Fair retirement and premature mortality: towards a theory of reverse retirement?

Gregory Ponthiere¹

UCLouvain, January 2020.

¹Université Paris 12, PSE and IUF.

Gregory Ponthiere (U Paris 12 - PSE - IUF) Fair retirement and premature mortality

UCLouvain, January 2020.

/ 32

- Retirement systems are often presented as giving *a fair reward* for a long working career.
- However, only workers who have a sufficiently long life benefit from that reward, but not workers who die prematurely.
 - In France, about 10 % of men and 4 % of women die before reaching the age of 60.
- This paper reexamines the fairness of retirement systems in an economy with unequal lifetime.
 - The capacity of retirement systems differing on ages of entry/exit of labor to compensate the unlucky short-lived.

Why should we care about the short-lived?

- Principle of Compensation *versus* Principle of Liberal Reward (Fleurbaey and Maniquet 2004, Fleurbaey 2008)
 - well-being inequalities due to circumstances should be abolished.
 - well-being inequalities due to efforts should be left unaffected.
- Inequalities in the duration of life due to:
 - genetic background: 25-33 % of inequalities (Christensen et al 2006) PURE CIRCUMSTANCES
 - environmental factors: 23-40 % of premature deaths (Pimentel et al 1998) MIXED
 - lifestyles: 25 % of inequalities (Balia and Jones 2008) RESPONSIBILITY / MIXED
- The Principle of Compensation more relevant under unequal lifetime.

- Fleurbaey et al (2016): focus on the age at retirement.
- *Ex post* egalitarian criterion (priority to the worst-off in realized terms).
- Compensation of the short-lived pushes towards postponing retirement (wrt utilitarian criterion).
- Intuition:
 - Postponing retirement allows to transfer more resources towards young individuals, who include those who will turn out to be short-lived.

- Fleurbaey et al (2016) assumed the usual life cycle: individuals work at the young age, and become retiree at the old age.
- On the contrary, this paper considers a purely hypothetical alternative retirement system: *reverse retirement*.
 - Individuals are *first retirees* when being young, and, then, become *workers* once they reach a higher age.
- This paper aims at examining the economic feasibility and the social desirability of reverse retirement.

- We develop a 4-period OLG model.
 - Production involves capital and young/old labor.
 - Perfect substitutability between young/old labor (but with age-dependent labor productivity).
 - Old workers face a higher marginal disutility of labor than young ones.
- We study:
 - the temporary equilibrium and the long-run dynamics of the economy under standard/reverse retirement,
 - the social desirability of reverse retirement under the utilitarian and the *ex post* egalitarian social criteria.

- 1. Under standard assumptions, the economy with reverse retirement *once in place* converges towards a unique stationary equilibrium.
- 2. If productivity decreases with age, reverse retirement is never optimal under the utilitarian criterion, but can be optimal under the *ex post* egalitarian criterion.
- 3. Although the transition from standard to reverse retirement would make the economy collapse at the laissez-faire, there exists a set of policy instruments that allow governments to organize a successful transition to reverse retirement.

• On retirement and redistribution

• Schokkaert and Van Parijs (2003), Cremer and Pestieau (2011), Schokkaert et al (2017).

• On compensation for unequal lifetimes

- Fleurbaey et al (2016): *extensive margin* of labor: age of exit from labor market (static).
- Leroux and Ponthiere (2018): *intensive margins* of labor (number of hours worked per week) (static).

Outline

- The model
- The laissez-faire
 - The temporary equilibrium
 - 2 Long-run dynamics
- The long-run social optimum
 - The long-run utilitarian optimum
 - O The long-run ex post egalitarian optimum
- Oecentralization
- Oiscussions
- 6 Concluding remarks

The model: basics

- We consider a 4-period OLG economy with risky lifetime. The length of each period is normalized to 1.
- Each cohort has a size N > 0 (replacement fertility).
- The lifecycle:
 - Period 1 (childhood): no decision.
 - Period 2 (young adult): plan their life, have one child, consume and save.
 - Period 3 (old adult), reached with probability 0 $<\pi<$ 1: consume and save.
 - Period 4 (very old age), reached with probability 0 < πp < 1: consume.
- Labor does not take place in periods 1 and 4.
 - Standard retirement: entry of labor at age 1, exit at age $1+\ell_t.$
 - Reverse retirement: entry of labor at age 2, exit at age $2 + \tilde{\ell}_{t+1}$.

The model: production

• Production takes place by using physical capital K_t and labor L_t :

 $Y_t = F(K_t, L_t)$

where $F(\cdot)$ is increasing and concave and exhibits CRS.

- Capital fully depreciates after one period of use.
- Perfect substitutability between young-age and old-age labor:

$$L_t = aN\ell_t + b\pi N\tilde{\ell}_t$$

- Mixed results on age/productivity $(a \ge b)$:
 - Haegeland and Klette (1999): productivity grows with age;
 - Crepon et al (2003): an inverted U shaped curve in age;
 - Aubert and Crépon (2007), Gobel and Zwick (2009): productivity grows then stabilizes.

The model: preferences

• In young adulthood, well-being U_t^y is equal to:

$$U_t^y = u(c_t) - v\ell_t$$

where c_t is consumption in young adulthood, v > 0 is the (marginal) disutility of working. There exists $\bar{c} > 0$ such that $u(\bar{c}) = 0$.

• A the old age, individual well-being U_t^o is equal to:

$$U_t^o = u\left(d_t\right) - \tilde{v}\tilde{\ell}_t$$

where d_t is old-age consumption, $\tilde{v} > v$ is the (marginal) disutility of old-age labor.

• At the very old age (period 4), well-being U_t^{vo} is equal to:

$$U_t^{vo} = u(e_t)$$

where e_t is consumption at the very old age.Gregory Ponthiere (U Paris 12 - PSE - IUF)Fair retirement and premature mortalityUCLouvain, January 2020.12 / 32

The laissez-faire

• We consider a perfectly competitive economy, where production factors are paid at their marginal productivity:

$$\begin{split} w_t &= aF_L\left(K_t, aN\ell_t + b\pi N\tilde{\ell}_t\right) \\ \tilde{w}_t &= bF_L\left(K_t, aN\ell_t + b\pi N\tilde{\ell}_t\right) \\ R_t &= F_K\left(K_t, aN\ell_t + b\pi N\tilde{\ell}_t\right) \end{split}$$

where w_t is the wage rate for the young worker, \tilde{w}_t is the wage rate for the old worker, and R_t equals 1 *plus* the interest rate.

• There exists a perfect annuity market, which yields an actuarially fair return. The return on savings for young adults is:

$$\hat{R}_t = rac{R_t}{\pi}$$
, where \hat{R}_t denotes the gross interest factor.

• The return on savings for old adults is equal to:

$$\check{R}_t = rac{R_t}{p}$$
, where \check{R}_t denotes the gross interest factor.

• The problem of the young adult at time t is:

$$\max_{\substack{s_t, z_t, \ell_t, \tilde{\ell}_{t+1} \\ s_t, \tilde{\ell}_t, \tilde{\ell}_{t+1}}} \begin{bmatrix} u\left(w_t \ell_t - s_t\right) - v \ell_t \\ + \pi \left[u\left(\tilde{w}_{t+1}^{E_t} \tilde{\ell}_{t+1} + \frac{R_{t+1}^{E_t} s_t}{\pi} - z_{t+1}\right) - \tilde{\ell}_{t+1} \tilde{v} \right] \\ + \pi p u \left(\frac{R_{t+2}^{E_t} z_{t+1}}{p}\right) \\ \text{s.t. } \ell \geq 0 \text{ and } 1 - \ell \geq 0 \\ \text{s.t. } \tilde{\ell} \geq 0 \text{ and } 1 - \tilde{\ell} \geq 0 \end{bmatrix}$$

The laissez-faire: the temporary equilibrium

Proposition (laissez-faire temporary equilibrium)

Consider the temporary equilibrium at time t given anticipations $\begin{cases}
R_t^{E_{t-1}}, R_{t+1}^{E_{t-1}}, R_{t+1}^{E_t}, R_{t+2}^{E_t}, \tilde{w}_t^{E_{t-1}}, \tilde{w}_{t+1}^{E_t}
\end{cases}.$ • If $\frac{v}{\tilde{v}} < \frac{R_t^{E_{t-1}}w_{t-1}}{\tilde{w}_t^{E_{t-1}}}$ and $\frac{v}{\tilde{v}} < \frac{R_{t+1}^{E_t}w_t}{\tilde{w}_{t+1}^{E_t}}$, standard retirement prevails $(\tilde{\ell}_t = \tilde{\ell}_{t+1} = 0).$ • If $\frac{v}{\tilde{v}} > \frac{R_t^{E_{t-1}}w_{t-1}}{\tilde{w}_t^{E_{t-1}}}$ and $\frac{v}{\tilde{v}} > \frac{R_{t+1}^{E_t}w_t}{\tilde{w}_{t+1}^{E_t}}$, reverse retirement prevails $(\ell_{t-1} = \ell_t = 0).$

- Whether there is standard or reverse retirement depends on:
 - preferences: $v \ll \tilde{v}$.
 - age-productivity relation: $a \ge b$.
 - there is under- or over-accumulation of capital: $R_{t+1}^{L_t} \ge 1$.

Laissez-faire: a transition problem

• There is a *transition* from standard to reverse retirement when:

$$rac{v}{ ilde{v}} < rac{R_{t+1}^{E_t}w_t}{ ilde{w}_{t+1}^E} ext{ and } rac{v}{ ilde{v}} > rac{R_{t+2}^{E_{t+1}}w_{t+1}}{ ilde{w}_{t+2}^{E_{t+1}}}$$

 The transition from standard to reverse retirement at the laissez-faire would lead the economy to collapse.

Laissez-faire: long-run dynamics

- In order to avoid difficulties raised by retirement regime shifts at the laissez-faire, we will assume that expectations are such that regime shifts cannot arise in the laissez-faire.
- For that purpose, we impose the following non-regime shift condition.

Definition (the non-regime shift condition)

Individual expectations on future factor prices $\left\{\tilde{w}_{t+1}^{E_t}, R_{t+1}^{E_t}\right\}$ satisfy the conditions:

If, at
$$t = 0$$
, $\frac{v}{\tilde{v}} < \frac{R_1^{E_0} w_0}{\tilde{w}_1^{E_0}}$, then, for all $t > 0$, we have $\frac{v}{\tilde{v}} < \frac{R_{t+1}^{E_t} w_t}{\tilde{w}_{t+1}^{E_t}}$;
If, at $t = 0$, $\frac{v}{\tilde{v}} > \frac{R_1^{E_0} w_0}{\tilde{w}_1^{E_0}}$, then, for all $t > 0$, we have $\frac{v}{\tilde{v}} > \frac{R_{t+1}^{E_t} w_t}{\tilde{w}_{t+1}^{E_t}}$.

Gregory Ponthiere (U Paris 12 - PSE - IUF) Fair retirement and premature mortality UCLo

- Under that non-regime shift condition, we can study the dynamics of the economy *conditionally on a given retirement regime*.
- The dynamics of capital is given by the law:

- The saving s_t is positive under standard retirement, but negative under reverse retirement (young adults are then borrowing to finance young-age consumption).
- The saving *z_t* is always positive, whatever we consider standard or reverse retirement.

Proposition (laissez-faire stationary equilibrium)

Consider the stationary equilibrium with perfect foresight with $\max \{\ell_t, \tilde{\ell}_t\} < 1$. Assume the non-regime shift condition, as well as $u(c_t) = \log(c_t) - \beta$ and $Y_t = AK_t^{\alpha} \left(aN\ell_t + b\pi N\tilde{\ell}_t\right)^{1-\alpha}$ with $0 < \alpha < \frac{1}{2}$.

- If the laissez-faire temporary equilibrium at t = 0 involves standard retirement (i.e. $\ell_0 > 0$, $\tilde{\ell}_0 = 0$), there exist only two stationary equilibria $K^{s*} = 0$ and $K^{s**} > 0$, where K^{s*} is unstable, while K^{s**} is locally stable.
- If the laissez-faire temporary equilibrium at t = 0 involves reverse retirement (i.e. $\ell_0 = 0$, $\tilde{\ell}_0 > 0$), there exist only two stationary equilibria $K^{r*} = 0$ and $K^{r**} > 0$, where K^{r*} is unstable, while K^{s**} is locally stable.

 The utilitarian social planner chooses {c, d, e, l, l, K} so as to maximize the sum of individual utilities at the stationary equilibrium, subject to the resource constraint of the economy:

$$\max_{\substack{c,d,e,\ell,\tilde{\ell},K}} N\left[u\left(c\right) - v\ell + \pi\left[u(d) - \tilde{v}\tilde{\ell}\right] + \pi p u(e)\right]$$

s.t. $F\left(K, aN\ell + b\pi N\tilde{\ell}\right) = Nc + \pi Nd + \pi pNe + K$
s.t. $\ell \ge 0$ and $1 - \ell \ge 0$
s.t. $\tilde{\ell} \ge 0$ and $1 - \tilde{\ell} \ge 0$

Proposition

Consider the long-run utilitarian social optimum $\{c^{u}, d^{u}, e^{u}, \ell^{u}, \tilde{\ell}^{u}, K^{u}\}$.

 If young workers are weakly more productive than old workers (i.e. a > b), then standard retirement prevails (i.e. $\tilde{\ell}^u = 0$), and we have:

$$u'(c^u) = u'(d^u) = u'(e^u)$$

 $u'(c^u)F_L(K^u, aN\ell^u) a \ge v and F_K(K^u, aN\ell^u) = 1$

- If old workers are more productive than young workers (i.e. a < b), then:
 - If $\frac{v}{a} < \frac{\tilde{v}}{b}$, standard retirement prevails (i.e. $\tilde{\ell}^u = 0$) (see above); • If $\frac{v}{2} > \frac{\tilde{v}}{b}$, reverse retirement prevails (i.e. $\ell^u = 0$), and we have:

$$u'(c^{u}) = u'(d^{u}) = u'(e^{u})$$
$$u'(c^{u})F_{L}(K^{u}, b\pi N\tilde{\ell}^{u}) b \geq \tilde{v} \text{ and } F_{K}(K^{u}, \pi N\tilde{\ell}^{u}) = 1$$

- The utilitarian criterion does not do justice to the idea of compensating the unlucky short-lived.
- The utilitarian optimum involves perfect smoothing of consumption, which leads to large well-being losses in case of premature death.
- The utilitarian optimum involves, when $\frac{v}{a} < \frac{\tilde{v}}{b}$, standard retirement, which is a major source of deprivation for the short-lived.

The ex post egalitarian optimum

Under the *ex post* egalitarian criterion, the social planner chooses
 {*c*, *d*, *e*, *l*, *l*, *K*} that maximize the realized lifetime well-being of the
 worst off living at the stationary equilibrium:

$$\max_{c,d,e,\ell,\tilde{\ell},K} \min \left\{ \begin{array}{ll} u(c) - v\ell, u(c) - v\ell + u(d) - \tilde{v}\tilde{\ell}, \\ u(c) - v\ell + u(d) - \tilde{v}\tilde{\ell} + u(e) \end{array} \right\}$$
s.t.
$$F\left(K, aN\ell + b\pi N\tilde{\ell}\right) = Nc + \pi Nd + p\pi Ne + K$$
s.t.
$$\ell \geq 0 \text{ and } 1 - \ell \geq 0, \ \tilde{\ell} \geq 0 \text{ and } 1 - \tilde{\ell} \geq 0$$

• That planning problem can be rewritten as:

$$\max_{c,d,e,\ell,\tilde{\ell},K} N\left[u\left(c\right) - v\ell\right]$$

s.t. $F\left(K, aN\ell + b\pi N\tilde{\ell}\right) = Nc + \pi Nd + p\pi Ne + K$
s.t. $u(d) - \tilde{v}\tilde{\ell} = 0$ and $u(e) = 0$
s.t. $\ell \ge 0$ and $1 - \ell \ge 0$, s.t. $\tilde{\ell} \ge 0$ and $1 - \tilde{\ell} \ge 0$

Proposition

Consider the long-run ex post egalitarian optimum $\{c^e, d^e, e^e, \ell^e, \tilde{\ell}^e, K^e\}$. Define $\mu \equiv \frac{\pi N u'(c^e)}{u'(d^e)}$ as the shadow value of relaxing the old-age egalitarian constraint.

• If $\frac{v}{a} < \frac{\mu \tilde{v}}{\pi N b}$, then standard retirement holds ($\tilde{\ell}^e = 0$), and we have:

$$\begin{array}{rcl} c^{e} & > & d^{e} = \bar{c} = e^{e} \\ u'(c^{e})F_{L}\left(K^{e}, aN\ell^{e}\right) & \geq & \displaystyle \frac{v}{a} \text{ and } F_{K}\left(K^{e}, aN\ell^{e}\right) = 1 \end{array}$$

• If $\frac{v}{a} > \frac{\mu \tilde{v}}{\pi N b}$, then reverse retirement prevails ($\ell^e = 0$), and we have: $c^e > d^e = u^{-1}(\tilde{v}\tilde{\ell}^e) > e^e = \bar{c}$ $u'(c^e)F_L(K^e, b\pi N\tilde{\ell}^e) \geq \frac{\mu \tilde{v}}{\pi N b}$ and $F_K(K^e, b\pi N\tilde{\ell}^e) = 1$

The ex post egalitarian optimum

Proposition

Assume
$$u(c_t) = \log(c_t) - \beta$$
 and $Y_t = AK_t^{\alpha} (aN\ell_t + b\pi N\tilde{\ell}_t)^{1-\alpha}$ with $0 < \alpha < \frac{1}{2}$. Assume that $\max \{\ell, \tilde{\ell}\} < 1$. Define $\bar{c} = \exp(\beta)$ and $\Xi \equiv A(1-\alpha) (A\alpha)^{\frac{\alpha}{1-\alpha}}$, as well as $\Phi \equiv \log(\frac{b}{\tilde{v}}\Xi) - \beta - 1$. Define also:
 $\eta \equiv \log(\frac{a}{v}\Xi) - \beta - 1 - v\frac{\pi(1+p)\bar{c}}{a\Xi}$ and $\xi \equiv \log(\frac{b\pi}{\tilde{v}}\Xi\Phi - \pi p\bar{c}) - \beta$.

If max {η, ξ} = η, the optimum involves standard retirement, and:

$$c^{e} = \frac{a\Xi}{v}; \ \ell^{e} = \frac{1 + \frac{v\bar{c}}{a\Xi}\pi(1+p)}{v}; \ \mathcal{K}^{e} = aN\left(A\alpha\right)^{\frac{1}{1-\alpha}} \frac{\left(1 + \frac{v\pi(1+p)\bar{c}}{a\Xi}\right)}{v}$$

• If max $\{\eta, \xi\} = \xi$, the optimum involves reverse retirement, and:

$$c^{e} = \frac{b\Xi}{\tilde{v}}\pi\Phi - \pi p\bar{c}; \ \tilde{\ell}^{e} = \frac{1+\Phi}{\tilde{v}}; \ K^{e} = \pi bN \left(A\alpha\right)^{\frac{1}{1-\alpha}} \frac{\pi \left(1+\Phi\right)}{\pi \tilde{v}}$$

Proposition

The long-run utilitarian optimum $\{c^{u}, d^{u}, e^{u}, \ell^{u}, \tilde{\ell}^{u}, K^{u}\}$ with standard retirement can be decentralized by means of an intergenerational lumpsum transfer device leading to a capital stock $K = K^{u}$ such that:

$$F_{K}\left(K^{u}, aN\ell^{u}\right) = 1$$

$$F_{L}\left(K^{u}, aN\ell^{u}\right)u'(c^{u}) = v$$

Proposition

The long-run ex post egalitarian optimum with reverse retirement can be decentralized by means of:

- a prohibition of young-age labor: $\ell = \ell^e = 0$;
- a legal retirement age fixed at $2 + \tilde{\ell} = 2 + \tilde{\ell}^e$;
- a subsidy θ on young-age borrowing satisfying: $\theta^e = \frac{u'(d^e)}{u'(c^e)} 1 > 0$;
- a tax τ on old-age savings satisfying: $\tau^e = 1 \frac{u'(d^e)}{u'(e^e)} > 0$;
- an intragenerational lumpsum transfer device leading to the egalitarian constraint at the old age: T^e = d^e - d^{LF};
- an intragenerational lumpsum transfer device leading to the egalitarian constraint at the very old age: $\tilde{T}^e = e^e e^{LF}$;
- an intergenerational lumpsum transfer device leading to a capital stock K = K^e such that: F_K (K^e, πbNℓ^e) = 1.

- One may regard standard retirement as based on the Principle of Liberal Reward (inequalities due to efforts should be left unaffected).
 - Shifting from standard to reverse retirement would lead to a "free lunch" for the prematurely dead.
- The "free lunch" for the prematurely dead under reverse retirement is less unfair than the "no reward" under standard retirement.

- The standard retirement system is based on the *insurance motive* (Barr and Diamond 2006, Cremer and Pestieau 2011).
 - Standard retirement would provide insurance against old-age poverty (e.g. in case of myopia).
 - From that perspective, shifting from standard to reverse retirement might seem to go against the insurance motive.
- But the largest life-damage is not old-age poverty, but premature death without retirement.
- Hence reverse retirement *does justice to the insurance motive*, by insuring individuals against the largest life-damage.

Discussions: the transition

• The case of a raw transition.

Discussions: the transition

• Increasing the length of the transition divides the burden on more cohorts.

• We examined the economic feasibility and the social desirability of reverse retirement.

• Economic feasibility:

- -: a laissez-faire transition would lead the economy to collapse;
- +: once in place, the economy with reverse retirement converges towards a unique steady-state.

• Social desirability:

- -: reverse retirement never optimal under utilitarianism (when labor productivity decreases with age);
- +: reverse retirement can be optimal under *ex post* egalitarian criterion (if π large, \tilde{v} low and *b* close to *a*);
- +: there exists a set of policy instruments allowing for a successful transition to reverse retirement.