794	12
201107922	2009	1		
201107922	2010	-		
201107922	2011	3 (Belfirs	st: firm-le	evel dat
201107922	2012	3		
201258172	2008	. xtset	vatid year	r
		— ,	oanel varia	able: v
		1	time varia	able: v
		1	time varia de	able: y elta: 1
	200068636 200068636 200068636 200068636 200362111 200362111 200362111 200362111 200952524 200952524 200952524 200952524 200952524 20105843 201105843 201105843 201105843 201105843 201105843 201107922 201107922 201107922 201107922	200068636 2009 200068636 2010 200068636 2011 200068636 2012 200362111 2008 200362111 2009 200362111 2010 200362111 2010 200362111 2011 200362111 2012 200952524 2009 200952524 2010 200952524 2011 200952524 2012 201105843 2009 201105843 2010 201105843 2011 201105843 2012 201107922 2008 201107922 2009 201107922 2010 201107922 2011 201107922 2011 201107922 2011 201107922 2011 201107922 2011 201107922 2011	200068636 2009 5.105524 200068636 2010 5.106514 200068636 2011 4.932135 200068636 2012 5.148784 200362111 2009 4.82522 200362111 2010 4.921506 200362111 2010 4.921506 200362111 2011 4.876973 200362111 2012 4.890286 200952524 2008 5.000585 200952524 2010 4.983079 200952524 2011 5.028475 200952524 2012 4.955201 201105843 2009 4.116449 201105843 2010 4.008789 201105843 2011 4.163989 201105843 2011 4.163989 201105843 2012 4.20403 201107922 2008 3.468315 201107922 2010 3.468315 201107922 2010 3.46815	200068636 2009 5.105524 7.511604 200068636 2010 5.106514 7.564138 200068636 2011 4.932135 7.612374 200068636 2012 5.148784 7.669642 200362111 2009 4.82522 6.843645 200362111 2010 4.921506 6.800828 200362111 2011 4.876973 6.829672 200362111 2012 4.890286 6.825442 200952524 2008 5.000585 6.922398 200952524 2010 4.983079 6.832728 200952524 2012 4.955201 6.759745 201105843 2008 4.007389 6.412219 201105843 2009 4.116449 6.441791 201105843 2010 4.008789 6.447455 201105843 2012 4.20403 7.324895 201107922 2008 3.468315 3.967794

POOLED DATA/ OLS

reg lnay lnak medu i.year	/*Nb the inclusion	g of time fixed (effect as a set of dumm	wy variables*/
---------------------------	--------------------	-------------------	-------------------------	----------------

Source	SS	df	MS	Number of obs	=	227,838
				F(6, 227831)	=	32916.82
Model	40599.4236	6	6766.5706	Prob > F	=	0.0000
Residual	46834.2461	227,831	.205565731	R-squared	=	0.4643
				Adj R-squared	=	0.4643
Total	87433.6697	227,837	.383755359	Root MSE	=	.45339

lnay	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnak	.3354548	.0007919	423.61	0.000	.3339027	.3370069
medu	.0158046	.0003226	48.99	0.000	.0151723	.016437
year					_	
2009	0114149	.0031199	-3.66	0.000	0175298	0053001
2010	.0049495	.0031037	1.59	0.111	0011336	.0110326
2011	.0164147	.0030946	5.30	0.000	.0103494	.02248
2012	.0138437	.0031247	4.43	0.000	.0077193	.0199681
		0050000			0.000105	0.040670
_cons	2.300404	.0052393	439.06	0.000	2.290135	2.310673

Return of 1 extra year of educ. = 1.58 %

FIRST DIFFERENCES

. reg D.(lnay lnak medu) i.year

Source	SS	df	MS	Number of obs	=	173,150
				F(5, 173144)	=	4099.85
Model	2138.39043	5	427.678087	Prob > F	=	0.0000
Residual	18061.6115	173,144	.104315549	R-squared	=	0.1059
				Adj R-squared	=	0.1058
Total	20200.0019	173,149	.116662539	Root MSE	=	.32298

D.lnay	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnak D1.	.3430397	.002428	141.29	0.000	.338281	.3477985
medu D1.	.0012418	.0004387	2.83	0.005	.0003819	.0021016
year						
2010	.0264739	.0022573	11.73	0.000	.0220497	.0308981
2011	.0237632	.0022471	10.57	0.000	.0193589	.0281676
2012	.0000718	.0022639	0.03	0.975	0043653	.004509
_cons	014772	.0016675	-8.86	0.000	0180402	0115037

Return of 1 extra year of educ. = 0.04%

MEAN CENTERING

ed-effects	(within) regr	ression		Number	of obs =	227,838	
oup variabl	e: vatid			Number	of groups =	52,687	
-sq:				Obs per	group:		
within	= 0.1114				min =	1	
between	= 0.4899				avg =	4.3	
overall	= 0.4601				max =	5	
				F(6,175	145) =	3659.47	-
orr(u_i, Xb)	= 0.0948			Prob >	F =	0.0000	
lnav	Coaf	Std. Err.		DNI+1	[95% Conf.	Intervall	
шау	COEL.	Stu. Err.	L	ENICI	[95% CONT.	. Intervalj	
lnak	.3118138	.0021284	146.50	0.000	.3076423	.3159854	
medu	.0019448	.0004258	4.57	0.000	.0011103	.0027794	
year							
2009	0126081	.0018124	-6.96	0.000	0161603	0090559	
2010	.0024383	.0018131	1.34	0.179	0011153	.0059919	
2011	.0142525	.0018179	7.84	0.000	.0106895	.0178155	
2012	.0031366	.0018485	1.70	0.090	0004864	.0067596	
_cons	2.571336	.0113542	226.47	0.000	2.549082	2.59359	
sigma_u	. 43266913				Г	•	
sigma_e	.2584925					$rho = \frac{(sign}{(sigma_u)^2}$	<u>na_u)</u>
rho	.73695723	(fraction	of varian	nce due t	o u_i)	(sigma_u)	+(sign

Return of 1 extra year of educ. = 0.19%

4.3. Assessing the relevance of FE

Are we sure fixed effects Z_i are correlated to X_{it} (and not random)?

If they are not correlated, then pooled OLS/fGLS (known as random effet estimation (RE) [ie. Z_i are randomly distributed, but not correlated with X_{it}^{T}]) will be preferable to FE because they use total varation (and not just within var.)

➔ Hausman test

Under the null hyp. that individual effects are random, FE and RE estimators should deliver the same coef. β . The Hausman test assesses the probability that the estimated coefficients are equal

https://www.youtube.com/watch?v=54o4-bN9By4

	. xtreg lnay lnak medu i.year										
	Random-effect:	-	ion			of obs =					
1	Group variable	e: vatid			Number (of groups =	52,687				
	R-sq:			Obs per	aroun.						
	within *	= 0.1109			opp ber	min =	1				
	between :				avg =	4.3					
	overall :					max =	5				
_					Wald ch:	i2(6) =	73125.42				
	corr(u_i, X)	= 0 (assumed	1)		Prob > (chi2 =	0.0000				
	lnay	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]				
	lnak	.3292132	.0012381	265.90	0.000	.3267865	.3316399				
	medu	.0064203	.0003616	17.76	0.000	.0057115	.007129				
	year										
	2009	0127687	.0018029		0.000	0163023	0092351				
	2010	.0021555	.0018017	1.20	0.232		.0056868				
	2011	.0135468	.0018044	7.51	0.000	.0100102	.0170835				
	2012	.0037978	.0018329	2.07	0.038	.0002054	.0073902				
	_cons	2.427189	.007192	337.48	0.000	2.413092	2.441285				
	sigma u	.40774138									
	sigma e	.2584925									
	rho	.71331372	(fraction	of varian	nce due to	o u_i)					

Return of 1 extra year of educ. = 0.64%

qui: xi: xtreg lnay lnak medu i.year, fe

estimates store fe

qui: xi: xtreg lnay lnak medu i.year, re

estimates store re

hausman fe re

	—— Coefficients ——											
		(b)	(B)	(b-B)	<pre>sqrt(diag(V_b-V_B))</pre>							
		fe	re	Difference	S.E.							
lnak		.3118138	.3292132	0173994	.0017312							
medu		.0019448	.0064203	0044754	.0002249							
_Iyear_2009		0126081	0127687	.0001606	.000185							
_Iyear_2010		.0024383	.0021555	.0002828	.0002026							
_Iyear_2011		.0142525	.0135468	.0007057	.0002208							
_Iyear_2012		.0031366	.0037978	0006612	.0002399							

b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(6) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 499.63 Prob>chi2 = 0.0000 We thus reject the idea that FE are irrelevant

=>The Mundlak idea

The key to the Mundlak approach is to determine if unobservable fixed effect Z_i and x_{it} are correlated.

[Eq. 9] $y_{it} = \alpha + \beta x_{it} + Z_i + \varepsilon_{it}$

His idea is that such a correlation can be represented as a linear relation between Z_i and the time-invariant part (eg. mean) of the observed regressors

[Eq. 10] $Z_i = \gamma + \vartheta x_i + v_i$ where x_i is the mean x_{it} , v_i a time-invariant random term

Putting the two equations together we get

[Eq. 11] $y_{it} = \alpha^{\pounds} + \beta x_{it} + \vartheta x_{i} + v_i + \varepsilon_{it}$

And if $\vartheta = 0$ then Z_i and the covariates are uncorrelated => thus the random effect model dominates the fixed effect model

	reg	lnay	lnak	medu	m	lnak	m	medu
--	-----	------	------	------	---	------	---	------

Source	SS	df	MS		r of obs	=	227,838
Model Residual	40665.9668 46767.703	4 227,833	10166.4917 .205271857	Prob R-squ		=	49526.96 0.0000 0.4651 0.4651
Total	87433.6697	227,837	.383755359	-	-	=	.45307
lnay	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]
lnak medu m lnak	.3236533 .0019353 .0107666	.0036484 .0007446 .0037329	88.71 2.60 2.88	0.000 0.009	.3165025 .0004759 .0034503		.3308041 .0033948 .0180829
m_medu	.0170558	.0008261	20.65 452.90	0.000	.0154367 2.265478		.0186749

. estimates store munlack

test m_lnak m_medu
(1) m_lnak = 0
(2) m_medu = 0
F(2,227833) = 219.27
Prob > F = 0.0000

We reject the idea of no correlation with fixed effect i.e; $\vartheta = 0$

\Rightarrow Making use of xtreg ressources

xtreg, fe (using estimated α and β) delivers estimates of fixed effects

[Eq. 12]
$$Z_{i}^{E} = Y_{i} - \beta X_{i} - \alpha$$

That can be used to assess the degree of correlation between $\rm Z_i$ and $\rm X_{it}$ and/or $\rm Y_{it}$

```
. predict z_i, u // compute empirical fixe
> ted predicted average
(73,277 missing values generated)
```

. list vatid year lnay z_i if _n<10

	vatid	year	lnay	z_i
1.	200068636	2008	4.942388	
2.	200068636	2009	5.105524	.1107292
з.	200068636	2010	5.106514	.1107292
4.	200068636	2011	4.932135	.1107292
5.	200068636	2012	5.148784	.1107292
6.	200362111	2008	4.768067	.1316205
7.	200362111	2009	4.82522	.1316205
8.	200362111	2010	4.921506	.1316205
9.	200362111	2011	4.876973	.1316205

. corr medu z_i //compute correla (obs=227,838)

	medu	z_i
medu z_i	1.0000 0.1192	1.0000

. corr lnay z_i // compute correl
> tion)
(obs=227,838)

	lnay	z_i
lnay z_i	1.0000 0.6987	1.0000

#1EC_Ex 1.do

29

Case study : assessing gender wage discrimination using panel micro data

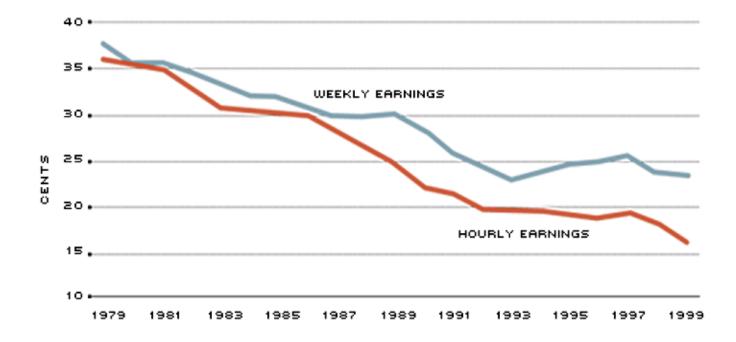
Outline

1. Introduction: stylized facts & key concepts about gender wage discrimination (GWD)

2. Estimating GWD using individual-level wage data

- Framework
- Implementation using Social Security individual data on gross wage


3. Estimating GWB using firm-level evidence (and fixed effects)


- Framework

- Implementation using Bel-first firm-level data on *i*) productivity *ii*) labour cost and *iii*) gross profits (or the inverse of unit labour cost)

1. Introduction: concepts & stylized facts

Evidence of substantial average earning differences between categories (men/women, race, country of origin...) – the Gender Wage Gap (GWG) — is a persistent social outcome in the labour markets of most developed economies

SOURCE: U.S. Department of Labor

- In 1999, the gross pay differential between women and men in the EU-27 was, on average, 16% (European Commission, 2007) (weekly earnings)
- In the U.S. this figure amounted to 23.5% (weekly earnings)
- Belgian statistics (Institut pour l'égalité des Femmes et des Hommes, 2013) = > "Women earn on average 10% less per hour of work then men. Many women work part-time, so that the annual gender wage gap is 23%"

For most sociologists wage discrimination manifests itself by a lower pay for a minority group with respect to the majority group

Strictly speaking however, **for economists**, wage discrimination requires more that wage differences between groups

It implies that equal labour services provided by **equally productive workers have a sustained price/wage difference**

2. Using individual wage data 2.1. Framework

The standard empirical approach among economists to the measuring gender wage discrimination consists of estimating earning equations (cfr Oaxaca-Blinder in A.1). Wage discrimination is measured as the average mark-up on individual compensation (hourly, monthly wages...), associated to gender, controlling for individual productivity-related characteristics

e.g

[Eq. 12]
$$Ln W_i = \alpha + \beta DF_i + X'_i \gamma + \epsilon_i$$

where

 W_i = compensation

 DF_i = female(1)/male(0) dummy

X' i = vector of productivity-related characteristics
 (experience, education...)

And with a log linear speficification, β is a good approximation of **the conditional gender wage gap in percentage points**

[Eq. 13] $\beta = \partial ln W_i / \partial dF_i = (\partial W_i / W_i) / \partial dF_i$ $\approx (W_i^{dFi=1} - W_i^{dFi=0}) / W_i^{dFi=0}$ for $dF_i = 1$

→ #1EC_FE.do/1/Case 2/Part 1

```
/*Econmetrics*/
 scalar drop all
 use w db , clear
 *A. OLS + industry fixed effects (within industry identification)
 qui: xi:reg lnw dum2 year /*raw difference */
 scalar gwg1= b[dum2]
 qui:reg lnww dum2 year
                                   /*+ accounting for guadrimestrial working time differences*/
 scalar gwg2= b[dum2]
 gui:reg lnww dum2 agex agex2 /*+ accounting for age (proxy of experience) with age squared*/
 scalar gwg3= b[dum2]
 gui:areg lnww dum2 agex agex2 , absorb(nace2) /*+ accounting for industry 2 digits*/
 scalar gwg4= b[dum2]
    /*NB: areg ..., absor(nace2) equivalent to
    xi: reg lnww dum2 agex agexsg year i.nace2*/
 qui:areg lnww dum2 agex agex2 , absorb(nace) /*+ accounting for industry 5 digits*/
 scalar gwg5= b[dum2]
                                                            *B. Display key results
 *B. Display key results
                                                            scalar list gwg1 gwg2 gwg3 gwg4 gwg5
 scalar list gwg1 gwg2 gwg3 gwg4 gwg5
                                                                qwq1 = -.40733842
                                                                qwq2 = -.21057828
 *C. Extention: GWD stable over time/years ?
                                                                qwq3 = -.1949094
 scalar drop all
 sort year
                                                                qwq4 = -.15787496
                                                                qwq5 = -.14407816
 local v 2002 2003 2004 2005 2006 2007 2008 2009 2010
Foreach i of local v {
 use w db if year==`i' , clear
 qui: areg lnww dum2 agex agex2, absorb(nace)
                                                                gwg 2002 = -.16309768
 qui: scalar gwg `i'= b[dum2]
                                                                 gwg 2003 = -.15211776
 scalar list gwg `i'
                                                                 gwg 2004 = -.15171536
                                                                 gwg 2005 = -.14717418
                                                                 gwg 2006 = -.14349608
                                                                 gwg 2007 = -.14008865
                                                                 gwg 2008 = -.1465544
                                                                 gwg 2009 = -.13148378
```

gwg 2010 = -.13042656

3. Using firm-level data

What is missing from the above studies is an independent measure of productivity

By contrast, with firm-level data, the idea is to use firm-level **direct** measures of gender productivity and wage differentials via, the estimation of a productivity and a labour cost equations, both expanded by the specification of a labour-quality index à-la-Hellerstein & Neumark (2004)

3.1. The Hellerstein-Neumark framework

In order to estimate labour productivity, following Hellerstein *et al.*, 1999 we consider a Cobb-Douglas production function

[Eq 14] $Y_{jt} = A_{jt} \mathbf{Q} \mathbf{L}_{jt}^{\alpha} K_{jt}^{\beta}$

where Y_{jt} is output/ production in firm j at time t, K_{jt} is the stock of capital

The variable that reflects the gender heterogeneity of the workforce is *the quality of labour index* **QL**_{*jt*}

Let $L_{j/t}$ be the number of workers of type / (men/women...) in firm *j* at time *t*, and μ_j be their marginal relative productivity* (supposedly uniform across firms). We assume that workers of various types are substitutable with different marginal products. Focusing on gender, labour quality indce can be specified as:

[Eq 15]
$$QL_{jt} = \sum_{I} \mu_{I} L_{jlt} = \mu_{M} L_{jMt} + \mu_{F} L_{jFt}$$

[Eq 16] $Y_{jt} = A (QL_{jt})^{\alpha} K_{jt}^{\ \beta} = A [\mu_{M} L_{jMt} + \mu_{F} L_{jFt}]^{\alpha} K_{jt}^{\ \beta}$

Dropping *t* and *j*...

...

* $MLP_M \equiv \delta Y / \delta L_M = A \alpha [\mu_M L_M + \mu_F L_F]^{\alpha - 1} \mu_M K_i^{\beta}$ * $MLP_F \equiv \delta Y / \delta L_F = A \alpha [\mu_M L_M + \mu_F L_F]^{\alpha - 1} \mu_F K_i^{\beta}$

thus relative $MLP \equiv (\delta Y / \delta L_F) / (\delta Y / \delta L_M) = \mu_F / \mu_M$

Let us now consider labour productivity per worker in logs [Eq. 17] In $(Y_{jt}/L_{jt})=InA + \alpha \ln QL_{jt} + \beta \ln K_{jt} - \ln L_{jt}$

And lets transform the labour quality index

[Eq. 18] $QL_{jt} = \mu_M L_{jt} + (\mu_F - \mu_M) L_{jFt}$

where male workers= ref. Mult/div. rhs term by $\mu_M L$ and taking logarithms

[Eq. 19] $\ln QL_{jt} = \ln \mu_M + \ln L_{jt} + \ln (1 + (\lambda - 1) P_{jFt})$

where $\lambda \equiv \mu_F / \mu_M$ is the relative marginal productivity of women and $P_{jFt} \equiv L_{jFt} / L_{jt}$ the proportion/share of females in firm *j*. Since $ln(1+x) \approx x$, for small values of x we can approximate Eq. 10 by:

[Eq. 20] $Ln \ QL_{jt} = ln \ \mu_M + ln \ L_{jt} + (\lambda - 1) \ P_{jFt}$ and the production function becomes: [Eq. 21] $ln(Y_{jt}/L_{jt}) = lnA + \alpha \ [ln\mu_M + ln \ L_{jt} + (\lambda - 1) \ P_{jFt}] + \beta \ lnK_{jt} - lnL_{jt}$

or, equivalently [Eq. 22] $ln (Y_{jt}/L_{jt}) = B + (\alpha - 1)l_{jt} + \eta P_{jFt} + \beta k_{jt}$ where:

>
$$B=InA+\alpha ln \mu_{M}; \lambda=\mu_{F}/\mu_{M}; \eta = \alpha(\lambda-1);$$

$$\rightarrow$$
 $I_{jt}=InL_{jt}$, $k_{jt}=InK_{jt}$

NB: Eq. 13 , being loglinear in P, coefficients n/10=>the percentage change of average labour productivity due to a 1/10 unit (i.e 10 percentage points) change of women' share Similarly, for labour cost per worker [Eq. 23] $W_{jt}/L_{jt} = \pi_M + (\pi_F - \pi_M) L_{jFt}/L_{jt}$

Mult/div rhs term by π_M/L_{jt} , taking the logs and using $log(1+x) \approx x$, we get

[Eq. 24] $ln(W_{jt}/L_{jt}) = ln\pi_M + (\Phi - 1)P_{jFt}$ where $\Phi \equiv \pi_F/\pi_M$ is the rel. remuneration of women

[Eq. 25] In $(W_{jt}/L_{jt}) = B^w + \eta^w P_{jFt}$

where: $B^w = ln\pi_M$; $\eta^w = \Phi - 1$

Like in the productivity equation, coefficients η^w capture the sensitivity to changes of the gender structure (P_{iMt})

A key hypothesis test can now be formulated.

```
No gender wage discrimination => alignment of rel.
productivity and rel. labour costs ⇔
```

 $\eta = \eta^w$

This test that can easily implemented, if we adopt strictly equivalent econometric specifications for productivity & labour cost equations

[Eq. 26] $In(Y_{jt}/L_{jt}) = B + (\alpha - 1)I_{jt} + \eta P_{jFt} + \dots + \beta k_{jt} + \varepsilon_{jt}$

[Eq. 27] In $(W_{jt}/L_{jt})=B^{w}+(\alpha^{W}-1)I_{jt}+\eta^{W}P_{jFt}+\beta^{w}k_{jt}+\varepsilon^{w}_{jt}$

And if, if we take the *difference* between we get a direct expression of the productivity-labour cost gap (ratio)= gross profits as a linear function of its workforce determinants.

[Eq. 28] $ln(Y_{jt}/L_{jt}) - ln(W_{jt}/L_{jt}) = B^G + (\alpha^G - 1)I_{jt} + \eta^G P_{jFt} + \beta^G k_{jt} + \varepsilon^G_{jt}$

where: $B^G = B - B^w$; $\alpha^G = \alpha - \alpha^W$, $\eta^G_1 = \eta - \eta^w$;... $\beta^G = \beta - \beta^w$; $\varepsilon^G = \varepsilon - \varepsilon^w$

Conclusion

if $\eta^G = 0$ <=> no gender wage discrimination

if $\eta^G > 0 <=>$ negative gender wage discrimination (women are underpaid) if $\eta^G < 0 <=>$ positive gender wage discrimination (women are overpaid) 3.2. HN and panel (firm-level) data: econometric identification

As to proper identification of the causal links, one of the challenges consists of dealing with the various constituents of the residual ε_{it}

Assume that the latter has a structure that comprises two elements: [Eq. 29] $\varepsilon_{jt} = \vartheta_j + \sigma_{jt}$

where: $COV(\vartheta_{j}, P_{jF,t}) \neq 0, CORR(\vartheta_{j}, Y_{jt}) \neq 0$

In other words, the OLS sample-error term potentially consists of *i*) an unobservable firm fixed effect ϑ_i ; *ii*) a purely random term σ_{it} .

Econometric identification

 ϑ_j . represents firm-specific characteristics that are unobservable but driving labour productivity. And these might be correlated with gender mix, biasing OLS results (cfr omitted variable bias). Men for instance might be overrepresented among in sectors/firms with higher TFP embedded in used technology (eg. manufacturing vs services/commerce)

Solution

Using the panel structure of data and estimating a fixed effect model <=> mean-centering of all data $(Y_{jt}-Y_j.;L_{jt}-L_j....)$ => purging fixed effects and thus coping with unobserved heterogeneity terms ϑ_j

[Eq. 30] $\varepsilon_{jt} - \varepsilon_{j} = (\vartheta_j - \vartheta_j) + (\sigma_{jt} - \sigma_{j})$

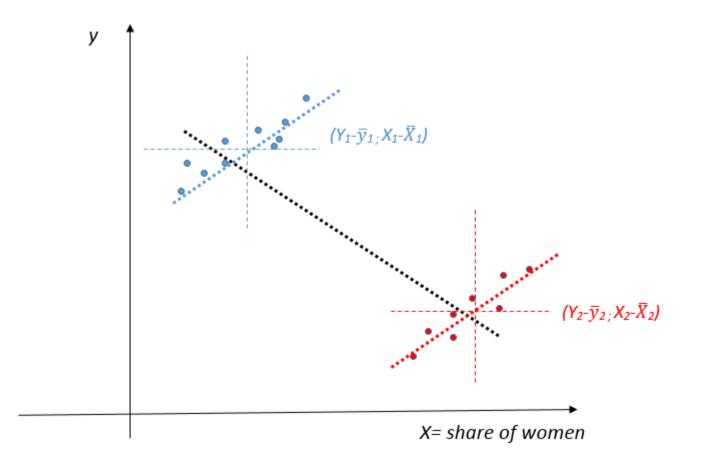


Illustration of the importance of accounting for firm fixed effects 49

The results from the fixed-effect estimation can be interpreted as follows: a group (male or female) is estimated to be more (less) productive/costly/profitable if, within firms, an increase of that group's share in the overall workforce translates into productivity /labour cst/profit gains (loss).

```
/*Econometrics*/
scalar drop all
use f db , clear
*A. OLS
    /*productivitv*/
areg lnyha lnk lnh sfem sbcol magey p25agey p75agey spt year, absorb(nace) /*per hour*/
scalar prod ols= b[sfem]
   /*labour cost*/
areg lnwha lnk lnh sfem sbcol magey p25agey p75agey spt year, absorb(nace) /*per hour*/
scalar lcost ols= b[sfem]
   /*gross profit*/
areg lnp lnk lnh sfem sbcol magey p25agey p75agey spt year, absorb(nace)
scalar gprof ols= b[sfem]
scalar list prod ols lcost ols gprof ols
*B. Firm fixed effects (i.e. within-firm identification)
/*NB areg y x, absorb (vatid) is equivalent to ...
   tsset vatid year
   xtreg y, fe */
   /*productivity per hour*/
areg lnyha lnk lnh sfem sbcol magey p25agey p75agey spt year, absorb(vatid) /*per hour */
scalar prod fe= b[sfem]
    /*labour cost per hour*/
areg lnwha lnk lnh sfem sbcol magey p25agey p75agey spt year, absorb(vatid) /*per hour*/
scalar lcost fe= b[sfem]
   /*gross profit per hour*/
areg lnp lnk lnh sfem sbcol magey p25agey p75agey spt year, absorb(vatid)
scalar gprof fe= b[sfem]
*C. Display key results
scalar list prod ols lcost ols gprof ols
scalar list prod fe lcost fe gprof fe
```

lnp	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
lnk	.0209938	.0009308	22.55	0.000	.0191694	.0228182
lnh	040875	.0017359	-23.55	0.000	0442774	0374726
sfem	.0398353	.0099136	4.02	0.000	.0204047	.0592659
sbcol	0047309	.0067019	-0.71	0.480	0178666	.0084048
magey	0024131	.0018394	-1.31	0.190	0060183	.0011921
p25agey	0040573	.0009315	-4.36	0.000	0058831	0022315
p75agey	0036306	.0009226	-3.94	0.000	005439	0018223
spt	.0000726	.0001159	0.63	0.531	0001545	.0002997
year	0003826	.0005324	-0.72	0.472	0014261	.000661
_cons	1.840036	1.060883	1.73	0.083	2392889	3.919361
nace	F(607,	75928) =	30.315	0.000	(608 (categories)

lnp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnk	.0080074	.0018251	4.39	0.000	.0044302	.0115846
lnh	0701906	.0027601	-25.43	0.000	0756005	0647807
sfem	.0758839	.0176354	4.30	0.000	.0413185	.1104493
sbcol	.0248527	.0119847	2.07	0.038	.0013627	.0483426
magey	0083125	.0015299	-5.43	0.000	0113111	0053139
p25agey	0004581	.0007769	-0.59	0.555	0019809	.0010646
p75agey	.0008625	.0007732	1.12	0.265	0006529	.002378
spt	.0011662	.0001556	7.50	0.000	.0008613	.0014712
year	000083	.0004462	-0.19	0.853	0009576	.0007917
_cons	1.527152	.8694241	1.76	0.079	176919	3.231222
vatid	F(9309,	67226) =	19.343	0.000	(9310 c	ategories)

```
. *C. Display key results
. scalar list prod_ols lcost_ols gprof_ols
prod_ols = -.14698709
lcost_ols = -.18682239
gprof_ols = .0398353
. scalar list prod_fe lcost_fe gprof_fe
prod_fe = -.04751146
lcost_fe = -.12339532
gprof_fe = .07588387
```

#1EC_Ex.do/Ex 2 & 3

References

Blinder, Alan S. 1973. Wage Discrimination: Reduced Form and Structural Estimates. *Journal of Human Resources* 8 (4): 436–455.

Hellerstein, J.K. & D. Neumark, 2004. "Production Function and Wage Equation Estimation with Heterogeneous Labor: Evidence from a New Matched Employer-Employee Data Set," NBER Working Papers 10325, National Bureau of Economic Research, Inc.

Oaxaca, Ronald L. 1973. Male-Female Wage Differentials in Urban Labor Markets. *International Economic Review* 14 (3): 693–709.

Step 1 – estimate separately two Mincer-like equations $Ln W^m{}_i = \alpha^m + X^m i \beta^m + \varepsilon^m{}_i$ $Ln W^f{}_i = \alpha^f + X^f{}_i \beta^f + \varepsilon^f{}_i$ where X is a vector of variables proxying productivity (eg. Educational attainment, experience, exp²...)

Step 2 – use estimates and initial data to compute $Ln W^{m}_{i} - Ln W^{f}_{i} = \widehat{\alpha}^{m} - \widehat{\alpha}^{f} + X^{f}_{i} (\widehat{\beta}^{m} - \widehat{\beta}^{f}) + (X^{m}_{i} - X^{f}_{i}) \widehat{\beta}^{f}$

with

- Explained difference $(X^m_i X^f_i) \hat{\beta}^f$
- Unexplained men-womend wage gap (i.e. discrimination)

 $\widehat{\alpha}^{m} \cdot \widehat{\alpha}^{f} + X^{f}_{i} \left(\widehat{\beta}^{m} \cdot \widehat{\beta}^{f} \right)$