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Our goal in this chapter is to provide an up-to-date and relatively comprehensive
treatment of procedures for assessing mediation and moderation in social-
personality psychology. Both of these processes enable researchers to ask
questions of their data that extend the theoretical scope of inquiry beyond simply
establishing some overall experimental effect or some simple relationship
between two variables. That is, they both begin to enable researchers to arrive at a
more comprehensive theoretical understanding of what produces an effect of
interest by probing intricacies of that effect. As such, they are related but distinct
analytic tools. They are related in the sense that they permit researchers to probe
mechanisms underlying and limiting conditions for effects of interest. And yet,
the questions they pose are fundamentally different, in ways that are often
confused, and the underlying models are distinct.

Given their importance in developing a theoretical understanding of what
produces an effect of interest, it is hardly surprising that the assessment of
mediation and moderation is ubiquitous in social and personality psychology. As a
result, the literature devoted to procedures for estimating and testing mediation
and moderation is vast. While we cover what we consider to be the most
important points in this literature, our intention is not to cover this literature
exhaustively. Rather, our goal is to discuss basic analytic issues, complexities of
interpretation and inference, and underlying assumptions and common pitfalls.
Additionally, we provide citations to more in-depth and comprehensive treatments
throughout.

The chapter is organized into four main sections. In the first short section we
provide basic definitions of both mediation and moderation and illustrate the sort
of theoretical questions that their assessment permits the researcher to address.
Our emphasis here is on the theoretical definitions that underlie both mediation
and moderation, rather than on the technical details of estimation and statistical
inference. The second section of the chapter is devoted to a more in-depth
treatment of mediation, including underlying assumptions, estimation, statistical
inference, and power considerations. Coverage here includes both basic models
assuming homogenous errors and more complex multilevel models that allow
grouping and nonindependence of observations. The third section is devoted to a



more in-depth treatment of moderation, again including underlying assumptions,
estimation, statistical inference, and power considerations. And here too we
discuss moderation analyses in the multilevel context, with nested
nonindependent observations. In the final section we discuss the integration of
these two processes, framed as either moderated mediation or mediated
moderation. Again we discuss estimation issues for such models and theoretical
interpretations and insights that they permit.

Defining Mediation and Moderation
In order to define mediation and moderation, we start with the presumption that
research has established some relationship or effect of theoretical interest. For
instance, a social psychologist may have conducted research to demonstrate that
social projection – that is, people's tendency to consider that others have the same
traits or show the same preferences as oneself – depends on others’ group
membership. Or a personality researcher may have explored ways in which a
particular individual difference – say, extraversion – is related to the tendency to
assume leadership roles in small-group settings.

Seldom, however, are researchers content with simply the demonstration of
such a relationship or effect. To build a theoretical understanding of social
behavior and individual differences more broadly, one must probe the
mechanisms that underlie an effect and the limiting conditions for its occurrence.
Understanding the mechanisms produces more refined assessments of what the
effect really is and how it is produced. Understanding its limiting conditions
informs the researcher about necessary and sufficient conditions for its
occurrence. These two sorts of understandings – one of mechanisms and one of
limiting conditions – are the concerns of mediation analyses and moderation
analyses, respectively. That is, the goal of mediation assessment is to explore the
underlying mechanisms responsible for an effect of interest, whereas the goal of
moderation assessment is to explore the ways in which the magnitude of an effect
of interest may depend on other variables.

While the questions addressed via the assessment of mediation and moderation
are distinct, it is nevertheless the case that gaining knowledge of mechanisms and
limiting conditions extends in similar ways one's theoretical understanding of an
effect. If one really understands the mechanisms that produce an effect, then
surely one gains insights into the necessary conditions to produce that effect. That
is, if one understands the mechanisms, then it seems likely that one could turn off
the effect by inhibiting those mechanisms. And if one really understands the
conditions under which an effect is or is not produced, then surely one has gained



some insight into the mechanisms responsible for an effect. So a full theoretical
understanding of an effect of interest involves both understanding mechanisms
(the question of mediation) and understanding limiting conditions (the question of
moderation), and the knowledge gained from both of these assessments ultimately
must converge.

Because of the fact that the understanding of mechanisms and the
understanding of limiting conditions are theoretically intertwined and, in
combination, give rise to a full theoretical understanding of the effect of interest,
the theoretical questions asked by mediation and moderation procedures can be
confusing. However, the analytic procedures for assessing mediation and
moderation are different. The former set of procedures examines partial effects
controlling for hypothesized mediators. The latter set of procedures examines
interactions between the independent variable that produces the effect and some
other moderating variable. The distinction in analytic procedures enforces the
researcher to think clearly about whether he/she is probing mechanisms or
limiting conditions.

Mediation

Basic Analytic Model
Suppose that a researcher wants to study the impact of an independent variable X
on a dependent variable Y. Imagine that the independent variable has two levels –
a treatment condition and a control condition – and that, in order to permit
stronger causal inference, participants have been randomly assigned to one or the
other of these conditions. In this context, the total linear effect X on Y is estimated
by the slope in the following linear model1:

The effect of X in this model is represented by the diagram in the top half of
Figure 25.1.



 Figure 25.1. Basic mediation model.

In mediational analyses, the researcher is interested in finding the mechanism
responsible for this X – Y relationship (Baron & Kenny, 1986; James & Brett,
1984; Judd & Kenny, 1981). Accordingly, the researcher generates hypotheses
about one or more third variables that may be partially responsible for the
observed total effect, c. The question will then be: Does part of the total effect go
through the third variable, often called a mediator or an intervening variable?

To conduct the mediational analysis, one estimates the following two models:

In the first of these models, a is the simple effect of X on the mediator. In the
second, b is the partial effect of the mediator, controlling for X, and c’ is the
partial effect of X controlling for the mediator. These models are represented in
the diagram at the bottom of Figure 25.1.

The fundamental equation of mediation expresses the total effect c as a function
of the coefficients estimated in these two mediational models:2

What this equality tells us is that the total effect of X on Y, c, can be broken into
two components, a*b and c′. The first of these components, a*b, is the indirect
effect of X on Y via the mediator. This is the portion of the total effect that
corresponds to the mediation via M. The second of these components, c′, is the
residual direct effect of X on Y controlling for or “over and above” the mediator.

It should be noted that the term “direct” must be understood in relative terms,
given that there may be other mediators that potentially explain this residual
direct effect (Rucker, Preacher, Tormala, & Petty, 2011). Hence, in the case of two



mediators M1 and M2, the direct effect would be the residual effect of X on Y not
explained by either M1 or M2.

Let us illustrate mediation analysis as well as the underlying models by
presenting a concrete example. In a social comparison study, pairs of participants,
one of whom was in fact a confederate, performed an attentional task twice
(Muller & Butera, 2007, Study 5). After the first round, participants were
randomly given bogus feedback: Whereas half of them heard that they had
outperformed the confederate (i.e., the downward comparison condition; DC), the
other heard they had been outperformed by the confederate (i.e., the upward
comparison condition; UC). The self-evaluation threat hypothesis suggests that
the UC participants should feel more threatened in their self-evaluation than the
DC participants. As a result, they should have fewer attentional resources left in
order to process peripheral cues when completing the task. Because peripheral
cues could either be selected to help or to hurt participants when dealing with the
task, the difference between these two types of cues (called a cuing effect) should
be reduced for UC participants. In their study, Muller and Butera did not measure
the mediator (i.e., self-evaluation threat) but, in line with their hypotheses, they
found a reduced cuing effect among UC than among DC participants.

Imagine now that we conduct a study to examine the hypothesis that self-
evaluation mediates the impact of social comparison on participants’ attentional
resources (the data and SAS codes for this example are available at
http://www.psp.ucl.ac.be/mediation/medmod/). To this end, we measure self-
evaluation right after participants receive the bogus feedback but before they
proceed to the second round of the attentional task. As mentioned earlier, the first
model allows testing the effect of the independent variable (i.e., social
comparison; contrast coded: DC = –0.5 and UC = 0.5) on the dependent variable
(i.e., the cuing effect). This analysis reveals a larger cuing effect among DC (M =
69.33) than UC participants (M = 51.65). Given the coding we use, this translates
into a significant negative slope, c = –17.67, t(38) = 2.91, p < .01. In the second
model, we test the impact of the independent variable on the mediator (i.e., self-
evaluation threat). This analysis reveals a smaller self-evaluation threat in DC (M
= 4.40) than in UC (M = 6.32). Accordingly, this translates into a significant
positive slope, a = 1.92, t(38) = 3.62, p < .01. In the last model, we regress the
cuing effect on both the independent variable and the mediator. In line with our
mediational hypothesis, this analysis reveals a significant slope for the mediator, b
= –7.88, t(37) = 5.80, p < .01, such that (controlling for the independent variable)
the higher the self-evaluation threat, the lower the cuing effect. This analysis
shows that once we control for the mediator, the effect of the independent variable
is no longer significant, c’ = –2.51, t(37) = 0.49, p = .63. Finally, in line with the
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fundamental equation presented earlier (notwithstanding rounding errors), we
note that the total effect c equals a*b + c’, as −17.67 = (1.92* –7.88) + (–2.51).

Both the analytical model and the preceding example take for granted that the
researcher wants to investigate the mechanism underlying an observed
experimental effect. Obviously, the initial step is thus to first establish that such
an effect exists. Demonstrating this requires that the experiment have sufficient
power to find the overall or total effect. Traditionally, the definition of mediation
has taken for granted that there is a significant total effect, and the goal of
mediation is then to at least partially account for the process that produces that
effect (Baron & Kenny, 1986; Judd & Kenny, 1981).

In recent years, there has been increasing skepticism about the view that the
impact of X on Y must be demonstrated before turning to a closer examination of
the potential mediating role of a third variable (e.g., Shrout & Bolger, 2002).
Relatedly, a similar confusion has surfaced regarding the exact conditions for
mediation and whether or not a variable that “suppresses” a total effect should be
called a mediator. In the following, we hope to clarify these issues.

One helpful way to think about this is to consider three key features in any
situation targeted by a mediational hypothesis. A first feature concerns the
presence or absence of a significant c – that is, the total effect of X on Y. A
number of reasons may explain why c is not found in the particular data set
examined by the researcher. It may be that such an effect simply does not exist.
Alternatively, it may exist, but the experiment may not have had sufficient power
to detect it. A second feature has to do with c′ – that is, the direct residual effect.
If in fact the mediator is playing some causal role in affecting Y, then c′ should
have a different value from c. Finally, the third feature is the indirect effect, a*b.
When significant, this product points to the existence of a significant causal3 flow
between X and Y via the intervening variable, M.

A proper consideration of these three features allows us to define in
unambiguous terms what for us corresponds to mediation, suppression, and the
mere presence of an indirect effect.4 An indirect effect can be said to exist
whenever a*b is significant, regardless of the values of c and c′. Both mediation
and suppression presume that there is a significant indirect effect, but they imply
additional considerations concerning the magnitudes of c and c′. Mediation for us
implies the additional assumption that there is a significant total treatment effect
to be explained by the mediational process, i.e., , and that this total
effect, c, is larger in absolute value than . Finally, suppression in the context of
a mediational model exists when there is a significant indirect effect and a
significant , a residual direct effect, that is larger in absolute value than the total



effect, c. Suppression means that the intervening variable, when not controlled, is
in fact dampening the total effect and that the inclusion of M in the model allows
for the direct effect to be more fully revealed.

It should be noted that this discussion focuses on situations in which only one
mediator is examined. Matters get somewhat more complex when several
mediators are examined. For instance, a third variable may be a suppressor
variable and its inclusion in the model could actually reveal the existence not only
of a direct effect but also of an indirect effect involving another intervening
variable (Rucker et al., 2011).

Assumptions
As with any analysis, mediation analysis with unmanipulated mediators entails a
number of important assumptions. A first assumption concerns the requirement
that the relations among variables be linear. Of course, nonlinear transformations
can be used in the analysis to model nonlinear relations. A second assumption is
that the variables are measured both reliably and validly. A third assumption is
that the errors or residuals in any one model are independent of each other or,
equivalently, that there are no hidden nestings in the data that give rise to
dependence. And a fourth and crucial assumption is that the aforementioned
models have been correctly specified and that there are no correlated omitted
variables that ought to be included in them. This assumption can be equivalently
stated as the assumption that the errors or residuals in these models are
uncorrelated with the predictor variables included in the models. We will discuss
both the second and third assumptions at a later point in the chapter. For now we
focus on the fourth assumption because we are convinced that in many
applications of mediation analyses it is violated, with serious consequences.

All too often, from our point of view, one finds “mediational” analyses reported
using cross-sectional data collected by measuring three variables, X, M, and Y, at
roughly the same time. Even assuming no measurement errors, in the absence of
any further information, the causal possibilities for why these three variables are
related to each other are given by all the straight arrows (representing potential
causal effects) and curved double-headed arrows (representing simple covariances
induced by omitted variables) in Figure 25.2. This model obviously includes the
possibility that M mediates the X:Y relationship: There is a straight arrow from X
to M and another straight arrow from M to Y. But there are also reverse effects
that may be responsible for the total covariation observed in the data. For
instance, the effect of X on M may result from the impact of X on Y, which in turn
affects M. And finally there are also omitted variables that are responsible for the



covariation in the errors (the errors are that part of each variable not explained by
the direct causal effects to it). If the results of mediational analyses are to provide
unbiased estimates of true causal effects, then all of the arrows in Figure 25.2 with
the exception of those posited by the mediating process (which we have labeled r,
s, and t) must be zero. In other words, a will not equal r unless there is no reverse
causal effect of M on X and unless there are no omitted common causes of both M
and X. And the same holds for the other effects estimated in a mediational
analysis.

 Figure 25.2. Three variable model showing effects responsible for total
covariations.

At the beginning of this section we made the assumption that X was an
experimentally manipulated independent variable, meaning that participants had
been randomly assigned to its levels. The question is now what this buys us in
terms of eliminating some of the effects and covariances of Figure 25.2 and
thereby improving causal inferences from mediational analyses. With an
experimental manipulation of X, the causal possibilities are contained in Figure
25.3. To be sure, many causal possibilities have been eliminated, but it is still the
case that there are multiple reasons why the mediator, M, and the outcome
variable, Y, covary. And if there is anything other than a direct effect of M on Y,
then the mediational estimation will be biased (with bias in both the indirect effect
and the residual direct effect).



 Figure 25.3. Three variable causal model with X manipulated.

What this means is that even with an experimental manipulation of the
independent variable, X, mediational analyses will yield biased effects unless
there is no potential of Y causing M, and unless there are no omitted common
causes of both M and Y. We suspect that in most mediational analyses reported in
the literature, even with experimental manipulations of X, the magnitude of the
indirect effect via the mediator is substantially overestimated because the
mediator and the outcome share omitted common causes. In a great many studies,
the outcome and the mediator end up being measured by means of questionnaires,
allowing for the intrusion of shared method variance. One of the very early
treatments of mediation contained the following warning: The outlined analyses
are “likely to yield biased estimates of the causal parameters…even when a
randomized experimental research design has been used” (Judd & Kenny, 1981,
p. 607, emphasis in the original). Unfortunately, this warning has gone largely
unheeded.

MacKinnon (2008) summarizes additional considerations for the single
mediator model. Among these, a crucial assumption is temporal precedence,
because a mediational model ultimately refers to a causal sequence that must take
place across time. As a matter of fact, the mediator model assumes that the
treatment variable, X, comes before the mediator, M, which itself comes before
the dependent variable, Y. This renders any mediational conclusions based on
cross-sectional data highly problematic. The problem more often concerns the
ordering of M and Y than the sequence involving X. Related to the issue of
temporal precedence are two considerations, namely the level of the mediational
chain and the measurement timing. The first concerns the specific steps that are
selected for measurement in what may be a rather long and intricate causal chain.
Depending on the focus of the researcher, the window used to examine the
underlying causal chain may vary widely. The second is related to the
correspondence between the timing of the measurement of the mediator and the
dependent variable, on the one hand, and the true timing of the changes in the



phenomena under examination, on the other. In many instances, changes in the
mediator or in the outcome can occur long after the independent variable has been
manipulated.

In Figure 25.4 we include a plausible causal model in the circumstance where X
is an experimental manipulation and both M and Y are measured at two times
points: time 1 at the same time that X is manipulated and time 2, somewhat later,
when the effect of the treatment is thought to have been revealed. Again the
mediational indirect effect is the effect of X on M2 times the direct effect of M2
on Y2. Even with such longitudinal data, this indirect effect will be estimated with
bias if there is a reverse effect from Y2 on M2 or if there are omitted third
variables responsible for the relationship between M2 and Y2. This latter threat is
reduced in magnitude somewhat because of the fact that earlier values of both
variables are controlled, that is, M1 and Y1. Assuming that other causal effects on
these variables are unchanging over time, omitted and unchanging common
causes will be effectively controlled by such longitudinal models (in the absence
of measurement error).

 Figure 25.4. Causal possibilities in two-wave longitudinal mediation model.

Estimating and Testing Indirect Effects
So far, we provided the three basic equations underlying mediation analyses.
These equations are sufficient to estimate and test the individual slopes in the
estimated mediation models (although we later address limitations with these in
the presence of measurement error). One important question remains how one
should test the underlying indirect effect. There are basically three general
approaches: the causal steps, the difference in coefficients, and the product of
coefficients (MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002).

First, one can test the indirect effect by estimating a and b and testing them
individually against zero. The logic here is that if both steps of the indirect effect
are significant, it means that the indirect effect is itself significant. In other words,



if the two components of a product are significant, the product itself is
significant.5 Such a test has sometimes been referred to as the a and b joint
significance test (Cohen & Cohen, 1983; Fritz, Taylor, & MacKinnon, 2012;
MacKinnon et al., 2002).

Second, one can test the indirect effect by estimating and testing the difference
between the coefficients c and c′. As we have seen, this test amounts to a test of
whether the total X effect is different from the residual direct effect controlling for
M. Because of the equivalence of c – c′ and a*b, this is conceptually similar to
asking whether X indirectly influences Y via M.

Third, one can test the indirect effect by directly estimating and testing the
product a*b. There are three main strategies for doing so. The first consists in
testing the a*b product by dividing it by an estimate of the standard error of a
product of the two slopes. Baron and Kenny (1986) suggested computing this
standard error by using a formula derived by Sobel (1982). The result of this
computation is then compared with a normal distribution. As it turns out, this
strategy is problematic because the product of two normally distributed variables
does not typically have a normal distribution (Bollen & Stine, 1990; MacKinnon
et al., 2002). A second strategy makes no assumption regarding the normality of
the product distribution and relies on bootstrapping, a resampling method that
consists of approximating the population distribution by sampling with
replacement from the observed sample (Shrout & Bolger, 2002). The simplest
bootstrapping technique, the percentile bootstrap, simply uses this bootstrap
sampling distribution to provide a 95% confidence interval. The test of the
indirect effect is statistically significant if this interval does not include 0. More
elaborated bootstrapping techniques – the accelerated bias-corrected bootstrap and
the bias-corrected bootstrap – involve corrections for potential biases in a*b
estimation and its standard deviation. The third strategy solves the normality issue
by using numerical integration to estimate the distribution of this product.
MacKinnon and colleagues developed a program called PRODCLIN for doing
this (e.g., Fritz et al., 2012; MacKinnon, Fritz, Williams, & Lockwood, 2007).
The program enables one to derive a 95% asymmetric confidence interval that can
be used to estimate and test a*b, again with the indirect effect being statistically
significant if 0 is not found in this confidence interval (for more information,
consult http://quantpsy.org/sobel/sobel.htm).

A fair amount of the mediation literature has been devoted to comparing these
indirect effect tests (e.g., Fritz & MacKinnon, 2007; Fritz et al., 2012; MacKinnon
et al., 2002). What this work shows is that the most powerful tests are probably
the bias-corrected bootstrap tests (e.g., Fritz & MacKinnon, 2007). The major
problem, however, is that this increase in power comes with a price in terms of
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Type 1 error (Cheung, 2009; Fritz et al., 2012; MacKinnon, Lockwood, &
Williams, 2004). The increase in Type 1 error, although not dramatic, is especially
found when either a or b are 0 and their counterparts are large (i.e., when a = 0
and b is large or when a is large and b = 0; Fritz et al., 2012). Our own
simulations show that the only test that does not suffer from this Type 1 error
issue is the a and b joint significance test. This is of interest also because previous
work showed that this test is statistically as powerful as the percentile bootstrap
and the numerical integration tests (Fritz & MacKinnon, 2007; MacKinnon et al.,
2002). The only remaining downside to this approach could be that this test does
not provide directly a confidence interval for the indirect effect (MacKinnon et
al., 2002). Although having such a confidence interval should not be seen as
mandatory, we believe that when necessary one can still estimate indirect effect
confidence intervals from either the percentile bootstrap or the numerical
integration. Interestingly, MacKinnon and colleagues now suggest that a and b
should be tested in addition to using a*b tests (Fritz et al., 2012). Obviously, one
additional benefit of the a and b joint significance test, compared to all the other
indirect effect tests, is that one can be reasonably confident that each step of the
causal path really is significant. As a matter of fact, some data sets may lead to a
significant a*b test while either the test of a or the test of b fails to reach
significance, calling for some caution in interpretation and for possible
replication.

To illustrate the test of the indirect effect, we can go back to the example
inspired by the Muller and Butera's (2007) study. If, as we suggest, one relies on
the joint significant test, the data reveal that both a and b were significant.
Clearly, this test ensures that both a and b are reliable effects. In order to conduct
the a*b test, we rely on Preacher and Hayes's (2008) macro. Specifically, the
percentile bootstrap (using 5,000 resamples), for instance, gives a CI95% of –27.94
to – 5.98. Because this confidence interval does not include 0, we can safely
conclude that the indirect effect is significant.

Observed versus Latent Variable Models
More often than not, psychologists do not have direct access to their theoretical
variables, but must rely on observed variables instead (e.g., Sigall & Mills, 1998).
These observed variables necessarily contain errors of measurement – that part of
an observed variable's variance that is not explained by the underlying theoretical
construct. The presence of measurement error, as we mentioned earlier, can lead
to substantial bias in the estimate of slopes in the mediational models. To reduce
measurement errors, social and personality psychologists often measure their
theoretical variables with more than one indicator. Researchers are then faced



with two main options given that they want to reduce bias from measurement
error by using these multiple indicators. First, they can average the multiple
indicators and use this summary score as their proxy, their observed variable, in a
regression model: This is the observed variable approach for dealing with
measurement error (e.g., Ledgerwood & Shrout, 2011). This approach reduces
measurement error but does not completely eliminate it (the degree to which such
a composite still contains errors of measurement is given by Cronbach's α; Judd &
McClelland, 1998; Schmitt, 1996). Second, researchers can use structural
equation modeling to adjust for measurement errors. These models examine
relationships among latent variables, adjusted for measurement errors, to test the
theoretical model: This is the latent variable approach to estimating mediation
(e.g., Ledgerwood & Shrout, 2011). Whatever the chosen model (observed or
latent variables), researchers can then proceed with the mediation analysis of their
choice presented earlier (MacKinnon, 2008).

To address the pros and cons of these two approaches for dealing with
measurement errors, one needs to distinguish between accuracy and precision.
Accuracy has to do with how good the model is with respect to estimating the
various parameters without the biasing effects of measurement error. In other
words, does the model estimate the effects accurately? Precision has to do with
the sensitivity of statistical tests of those effects. In other words, does it detect an
effect that is in fact present (i.e., does it have a low Type 2 error rate)?

An accurate model is one that provides parameter estimates that are as close as
possible to the true theoretical relationships. Latent variable models are better
suited for this purpose because they correct for measurement errors. This leads to
more accurate estimates. In general, measurement error attenuates bivariate
relationships and latent variable models, with multiple indicators, eliminate this
attenuation.

The issues, however, become more complex in the context of a three-variable
mediational model. For instance, if X is manipulated (hence there is no
measurement error in X) and M is measured with error, the b path will be
underestimated in an observed variable model (Hoyle & Kenny, 1999). But
importantly, given that c’ = c – ab, it also means that c’ will generally be
overestimated (given that b is attenuated). Note that this is just an illustration
because matters can become even more complex when X is also measured (and
therefore has measurement error; see Ledgerwood & Shrout, 2011). The point
remains that latent variable models are better equipped to estimate the true values
of the different paths. In a nutshell, latent variable estimates are more accurate.



From the preceding discussion one might surmise that more accurate estimates
should also be more precise. For instance, if the effects are underestimated in
observed variable models, one would expect them to be significant less often.
Paradoxically, this is not what happens. Indeed, Ledgerwood and Shrout (2011)
showed that although latent variable models provide more accurate parameter
estimates, they also come with larger standard errors, which translate into less
precise tests: one will be more likely to conclude that an effect is not there when
in fact it exists in the population. Simulations revealed that this is true for both the
b and a*b tests. To quote Ledgerwood and Shrout “the latent (vs. observed)
variable approach produced estimates that are more accurate but less powerful,
especially as reliability decreases and as effect size increases.” (p. 1182). This
leads these authors to suggest (apart from wisely encouraging the investment in
more reliable measures) a two-step strategy by which one tests the indirect effect
with an observed variable model strategy and later estimates this indirect effect
with a latent variable model. We concur with this recommendation, particularly
when estimating the size of the indirect effect is crucial.

Multilevel mediation
A recent and very important extension of mediational analysis concerns those
cases in which the data are collected at more than one level (Krull & MacKinnon,
2001; MacKinnon, 2008; Schoemann, Rhemtulla, & Little, Chapter 21 in this
volume). For instance, individuals may be grouped in some way – in work teams,
classes, or other naturally occurring groups. When this is the case, if some of the
variables in a mediational model are measured at the level of the individuals
within those groups, then the assumption that errors or residuals in the models are
independent is likely to be violated. This nonindependence arises because
observations within a group are likely to be more similar to each other, on
average, than are observations between groups, leading to a positive intraclass
correlation due to group. Such dependence can seriously bias statistical inference
procedures in tests of mediational models (Schoemann et al., Chapter 21 in this
volume).

It is important to bear in mind that there are many plausible groupings that can
give rise to dependence in data. In addition to individuals being clustered into
groups, observations may be clustered within people, with multiple observations
from each person. Such a situation is quite common, with repeated-measures
designs that are frequently used by social psychologists. When there are only a
few well-defined levels of independent variables of interest that differentiate these
repeated measures, procedures that are variations of analysis of covariance with



repeated measures can be used to examine issues of mediation within-participants
(Judd, Kenny, & McClelland, 2001). In other situations, with more complex
designs and numerous observations taken within persons, such as in the case of
everyday experience data sets (Reis, Gable, & Maniaci, Chapter 15 in this
volume), more general multilevel models are required.

To illustrate multilevel mediational models, we turn to an example from
Pleyers, Corneille, Yzerbyt, and Luminet (2009). These authors were interested in
factors responsible for evaluative conditioning. More specifically, they wanted to
know whether the availability of cognitive resources (the independent variable)
plays a role in the emergence of evaluative conditioning (the dependent variable)
via its impact on contingency awareness (the mediating variable). Each
participant was exposed to several unfamiliar consumption products (conditioned
stimuli) that were consistently paired with one of a series of pictures known to
elicit either negative or positive affective responses (unconditioned stimuli). All
participants wore headphones during the presentation, over which half of them
heard music while the remaining half heard numbers and were made cognitively
busy by having to perform an auditory two-back task. Specifically, participants
were instructed to press the spacebar as quickly as possible when they heard a
number that was identical to a number they had heard “two places before” (for
instance, if they heard the number “7” and before that they heard a “3” and before
that a “7”). The authors then checked the extent to which participants evaluated
each product in line with the valence of its associated picture and whether they
were able to correctly associate each product with its specific picture. The
independent variable, cognitive resources, thus varied between participants.
However, both the mediator (contingency awareness) and the evaluative
conditioning outcome (whether the specific product was evaluated congruently
with the unconditioned stimulus with which it was paired) varied within
participants. In short, this study examined how a level-2 variable (between
participants) influences a level-1 variable via a level-1 mediator (within
participants). Such a design is formally referred to as a 2–1–1 mediational design
(Krull & MacKinnon, 2001).

A proper analysis of such data first requires ascertaining the impact of the
level-2 manipulation on the level-1 outcome. This can be done with the following
equations:

Level 1: Yij = d0j + eij
Level 2: d0j = p00 + cXj + u0j



In the first of these models, Yij is the extent to which the evaluation of the ith
conditioned stimulus for the jth participant is congruent with its paired
unconditioned stimulus (higher numbers mean a stronger evaluation in line with
the affective response elicited by the unconditioned stimulus). The level-1 model
is in essence estimated for each participant and, accordingly, the estimated
intercept, d0j represents the mean degree of evaluative conditioning for each
participant and eij is the variation in that conditioning from product to product
within each participant. In the level-2 model, the intercepts from level 1 (mean
conditioning for each participant) are modelled as a function of the level-2
experimental condition to which each participant was randomly assigned, Xj. The
intercept in this model, p00, is the mean evaluative conditioning on average across
participants and c is the degree to which the magnitude of evaluative conditioning
depends on the experimental condition. This is the total or unmediated effect of
the treatment. u0j is random variation from participant to participant within
experimental condition in the magnitude of evaluative conditioning.

The next step involves looking at the impact of the level-2 manipulation on the
level-1 mediator. The relevant equations are the following6:

Level 1: Mij = d0j + eij
Level 2: d0j = p00 + aXj + u0j

These two models are identical to the previous two except now the dependent
variable at level-1 is the degree to which the participant is contingency aware for
the individual conditioned stimulus (i.e., can he or she state the valence of the
unconditioned stimulus with which it was paired during conditioning?). In the
level-2 model the slope of Xj is a, which, parallel to the earlier terms we used for
mediation, represents the effect of the treatment on the mediator.

The final step consists in looking at the joint impact of the level-2 manipulation
and of the level-1 mediator on the level-1 outcome. The relevant equations are the
following:

Level 1: Yij = d0j + bMij + eij
Level 2: d0j = p00 + c'Xj + u0j

As can be seen, these models include one predictor at the within-subject level, M,
and one at the participant level, X. The estimate of the b parameter is assessed at



the within-subject level, level 1, because the mediator is assumed to be linked to
the product, that is, evaluative conditioning with respect to a given product is
expected to emerge only when there is awareness of the contingency between this
product and the specific unconditioned picture with which it was paired. In the
level-2 model  estimates the residual direct effect of the treatment on the
outcome, over and above the mediator.

Multilevel models have a complex structure, most notably because they include
errors at multiple levels. As a consequence, the parameters of the model cannot
typically be estimated by means of standard least squares methods used for
single-level models. Instead, estimation is typically carried out using restricted
maximum likelihood (REML) estimation. Having said this, the logic underlying
the test of an indirect effect, whether one chooses to rely on a*b or c – c’, remains
the same even though these estimators will not be exactly equivalent in multilevel
models as they are in single-level models. As noted by MacKinnon (2008), the
nonequivalence between the two sides of the equation is not really problematic
because the discrepancy is likely to be small and decreases as sample sizes
increase (Krull & MacKinnon, 1999). Table 25.1 gives an overview of a
multilevel analysis of Pleyers et al.'s (2009) data.

Table 25.1.  Multilevel Mediation Analysis of Pleyers et al.'s (2009) Data
(the analysis was performed using SAS PROC MIXED; data and SAS code are
available at http://www.psp.ucl.ac.be/mediation/medmod/)

Prediction of level-2 X on level-1 Y

Level 1: Yij = d0j + eij

Level 2: d0j = 0.1482 – 0.1134 Xj + u0j

(0.0423) (0.0423)

Prediction of level-2 X on level-1 M

Level 1: Mij = d0j + eij

Level 2: d0j = −0.1242 – 0.5665 Xj + u0j

(0.0546) (0.0546)

http://www.psp.ucl.ac.be/mediation/medmod/


Prediction of level-2 X on level-1 M and level-1 Y

Level 1: Yij = d0j + 0.1736 Mij + eij

(0.0458)

Level 2: d0j = 0.1697 – 0.0151 Xj + u0j

(0.0411) (0. 0483)

As can be seen in Table 25.1, the analysis of the data collected by Pleyers et al.
(2009) corroborates the fact that a*b = c – c’ as –0.5665 * 0.1736 = –0.1134 – (–
0.0151), which gives –0.0983 = –0.0983. Table 25.1 confirms that all the
necessary conditions for mediation are satisfied. As a matter of fact, c as well as a
and b are significant. Moreover, the standard error of the product can be shown to
be .0276. This means that the confidence interval ranges from –.0442 to –.1524.
The fact that the confidence interval does not include 0 confirms the presence of a
significant indirect effect. In other words, manipulating the availability of
cognitive resources was able to decrease the amount of evaluative conditioning
manifested for the various products, and this took place via the impact of
cognitive load on participants’ contingency awareness, as indexed by their ability
to associate each product with the specific image with which it had been paired.

The multilevel approach is a highly flexible one that can be used in a wide
variety of designs (Schoemann et al., Chapter 15 in this volume). So, although
analytic strategies have been proposed for the examination of repeated measures
design with within-subjects manipulations and within-subjects measures of the
mediator and of the dependent variable (Judd et al., 2001), such a 1–1–1 design
can best be approached from a multilevel perspective. Coming back to our
evaluative conditioning example, such a situation would occur if, for every
participant in the study, some random set of products had been presented under
conditions of cognitive depletion whereas the remaining products had been seen
in the absence of a secondary task. A multilevel analysis is of course desirable
because the residuals associated with the responses of a particular individual are
likely to violate the assumption of independence.

From Measured to Manipulated Mediators



In recent years, several authors have voiced a series of warnings with respect to
the possible dividends deriving from a mediational analysis. Indeed, it would
seem that mediational analysis has become so popular that it constitutes a
mandatory step for any scientific contribution claiming to shed light on a
particular psychological process at work in the context of some phenomenon of
interest. But does this research really hold its promise? Unfortunately, the answer
is not as positive as one would hope it might be. As we discussed earlier, a key
problem derives from the fact that a statistical analysis of a set of correlations is
taken to confirm the specific causal model put forth by the researcher.

As was noted by early proponents of mediational analysis (Baron & Kenny,
1986; Judd & Kenny, 1981), as well as in more recent contributions (Fiedler,
Schott, & Meiser, 2011; MacKinnon, Krull, & Lockwood, 2000; MacKinnon et
al., 2002), if a third variable M is indeed a mediator, a logical implication is that
its inclusion in the model will reduce the relation between X and Y. At the same
time, however, the finding that controlling for M reduces the relation between X
and Y does not in fact imply that M is indeed a mediator. Said otherwise, whether
a selected causal variable reflects a real cause or not cannot be determined
statistically. To be sure, statistical mediation is a necessary condition if one wants
to substantiate the conjecture that some third variable is a true mediator, but
researchers ought to realize that it is not a sufficient condition.

Fortunately enough, the fact that no correlation pattern can actually prove
whether some third variable is causally implicated in the emergence of an effect
does not leave researchers without ammunition. Next to the measurement-of-
mediation strategy, several other options allow one to evaluate a causal model
whereby some independent variable is thought to set in motion a psychological
process that, in turn, produces a given outcome. One prime candidate is the so-
called experimental-causal-chain design (Spencer, Zanna, & Fong, 2005). The
idea is actually quite simple: When an experimental manipulation, X, is shown to
have an impact on some dependent variable, Y, and a specific psychological
process, M, is thought to be at work, the researcher is encouraged to decompose
the causal sequence into two pieces and conduct an experimental study on each
piece. In essence, after demonstrating the c effect, the goal is to conduct two
independent experiments addressing both the a and the b effects.

A nice illustration of this strategy comes from a study by Word, Zanna, and
Cooper (1974). Building on earlier work on the so-called Pygmalion effect
(Rosenthal & Jacobson, 1968), these authors reasoned that people's stereotypes
(X) could create a self-fulfilling prophecy (Y) via their nonverbal behavior (M).
They first ascertained the a relation by having white participants interview a black



or a white confederate. As predicted, participants proved more distant in their
nonverbal behavior when facing a black than a white confederate. In a second
experiment, white confederates interviewed white unaware participants. As an
experimental manipulation of the mediator, interviewers either adopted the distant
nonverbal behavior observed with black interviewees in the first experiment or
the less distant behavior encountered with white interviewees in the first
experiment. In line with the hypothesis, whites did worse on this interview when
they were treated like the blacks had been in Experiment 1.

Of course, the experimental-causal-chain design also has limitations.
Obviously, the decomposition mandates that the proposed psychological process
should be both easy to measure and easy to manipulate. Perhaps the most difficult
issue concerns the equivalence between the process as it is measured and the
process as it is manipulated. In some cases, it may be difficult to argue
compellingly that the dependent variable in the experiment demonstrating the a
relation is the same as the independent variable in the experiment demonstrating
the b relation. Additionally, the fact that two experiments are conducted in
isolation does not allow a proper determination of the amount of variance in the
dependent variable accounted for by the independent variable. Keeping these
drawbacks in mind, the experimental-causal-chain design still constitutes a
powerful tool to uncover the key role that some intervening variable may play
along some presumed causal chain.

As we have already discussed, the problem with measuring the mediator rather
than manipulating it leaves open the possibility that there are important omitted
common causes that can explain the covariation between the mediator and the
outcome. There is, additionally, another potential problem with relying on the
measurement of the mediator to establish mediation. In many circumstances, a
mediator is difficult to measure or its measurement may alter the causal process,
either by eliminating the impact of X on Y or by creating an effect (via, for
instance, awareness) where none would be observed in the absence of
measurement (Jacoby & Sassenberg, 2011; Spencer et al., 2005). Another strategy
builds on the realization that mediation rests on the comparison between a factual
state, that is, the influence of X on Y, and a counterfactual state, that is, the
relation between X and Y when controlling M. In light of this analysis, a smart
way to approach the question consists in creating a design in which one compares
two factual states. According to Jacoby and Sassenberg (2011; see also Sigall &
Mills, 1998), this can be done by means of the testing process by interaction
strategy (TPIS), which boils down to an experimental manipulation of the
mediator.



Interestingly, the TPIS approach does not require that an experimental effect of
X on Y be observed in the first place. If there is an impact of the independent
variable in the so-called standard condition, the TPIS would consist in
interrupting the process by means of the moderating variable. An alternative plan
is to amplify the effect or even reveal an otherwise masked effect by
counteracting some suppressing variable. A classic study by Zanna and Cooper
(1974) illustrates both processes. These authors had all participants behave
counter to their initial attitudes. The implementation of X was straightforward
enough: Whereas some were simply forced to do so, others were led to believe
that they enjoyed freedom of choice. The extent of attitude change constituted the
Y variable. The manipulation of M rested on three conditions. In the control
condition, nothing special took place. In line with dissonance theory, free-choice
(but not forced) participants experienced unpleasant arousal and changed their
attitudes so that they were better aligned with their behavior. In the interruption
condition, participants were initially given a (placebo) pill that they were told
would cause arousal. This time, free-choice participants did not change their
attitudes at all. In the amplification condition, participants were also given a pill
but thought that it would cause relaxation. Now free-choice participants modified
their attitudes even more than in the control condition. In sum, manipulating the
specific way participants experienced the arousal resulting from their
counterattitudinal behavior critically affected attitude change, demonstrating the
mediating role of the arousal along with its interpretation.

Promising as the experimental approach may appear, it is of course not in and
of itself a panacea to deal with mediation. Some obstacles remain (Bullock,
Green, & Ha, 2010). A first issue concerns the isolation of M – that is, the
experimental manipulation of M needs to target M and nothing else. A second
limitation has to do with the successful manipulation of M. In other words,
manipulating M by means of some variable Z is not necessarily equivalent to
changing M by means of a manipulation of X. For instance, it may be difficult to
be certain that the same people are affected. Finally, researchers ought to realize
that there is a possibility for within-sample variation with respect to the indirect
effect. In other words, the average indirect effect is potentially misleading.
Interestingly enough, this raises the issue of moderated mediation in which the
indirect effect varies in magnitude as a function of some other variable. But
before we turn to this topic, we turn to a closer examination of moderation.

Moderation



This section focuses on testing and interpreting moderator effects. We start by
defining moderation and discuss its relationship with statistical interactions. We
then turn to the basic models used to test for interactions and moderator effects.
Following this, a major section is devoted to how one interprets the results of
these models and best practices for the presentation of moderator effects. We then
turn to issues that complicate the search for moderator and interaction effects,
focusing in particular on considerations of statistical power. Finally, we briefly
discuss some additional issues and designs in which moderation takes on
somewhat different forms.

Definitions and Basic Models
As defined earlier, the question of moderation is the question of whether the
impact of some independent variable on the dependent variable varies in
magnitude as a function of some third variable. Defined in this way, moderation
implicitly assumes a causal model in which the independent variable is a cause of
the dependent variable and the magnitude of that causal impact depends on some
third variable. As such, moderation is not the same as an interaction between two
variables. An interaction is the finding that the simple slope of one predictor
variable in a linear model varies as a function of the value of another predictor
variable. Interactions can exist in the absence of any causal effects of either
predictor variable on the dependent variable.

As we will show analytically, interactions are symmetric: If the simple slope of
X on Y varies as a function of Z, then the simple slope of Z on Y varies as a
function of X. But when we speak of moderation, we are saying that the X – Y
causal relationship is moderated by some variable Z. Because the causal effect
that is moderated goes from X to Y, rather from Z to Y, we cannot say that X
moderates the Z – Y causal effect. Thus, moderation implies an interaction, but an
interaction is not sufficient to claim moderation.7 Moderation is an interaction
plus the additional strong assumption of a causal impact of an independent
variable on a dependent variable that varies in magnitude. The viability of this
strong assumption cannot be assessed or confirmed through any data analytic
steps. Rather its plausibility depends on theoretical considerations and design
variations that permit relatively strong causal inference (e.g., randomized
experiments and certain longitudinal designs).

Analytically, a model that estimates moderation is a linear model that estimates
the effect of the interaction of two predictor variables on the dependent variable.
Interactions are included in models by including as an additional predictor the
product of two other predictor variables that are also included in the model. As



made clear by Cohen (1978), for the product to estimate the interaction, the two
component predictor variables must be included in the model. Thus, the
interaction between X and Z is estimated by the slope for the product predictor, b3,
in the following linear model:

(25.1)

A test of the interaction is equivalently conducted by testing the null hypothesis
that the slope for the interaction is zero, by testing whether this model has a
significantly smaller sum of squared errors than the model that does not include
the product predictor, or by testing the partial correlations of the product with the
criterion (Y), controlling for the two component variables, X and Z (Aiken &
West, 1991; Cohen, 1968; Judd, McClelland, & Ryan, 2009).

The slope for the product predictor in the following model, which does not
include the two component variables as additional predictors, does not in general
estimate the interaction:

To illustrate why it is that the slope for the product predictor in Equation 25.1
estimates the interaction, we can re-express that model as the “simple”
relationship between either of the predictor variables and the outcome.
Accordingly, the following re-expression represents the “simple” relationship
between X and Y at various levels of Z:

(25.2)

We can think of these “simple” relationships as simple linear regression models
between Y and X whose intercepts and slopes take on different values at varying
values of Z. Thus (b0 + b2Zi) is the simple intercept of these various models and
(b1 + b3Zi) is the simple slope of X. As always, the intercept tells us the predicted
Y value when X equals zero, and these simple intercepts vary as a function of the
values of Z. And the slope tells us the change in predicted values as X increases
by one unit, again with the magnitude of these simple slopes varying as a function
of the values of Z.

Given this “simple” re-expression and the crucial centering issues that we will
discuss in more detail later in this section, it is important to understand the
meaning of the individual slopes in the model in the context of this re-expression.



b0 estimates the intercept of the linear Y:X simple relationship when Z equals zero.
b1 estimates the slope of the linear Y:X simple relationship when Z equals zero. b2
estimates the change in the intercept of the linear Y:X simple relationship as Z
increases by one unit. b3 estimates the change in the slope of the linear Y:X simple
relationship as Z increases by one unit. It is this last parameter estimate that
captures the X by Z interaction: To what extent does the simple slope between Y
and X change as Z changes in value?

As outlined earlier, interactions are necessarily symmetric, although
moderation is not. To demonstrate this symmetry, the model in Equation 25.1 can
be equivalently re-expressed as the “simple” relationship between Y and Z:

(25.3)

with symmetrically equivalent interpretations of the parameter estimates: b0
estimates the intercept of the linear Y:Z simple relationship when X equals zero. b2
estimates the slope of the linear Y:Z simple relationship when X equals zero. b1
estimates the change in the intercept of the linear Y:Z simple relationship as X
increases by one unit. b3 estimates the change in the slope of the linear Y:Z simple
relationship as X increases by one unit.

Given that interactions imply that the simple slopes for one predictor take on
different values at various levels of another predictor, they imply nonparallel
“simple” regression lines. Ordinal interactions are defined as interactions where
all the simple slopes for one predictor have the same sign across all meaningful
levels of the other predictor. Disordinal or crossover interactions are ones where
the simple slopes have both positive and negative values across the meaningful
levels of the other predictor.

To this point, we have said nothing about the scale of measurement of either the
independent variable or its moderator. When predictor variables are categorical,
these need to be coded numerically. Typical coding conventions include dummy
coding and contrast coding (also known as effects coding). With two levels of a
categorical predictor, the former coding convention uses values of 0 and 1 for the
two groups while the latter uses values that sum to zero across the two groups
(e.g., –.5 and +.5). Again the slope of the partialled product of two variables,
regardless of whether they are continuously measured or coded categorical
variables, will estimate their interaction.

If the moderator variable (Z) is categorical, analyses are frequently reported
examining whether the magnitude of the X:Y relationship is different for the



different groups, defined by the categorical levels of Z. Frequently this takes the
form of testing whether the correlations between X and Y differ across the groups.
Such a test is not in general the same as testing whether Z moderates the X:Y
relationship, defining moderation as a statistical interaction. Interactions examine
whether different simple slopes are needed for the different groups. Correlations
in the different groups reflect not only those simple slopes but also the variances
of X. It is entirely possible for the different groups to have different simple slopes
but the same correlations. And the reverse is entirely possible as well. These two
situations are illustrated in the graphs of Figure 25.5 (taken with permission from
Whisman & McClelland, 2005). At the top (panel A) we have a situation where
the two groups have different slopes but the same correlation. Thus in this case
there is an interaction that would be undetected by a comparison of the two group
correlations. At the bottom (panel B) there is no interaction – that is, the slopes in
the two groups are the same – but one group has a larger correlation than the other
does because of relatively greater variance of the X variable. The lesson is that
one should test moderation as an interaction rather than by comparing the
magnitude of correlations.



 Figure 25.5. Panel A: Two groups with different slopes (.98 versus .41) but the
same correlations (.57). Panel B: Two groups with the same slopes (.58) but



different correlations (.38 versus .70). Taken with permission from Whisman &
McClelland (2005).

Interpretation and Presentation
Deriving and Plotting Simple Relationships. Once one has found a significant
interaction, issues arise as to how that interaction should be interpreted, discussed,
and displayed. An initial decision that needs to be made concerns which simple
re-expression of the interactive model is theoretically most informative. Recall
that there are two such simple re-expressions:

If indeed the interaction is because of a moderation of a causal treatment effect –
say, for instance, that Z moderates the impact of X on Y – then the choice of the
more informative re-expression is easy: The interest is in X and how the simple
relationship between X and Y depends on Z (i.e., the first of the preceding two re-
expressions). In other cases, where there is not a clear causal model that can be
assumed, there is no easy rule to follow in deciding in favor of one or the other of
these re-expressions. One should try telling a theoretical story with them both and
decide which is the more theoretically interesting and informative. Do you want
to argue that the simple relationship between Y and X depends on Z? Or do you
prefer to argue that the simple relationship between Y and Z depends on X? Both
arguments would be correct, but one will generally make a more compelling story
than the other.

For now, let us assume that the preferred interpretation is that the simple Y:X
relationship depends on Z. Given this, one derives and plots simple Y:X linear
relationship predicted by the model at different representative and theoretically
meaningful values of Z. If Z is categorical, the choice of these values is easy: One
wishes to plot the simple linear relationships for each of the groups defined by the
Z categories. If Z is continuously measured, then the choice of the appropriate
values of Z for these plots is less clear. One convention derives and plots simple
regression lines at the mean of Z and at values of Z one standard deviation above
and below the mean (Aiken & West, 1991). For instance, suppose that values of
both X and Z vary between 1 and 5, and the mean of Z is 2.5 with a standard
deviation of 1. And suppose the following are the parameter estimates from the
interactive model:



The general form of the re-expression of this model is:

At the mean value of Z (i.e., 2.5), the simple Y:Z relationship is:

And at Z values one standard deviation above and below the mean, the simple
relationships are:

One then might plot these three simple models, with X on the horizontal axis
(with values between 1 and 5) and three different lines, one for each simple
relationship. Such a plot is given in Figure 25.6. Inspection of this plot leads to
relatively clear interpretations: As X increases, predicted values of Y increase and
this is more true at higher levels of Z. That is, the moderation of the Y:X
relationship by Z is such that the positive relationship between X and Y becomes
larger as Z increases.



 Figure 25.6. Simple Y:X relationships at values of Z of 1.5, 2.5, and 3.5.

There is of course nothing sacred about the choice of Z values at which one
chooses to plot these simple relationships. If some theory motivated the desire to
see the simple relationship when Z equals 2, one could easily derive and plot this
simple relationship in addition to or instead of those at the values of the mean and
plus one and minus one standard deviations.

Testing Simple Slopes. A significant interaction tells us that simple slopes vary
significantly across the range of values of the moderator variable. But it does not
tell us about whether particular simple slopes, at particular values of the
moderator variable, are significantly different from zero. Often the further
question of whether particular simple slopes are significant is of interest, even
though significant simple slopes should not be seen a requirement for interpreting
significant interactions (Judd, McClelland, & Culhane, 1995; Rosnow &
Rosenthal, 1989).8

Given the interactive model and its re-expression in the terms of the Y:X simple
relationship:



it is apparent that b1 estimates the simple Y:X slope when Z equals zero. And a
statistical test of whether this coefficient differs from zero accordingly provides a
test of the simple X slope at that particular value of Z. This then provides a
general solution for testing the simple slope of X at any value of Z that might be
of interest: One simply deviates Z from that value, recomputes the product term,
and tests the X coefficient in the interactive model.

Consider Z’ defined as Z deviated from some value c of interest: Z′ = Z − c. If
one now estimated the interactive model using Z′ instead of Z (and importantly
recomputing the product predictor so that it is XZ′):

which, re-expressed in terms of the Y:X simple relationship, yields:

Accordingly, b1 now estimates the simple slope of X when Z’ equals zero, which
it will of course when Z = c. In other words, by deviating Z around different
values, the slope of X in the model that includes the product predictor takes on
different values and these values are the simple X slope at whatever value of c has
been used in computing the deviated Z, Z’. And a test that the slope of X differs
from zero provides an inferential test of whether the simple slope of X when Z = c
differs from zero.

Most commonly, and as recommended by many (e.g., Aiken & West, 1991;
Cohen, Cohen, West, & Aiken, 2003; Judd et al., 2009), the value used for c is the
mean of Z. This is what is commonly referred to as mean-centering the predictor.
Under mean-centering, the slope associated with X will equal the simple slope of
X when at the mean of Z in the context of the interactive model that allows the
simple slope of X to vary across the values of Z.

Other routinely used values of c include values one standard deviation above
and below the mean of Z, as mentioned earlier, thus permitting one to estimate
and test simple slopes of X when Z equals those values. But, again, there is
nothing sacred about these routinely used values of c. If there are other
theoretically meaningful values of Z at which it is important to test whether the
simple X slope differs from zero, then the interactive model should be reestimated
while deviating Z from those values.

Although the aforementioned approach represents a straightforward procedure
for testing the simple slope of X at different values of Z that are of interest,



Preacher, Curran, and Bauer (2006) provide more general procedures that enable
the researcher to examine the range of values of Z across which the simple slope
of X is and is not significant, given an interactive model. They have implemented
their approach in a highly useful Web-based application that is available at
http://quantpsy.org/interact/mlr2.htm (see also Hayes & Mathes, 2009).

It is worth noting one interesting side consequence of what we have just
discussed. We have been considering an additive transformation of one of the
variables, Z’ = Z – c, involved in an estimated interactive model. And what we
have shown is that as c takes on different values, the estimated coefficient for X –
that is, b1 – varies, because it generally will equal the simple X slope when Z’
equals zero or when Z = c. The other estimated slopes in the model, however – b2
and b3 – remain constant. Hence, we are left with the curious result that an
additive transformation of one of the component predictor variables involved in
an interactive model affects the estimated value of the partial slope for the other
variable that is a component of the product interaction, but it has no effect on the
estimated partial slope of the component variable that is transformed.
Additionally, it has no effect on the estimated slope of the product predictor.9

Tests of “Main Effects” in Interactive Models. In light of the preceding
discussion, it should be clear that the estimated slopes of the component variables
(b1 and b2) do not in general estimate what the literature devoted to the analysis of
variance (ANOVA) refers to as main effects. In the ANOVA literature, a main
effect represents the effect of one experimental factor on average across the levels
of other crossed experimental factors. An estimated slope of a component variable
in an interactive model is in general a “simple” slope for that component variable
when the other component variable equals zero. If one centers the two component
variables on their means (and computes the product predictor as the product of
those centered components), then the slope of each component variable will
estimate the “simple” slope at the mean value of the other component variable.
But even this is not conceptually the same thing as a main effect in the analysis of
variance literature. In general, main effects of component variables cannot be
defined when those variables are measured more or less continuously and when
they are involved in an interaction. An interaction by definition means that there
is no “overall” or “main” effect of a component variable. An interaction by
definition means that the effects of one component variable vary as a function of
the other one. Accordingly, it is generally a mistake to refer to main effects in
moderated regression models. One can certainly estimate and test “simple” effects
at the mean value of other component variables, and in many cases these will be
very similar to average affects of one variable across the levels of the other
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variable. But strictly speaking, they are not that; rather they are “simple” effects at
the average value of the other variable. Certainly if one fails to center component
variables around their means, then slopes associated with those component
variables provide nothing resembling what the ANOVA literature defines as main
effects.

Standardization. Authors frequently report standardized slopes (or betas) in
regression models rather than slopes with the variables in their raw metrics. In
general we are not enamored of such practices, for reasons that we briefly discuss
but that are reviewed in detail elsewhere (see Turkheimer & Harden, Chapter 8 in
this volume; also Cohen, 1990; Tukey, 1969). In simple regression, estimated
standardized regression coefficients equal estimated correlations. Hence, as
Figure 25.5 illustrated, they are affected by both the magnitude of the raw or
unstandardized slope and the variability of the predictor variable. Accordingly, the
metrics used in deriving standardized slopes are sample-specific, with the result
that standardized slopes will vary from sample to sample, even when raw slopes
do not.

In interactive models, these issues are complicated further, as explained by
Aiken and West (1991), Freidrich (1982), and Whisman and McClelland (2005).
The problem arises from the fact that the product of two standardized variables is
not itself standardized (i.e., it will not in general have a mean of 0 and a standard
deviation of 1). Accordingly, one might estimate an interactive model and then
attempt to interpret the standardized regression coefficient associated with the
product predictor. But that slope might be something rather different than if one
first standardized the Y, X, and Z variables, computed the product of the two
standardized predictors, and then regressed Y on standardized X, standardized Y,
and their product. Because of this, we find efforts to interpret standardized slopes
in interactive models relatively misleading and at best uninformative. Of course,
when a linear regression program outputs those standardized estimates and tests
them, those inferential tests are identical to tests of unstandardized or raw
regression slopes. But the standardized slopes themselves are interpreted only
with difficulty.

Difficulties of Detecting Interactions
The primary challenge in conducting research where moderation is hypothesized
is one of assuring adequate statistical power to test interactions. Of course,
statistical power is an issue in the conduct of all research (Cohen, 1988), or at the
very least should be. Cohen provided guidelines for power consideration when
testing “small,” “medium,” and “large” effects. Effect sizes calibrated in this



manner are most typically expressed in d units (the ratio of a mean difference to
the pooled within group standard deviation). A more general effect size estimate
that can be used to calibrate effect sizes is the squared partial correlation, or PRE
(Judd et al., 2009), according to which “small,” “medium,” and “large” effects
correspond to PREs of .02, .13, and .25 respectively. According to Cohen's power
tables, to have adequate power (i.e., 1 − β = .80; α = .05), one would need sample
sizes of 392, 55, and 26 to detect, respectively, “small,” “medium,” and “large”
effects, assuming the absence of measurement error.

This general conclusion about statistical power is complicated in the testing of
interactions by two issues that are particularly pernicious in this case. First,
unreliability in the measured variables substantially reduces power, and the
unreliability of product predictors is a multiplicative function of the unreliability
of its component variables (Busemeyer & Jones, 1983; Cohen et al., 2003). Thus,
if two variables have reliabilities of .80, the reliability of their product would
equal only .64. And as the reliability of a predictor declines, the power needed to
test its effect, given some true effect size, is substantially reduced. Aiken and
West (1991) estimate that as the reliability of a predictor declines from 1.00 to
.80, the sample sizes necessary for acceptable power levels are likely to double.
Accordingly, with unreliability of a product predictor being the product of the
unreliabilities of its components, sample sizes needed for tests of interactions are
likely to be substantially greater than those given earlier.

A second power problem concerns the restriction in range of predictors. In the
case of any predictor variable, if it does not vary very much, it is difficult to find
an association between it and some outcome variable. This is why in most
experimental research, one goes to some length to ensure that the experimental
manipulation is substantial enough (i.e., that the difference between a control
condition and the treatment condition is large). Outside of the experimental
laboratory, it is often difficult to sample respondents who have substantial
variability on important predictor variables. Assuming most measured predictor
variables have a somewhat unimodal quasi-normal distribution, their variances
are typically very substantially less than what the variances would be if everyone
was found only at one or the other extreme value (as we typically construct the
distribution to be in experiments).

Thus, whatever factors lead to a restriction of range of a predictor (or, more
accurately, a reduction in its variability) decrease the power to find an effect of
that predictor. In the case of a product predictor, McClelland and Judd (1993)
show that its variance is a multiplicative function of the variance of its
components, much like its reliability. Hence factors that restrict or limit the
variance of the component variables restrict or limit the variance of the product



predictor even more. McClelland and Judd (1993) compare the relative efficiency
or power to detect an interaction given various joint distributions of the
component variables. In the best-case scenario, all of the observations are located
at the most extreme four corners of the joint distribution of X and Z (very high on
X and very high on Z, very high on X and very low on Z, etc). This is the ideal
design for detecting an interaction, given some constant N, and is the basis for a 2
× 2 crossed experimental design with manipulations that maximize the variance of
the two independent variables. In real-world settings with measured, rather than
manipulated, independent variables, it is exceedingly unlikely to encounter such a
joint distribution. More likely would be a roughly bivariate normal joint
distribution, with most observations clustered near the joint means of the two
component variables. McClelland and Judd (1993) showed that such a joint
bivariate normal distribution requires 17 times the number of observations to have
the equivalent power to detect an interaction compared with the optimal four-
corners design.

Thus, when the component variables that are expected to interact are measured
variables and when the distribution of each is roughly normal, one will generally
have very low power to test an interaction, compared to the optimal design with
all observations at the most extreme values of the component variables. As the
range of the component variables is reduced, the variance of the product predictor
is reduced even more drastically, resulting in a very substantial loss of power.
This explains why significant interactions, which are relatively ubiquitous in
experimental research, are reported only infrequently using survey or
correlational data, unless the sample sizes are exceedingly large (e.g., greater than
500). This then provides some guidance for sampling strategies if one wishes to
argue an interactive hypothesis, given measured rather than manipulated
independent variables. Rather than sampling randomly, the more powerful
alternative is to sample purposively, oversampling the extreme four corners of the
joint distribution of the predictors. Some might object that then one moves away
from a sample that is truly representative of the population, which of course is
true. But, as always, there are multiple simultaneous and often conflicting goals in
research. If one wishes to find significant interactions, then oversampling
observations at the extreme four corners of the joint distribution is the most
powerful approach.10

From the preceding discussion readers might draw two erroneous conclusions.
The first would be that given a random sample of observations and a hypothesized
interaction between two measured predictor variables, one should restrict the
analysis to observations that are toward the extreme four corners of the joint
distribution. But throwing out observations, regardless of where they are in the



joint distribution of the two predictors, will always result in a decrease in
statistical power for testing interactions. Given a constant N, it is easier to detect
interactions by oversampling the extreme four corners.

A second erroneous conclusion that might be drawn from the fact that
interactions are typically found with more power in experiments than with
measured predictors is that one should dichotomize predictor variables – using
median splits, for instance – and conduct analysis of variance instead of treating
measured predictors continuously. There is now a large literature showing that
dichotomizing continuous predictors will not result in increases in statistical
power (Cohen, 1983; Irwin & McClelland, 2003; MacCallum, Zhang, Preacher, &
Rucker, 2002; Maxwell & Delaney, 1993).11

Historically, there have been some who have blamed low power in detecting
interactions on multicollinearity between the product predictor variable and its
components. In fact, this is not a factor because the collinearity of a product with
its component variables is a function of the coding of the component variables,
being substantially reduced when the components are centered around their mean.
And, as already discussed, such centering has no impact on the test of the
interaction in moderated regression models.

Multilevel Interactive Models
In the section of this chapter devoted to mediation, we discussed multilevel
models suitable for data where there are nestings of observations that induce
dependence (i.e., multiple observations from each participant, observations
grouped in classrooms, etc.). Here we provide a short treatment of moderation in
such circumstances as well.

As an example, let us turn to a study by Toma, Corneille, and Yzerbyt (2012,
Study 3). These authors were interested in social projection and how the
probability of success influences people's tendency to project in cooperative
settings. They invited participants into the laboratory and asked them first to self-
describe on a series of positive and negative personality traits. Next, participants
were told to imagine that they and a partner were involved in a cooperative task
allegedly taking place at a software company. Depending on conditions, they
learned that the probability of success of the task, and thus of gaining access to a
much-desired outcome, was either low (they were informed that, in the past, some
5% of the teams succeeded) or high (95% of the teams succeeded). Finally,
participants were presented with the same list of traits as before and asked to
describe their partner as well as to indicate the valence associated with each trait.



These data are inherently multilevel, with individual traits that are rated being
the first level and the participants being the second. At level 1 – within each
participant – there are three variables: participants’ ratings of their partner, their
rating of themselves, and their rating of the trait's valence. At level 2 – between
participants – is the manipulated variable: the probability of success of the
cooperative task. Toma et al. (2012) expected social projection – that is, that
people would generally perceive their partner as being similar to themselves – but
that this tendency would be less marked when the probability of success of the
cooperation task is thought to be low. The authors also hoped that this pattern
would not be affected by the valence of the traits.

For the sake of this presentation, we simplify the analysis somewhat by looking
only at social projection for the negative traits (see Table 25.2). At level 1, we
consider, that for each one of the j participants, the rating of their partner on the i
traits (Yij) should be predicted by their self-rating on the same traits (Xij).

Table 25.2.  Multilevel Moderation Analysis of Toma et al.'s (2012, Study 2)
Data (the analysis was performed using SAS PROC MIXED; data and SAS
code are available at http://www.psp.ucl.ac.be/mediation/medmod/)

Level 1: Yij = b0j + b1jXij + eij

After substitution, we thus have:

Yij = a00 + a01Zj + a10Xij + a11ZjXij + u0j + u1jXij + eij

In the main analysis, this gives:

When participants expect success of the cooperation, this becomes:

http://www.psp.ucl.ac.be/mediation/medmod/


When participants expect success of the cooperation, this gives:

As can be seen, each participant has an intercept and a self-rating slope,
estimating the impact of the characterization of the self on the characterization of
the partner. Greater projection of self-ratings onto partner ratings should be
indicated by greater slopes.

At the second level, Toma et al. (2012) modeled both the intercepts and the
slopes as a function of the probability of success of the cooperative task, contrast-
coded (–1, +1) as Zj:

In these level-2 models, the a's are estimated slopes and intercepts and the u's are
level-2 errors or residuals. The first model is modeling the mean rating12 of the
partner as a function of the probability of success, with a01 estimating the degree
to which the mean rating of the partner differs between the two experimental
conditions. The second of these level-2 models is modeling social projection: to
what extent is the rating of the partner a function of participants’ self-rating? The
intercept in this second model estimates the mean level of social projection,
averaging across participants, and the slope a11 estimates the degree to which
social projection depends on the experimental manipulation. It is thus this last
slope that corresponds to the critical multilevel interaction, that is, the tendency of
self-ratings (a level-1 variable) to predict the partner ratings (a level-1 variable) as
a function of the manipulated probability of success of the cooperation task (a
level-2 variable).

What may seem surprising here is that it is the slope of the level-2 predictor in
this second level-2 model that captures the critical interaction, when our
expectation up until now has been that slopes of product predictor variables
estimate interactions. But it is easy to show that Toma et al. (2012) were in fact



modeling a product predictor. In the following we have substituted the level-2
estimated models into the level-1 model:

Thus, what we ultimately have is a model of social projection as a function of the
probability of success, the self-ratings, and the interaction between probability of
success and self-ratings. However, this multilevel model differs from the earlier
interactive models in that we now have three random-error terms rather than just a
single one. First, there is random variance from participant to participant in the
mean rating given to the partner (u0j); second, there is random variance from
participant to participant in the effect of self-ratings (u1jXij); and finally, there is
random variance in individual observations from the participants (eij). It is the
presence of these multiple random-error terms that accommodates the hierarchical
nature of the data, allowing for heterogeneity of variance at the different levels.

Table 25.2 presents the output of the PROC SAS analysis of a simplified
version of Toma et al.'s (2012) data. It can be seen that self-ratings globally
predict partner ratings, a10 = 0.293, t = 4.53, p < .0001. Importantly, the
coefficient associated with the critical interaction term is also significant, a11 =
0.163, t = 2.53, p = .016. In line with the authors’ predictions, follow-up analyses,
looking at the simple effects of self-ratings on partner ratings in each of the two
experimental conditions, confirm that the impact of self-rating proves highly
significant when participants expected the cooperation to succeed, a10= 0.456, t =
5.11, p < .0001, whereas there is little trace of social projection when the
probability of success was low, a10 = 0.129, t = 1.39, p = .17.

In what we have just examined, one of the interacting variables was measured
at level 1 and one at level 2. If they are both measured at the same level, either
level 1 or level 2, then their interaction would be modeled as a simple product
predictor either at level 1 or level 2.

Moderated Mediation and Mediated Moderation
Having now discussed mediation and moderation, we briefly turn to a
consideration of models in which both processes are at work. In the case of



mediated moderation, Z moderates the overall or total effect of X on Y and the
researcher wants to show that some mediator, M, mediates this moderation. The
researcher thus wants to show that the moderation is mediated. To illustrate,
imagine a persuasion researcher who has shown that attitude change in response
to a persuasive communication depends on the interaction of the number of
persuasive arguments and their quality: More arguments leads to more persuasion,
but only when those arguments are of high quality. It seems reasonable that this
interactive effect might be mediated by the depth of processing of the persuasive
message. That is, more arguments lead to more in-depth processing, which in turn
leads to greater persuasion, but the first link here, from more arguments to more
in-depth processing, is mainly found for high-quality arguments.

In the case of moderated mediation, there is an overall treatment effect of X on
Y, and the researcher wants to show that the mediation of this treatment effect is
different (i.e., moderated) at the different levels of a moderator, Z. The researcher
thus wants to show that the mediation is moderated. As an illustration here,
imagine a researcher who is interested in the effects of mere exposure on liking.
The mediational argument underlying mere-exposure effects might be that more
frequent exposure to an object leads to a sense of familiarity, which in turn may
lead to greater liking. But the researcher argues that the degree to which this
mediational chain may hold should depend on the novelty of the object because
the sense of familiarity with the object cannot increase much for objects that are
not novel. Thus, the hypothesized mediational path, from exposure to familiarity
to liking, is moderated by novelty.

Interestingly, although the starting questions are different, the basics of
mediated moderation and moderated mediation are the same: Both rely on the
same underlying models and both imply that the indirect effect (i.e., a*b) of the
treatment on the outcome via some mediator is moderated by some other Z
variable. In other words, the magnitude of a*b depends on Z. Where the two
differ, however, is in whether one starts by presuming moderation of the overall or
total treatment effect and wants to find a mediator for this moderation or whether
one starts by presuming an overall effect and wants to show this overall effect is
mediated to a larger extent at different levels of the moderator (Muller, Judd, &
Yzerbyt, 2005).

To examine either mediated moderation or moderated mediation, the following
models are estimated:



In the following, we assume that in all models Z has been centered on its mean.

In the first of these models, b11 estimates the total effect of X on Y at the
average level of Z and b13 estimates the degree to which that total effect is
moderated by Z. In the terminology of mediation, which we gave in the first part
of this chapter, b11 is equivalent to c, the total effect, allowing that effect to be
moderated by Z. Note that in the context of a mediated moderation, although b11
is equivalent to c, one is primarily interested in b13 and is seeking to explain, via
mediated moderation, what the mediating process is that is responsible for the
moderation of the overall effect of X on Y.

In the second model, b21 estimates the effect of X on the mediator, M, at the
average level of Z and b23 estimates the degree to which that effect is moderated
by Z. In the terminology of mediation given earlier, b21 is equivalent to a, the first
portion of the indirect effect, again allowing that effect to be moderated.

In the third model, b31 is the residual direct effect of the treatment on the
outcome at the average level of Z and b33 estimates the degree to which that
residual direct effect is moderated. In the earlier terminology, b31 is equivalent to
c’, allowing this effect to be moderated. Again, note that in the context of
mediated moderation, the parameter one is primarily interested in is b33, asking
whether the overall moderation of the effect of X, b13, is reduced once one
controls for the mediating process (and its moderation).

And finally, also in the third model, b34 is the partial effect of the mediator on
the outcome controlling for the treatment at the average level of Z and b35
estimates the degree to which that effect is moderated. Again, in the earlier
terminology b34 is equivalent to b, allowing this effect to be moderated.

The resulting mediation models are portrayed in Figure 25.7. The top diagram
represents the total effect (the first of the models above), allowing that total effect
to be moderated. The bottom diagram represents the second and third models
above, allowing all possible effects in this mediational model to be potentially
moderated. Earlier, when discussing mediation, we presented the fundamental



mediational equality c − c′ = a*b, with the effects in this equality defined as in
Figure 25.1. As shown by Muller et al. (2005), there is a similar equality that
holds for the mediated moderation and moderated mediation model of Figure
25.7, although now the effect that should be reduced (in the case of mediated
moderation) or increased (in the case of a prototypical moderated mediation; see
Muller et al., 2005) is not b11 (the conceptual analog to c) but b13. Hence,
assuming that X is a dichotomous treatment variable that has been contrast-coded
(and Z is centered), the equality underlying mediated moderation and moderated
mediation is b13 − b33 = (b23b34) + (b21b35). What this equality shows is that the
overall moderation of the treatment effect, b13, differs from the moderation of the
residual treatment effect on the outcome, b33, as a function of the degree to which
the indirect effect is moderated. And in considering whether the indirect effect is
moderated, there are two components to consider: whether the effect of the
treatment on the mediator is moderated, b23, times the average effect of the
mediator on the outcome, b34, and whether the effect of the mediator on the
outcome is moderated, b35, times the average effect of the treatment on the
mediator, b21.

 Figure 25.7. Models for mediated moderation and moderated mediation.

Importantly, what this equality further shows is that the moderation of the
indirect effect can happen in two ways. First, it may be that the treatment effect on
the mediator is moderated (and the mediator affects the outcome). Second, it may
be that the mediator's effect on the outcome is moderated (and the treatment
affects the mediator). And of course, both of these may be true simultaneously.
For us (and others; see also Preacher, Rucker, & Hayes, 2007), this distinction
between which component of the indirect effect is moderated is an important
theoretical distinction. If there is moderation of the indirect effect via a mediator,
then it may be the case that the treatment effect on the mediator is moderated, or it
may be the case that the mediator effect on the outcome is moderated.



In sum, because we see this distinction as critical, we suggested that to claim
mediated moderation or moderated mediation, in addition to a significant b13 (in
the case of mediated moderation) or a significant b11 (in the case of moderated
mediation), researchers need to find either b23 and b34, or b21 and b35, conjointly
significant (Muller et al. 2005). Although we do not see it as mandatory (see the
Mediation section), one may also want to test whether the overall indirect effect is
moderated. To do so, interested readers could refer to the extensive work by
Preacher et al. (2007), who provide such tests in the context of bootstrapping
techniques.

Conclusion
For social and personality psychologists, the techniques for assessing mediation
and moderation have become very important tools that are widely used
throughout the discipline. Although their use is not without pitfalls, and these
have sometimes seriously limited what one can conclude from such analyses, we
are convinced that these are very valuable tools. Their widespread use will
continue for the foreseeable future. What we hope to have provided in this chapter
is a relatively accessible but thorough guide for the use of these tools and, in so
doing, to have clarified underlying assumptions, ongoing controversies, and areas
of ambiguity where further work is warranted.

Readers who are familiar with the literature we have reviewed will be aware
that some of our definitions, arguments, and suggestions are at variance with
definitions, arguments, and suggestions advocated by others whom we highly
respect. In our view, this divergence is exciting because it suggests that the last
word remains to be written about the wise and appropriate use of mediation and
moderation analyses. While these tools are already well developed and widely
used, we are convinced they will continue to be refined so that their application
will only become more precise and fruitful.

Social and personality psychologists now have at their disposal a wide range of
very sophisticated methodological tools that were not in existence some thirty or
forty years ago. They should take great pride in these advances. Included in these
are analyses to assess mediation and moderation, methods of inquiry that were
seldom thought about or practiced only a few decades earlier. Indeed, in these
areas, it is social and personality psychologists who have been leading others in
the refinement and use of these tools. These are tools of great potential, and their
further refinement will continue to be one of our great contributions.
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1  Throughout this chapter, for notational simplicity, we express models in terms
of parameter estimates rather than the parameters themselves. Estimates may be
generated by different estimating procedures in the context of different
assumptions about the variables in the models. Most typically they will be least-
squares estimates. But, in the case of latent variable models, logistic models
involving dichotomous outcomes, or mixed models involving hierarchical levels,
estimates will generally be obtained by some maximum likelihood estimation
procedure.

2  Importantly this equality holds regardless of rescaling of the component
variables. Hence, it is also found with standardized estimates.

3  Establishing that this represents a causal flow requires a set of very specific
assumptions that we detail later in this section.

4  In the following, when we talk of suppression, we are doing so within the
confines of the causal model underlying mediation, in which some variable M is
affected by X and in turn affects Y. Suppression has a broader meaning, i.e.,
whenever controlling for a third variable augments an effect of interest, outside of
the specific causal model that we are assuming (e.g., Tzelgov & Henik, 1991).

5  It is possible that some tests of the ab product may yield nonsignificant results
even when the two component slopes are significant. This may happen when
inappropriate assumptions are made in testing the ab product (i.e., that its
sampling distribution is normal).

6  Because this mediator is dichotomous rather than continuous, one should be
doing estimation of these models using a logistic link function or logistic
regression. To keep things simple, however, we chose for this example to act as if
the mediator was continuous.

7  Our definition of moderation represents a departure from Baron and Kenny's
(1986) definition where they equate it with a statistical interaction. We explicitly
assume a particular causal model in defining moderation. As such, our definition
agrees more closely with recent work devoted to moderation in the context of



randomized trials in health outcomes (e.g., Kraemer, Kiernan, Essex, & Kupfer,
2008), where moderation assumes the existence of some causal effect that is
moderated.

8  The interaction tests whether simple slopes vary, and it is possible that they
significantly vary even though particular simple slopes do not differ from zero.

9  This final result will not in general be the case if one simply included the
product predictor but not its component variable as predictors. It is for this reason
that the slope of the product predictor estimates the effect of the interaction only
when it is a partialled product, controlling for the two component variables.

10  Of course, one cannot practically oversample the four corners of the joint
distribution if one does not already know respondents’ values on those variables.
Typically, however, one can identify demographic variables that are likely to
covary with the variables, and then the oversampling might be based on those
demographics.

11  Also note that researchers sometime dichotomize continuous predictors and
argue that it is fine as long as their effects are significant. Because dichotomizing
continuous predictors can sometime increase Type-1 errors (Maxwell & Delaney,
1993), we do not recommend this kind of reasoning.

12  This assumes that the self-ratings have been centered at level 1 around the
participant's mean.


