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In a simple mediation model, the effect of a manipulated variable X on a dependent variable

Y over and above the effect of the mediator Me can be estimated by regressing Y on X and

Me. The impact of X on Y in such a model is adjusted for the relationship both between X

and Me and between Me and Y . The authors examine the adjustment function in the context

of a 2× 2 design with two manipulated variables. In such a situation, the mediator could be

affected by either one of the main effects and/or the interaction between two manipulated

variables. To adjust for the impact of the mediator, a standard procedure has been to rely on

an ANCOVA that includes only the mediator. The authors show, both analytically and with

simulations, that this leads to improper control of the mediator and to biased estimates of the

model parameters.
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In organizational settings, a common goal is to make customers more satisfied. One way

to do this is to have employees appear friendlier so that they will be more positively

regarded. It is thought that this will result in satisfied customers who will return in the

future. Employees who smile are likely to be perceived as friendlier, and so one might be

tempted to encourage smiles in customer relations. But are all smiles the same? And how

do different types of smiles combine with the performance of the employees? In a recent

study, Grandey, Fisk, Mattila, Jansen, and Sideman (2005) collected data to examine

whether an authentic smile from hotel desk clerks leads to more customer satisfaction than

an inauthentic one.1 The study involved two manipulated independent variables, namely,

the task performance of the clerks and the authenticity of their smile. The main dependent

variable was customer satisfaction. The authors were also interested in the role of two

other dependent variables (i.e., the perceived competence of the clerks and their perceived

friendliness). For each of these intervening variables, one may wonder whether it plays a

role in the observed effects of the two independent variables and their interaction on the

main dependent variable. The present article shows that the answer to this question is not

as straightforward as it may seem.

To introduce our argument, let us begin with a simpler question. Imagine for a moment

that we are only interested in the impact of the authenticity of smile on customer satisfaction.
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In line with predictions, our manipulation is shown to have an effect on the dependent vari-

able. In the mediation literature, the effect of such a treatment (in this case authenticity of the

smile) on the outcome variable (in this case customer satisfaction) is typically called the

treatment’s total effect (commonly designated as c). Imagine further that there is one inter-

vening variable of interest: perceived competence of the clerk. One might then ask whether

the increase in satisfaction in the authentic smile condition was because of an increase in

perceived competence. In other words, one could ask whether competence mediated the

treatment effect.2 To examine this, two additional regression analyses would be conducted:

the first one regressing perceived competence on the treatment variable and the second

regressing the outcome variable, customer satisfaction, on both treatment and perceived com-

petence (i.e., the mediator). The first regression model estimates the treatment effect on per-

ceived competence (often referred to as a); the second one estimates the mediator effect on

satisfaction controlling for treatment (commonly designated as b) and the treatment effect on

satisfaction controlling for perceived competence (commonly designed as c0).

In such an analysis, the equality c0 ¼ c� ab could be conceptualized as the adjustment

of the treatment effect when one moves from the total treatment effect to the treatment

effect controlling for the mediator (i.e., perceived competence). Note that this adjustment

function is also equivalent to c� c0 ¼ ab, a fundamental equality at the heart of the vast

majority of mediational analyses (e.g., Baron & Kenny, 1986; MacKinnon, Lockwood,

Hoffman, West, & Sheets, 2002; MacKinnon, Warsi, & Dwyer, 1995; Muller, Judd, &

Yzerbyt, 2005).

In the above example, the key question concerns the mechanism that is responsible for

the treatment effect. We want to know what produces the treatment effect. If perceived

competence is, at least in part, responsible for the effect of the treatment on the dependent

variable, the treatment effect should be reduced when adjusting for the role of perceived

competence. Clearly thus, mediation analysis relies on the adjustment function of what is

commonly called the analysis of covariance (ANCOVA) model. Here, ANCOVA means a

model containing both categorical (e.g., a treatment) and continuous predictor variables

(e.g., a mediator).

The goal of the present article is to examine this adjustment function in contexts where

there are two crossed treatment variables of interest. In situations where one factor has

been manipulated, we can readily identify what has to be included in the ANCOVA

model. We simply need to control for the mediator in the ANCOVA model. As we will

show, things are much less straightforward whenever one is dealing with two independent

variables that may have both main and interactive effects on both the outcome variable

and the mediator. We first analytically demonstrate that in a context with two crossed

treatment variables, the simple inclusion of the mediator (or the covariate) often leads to

biased estimates of the model parameters. We then rely on simulations to illustrate two

cases of biased estimation.

Adjustment Function in the Context of One Treatment Variable

Although our goal is to draw researchers’ attention to the intricacies of adjustment

in the context of two crossed independent variables, we start with the formalities of the
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simpler case that involves only one dichotomous treatment or independent variable (i.e.,

X1). When the mediator Me is measured after manipulating X1 and before measuring the

dependent variable Y , the three models we need to deal with are those presented in Equa-

tions 1, 2, and 3.3 In Equation 1, Y is regressed on X1, with X1 contrast coded (e.g., −1

for the first condition and + 1 for the second one). Note that this model is what is com-

monly referred to as an ANOVA model. In Equation 2, the mediator Me is regressed on

X1. In Equation 3, Y is regressed on both X1 and Me. As we noted already, this latter

model is what is known as an ANCOVA model:

Y ¼ b10 þ b11X1 þ e1 ð1Þ

Me ¼ b20 þ b21X1 þ e2 ð2Þ

Y ¼ b30 þ b31X1 þ b32Meþ e3: ð3Þ

In Equation 1, b11 is the population parameter that represents the total effect of X1 on

Y . In Equation 2, b21 is the population parameter that represents the total effect of X1 on

Me. In Equation 3, b32 is the population parameter that represents the partialled Me effect

on Y , and b31 is the population parameter that represents the partialled or direct effect of

X1 on Y . This last effect is said to control for Me, that is, it is the effect of X1 on Y over

and above the effect of Me on Y . In multiple regression terms, this partialled effect repre-

sents the effect of X1 on Y partialling Me out of both (i.e., regressing the Y residual on the

X1 residual—see Judd & McClelland, 1989).

It is easy to demonstrate how these two adjustments combine and allow us to move

from b11 to b31. First, we combine Equations 2 and 3 by substituting for Me in Equation 3

according to Equation 2. This leads to

Y ¼ b30 þ b31X1 þ b32ðb20 þ b21X1 þ e2Þ þ e3;

which is given equivalently as,

Y ¼ b30 þ b31X1 þ b32b20 þ b32b21X1 þ b32e2 þ e3:

Rearranged in terms of X1, we get

Y ¼ ðb30 þ b32b20Þ þ ðb31 þ b32b21ÞX1 þ b32e2 þ e3: ð30Þ

As can be seen, the parameter associated with X1 in Equation 3
0 (b31 þ b32b21) must equal

its parameter in Equation 1. Accordingly, in the population (and in sample estimates as

well),

b11 ¼ b31 þ b32b21:

This last formulation is equivalent to

b11 � b31 ¼ b32b21:
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which is the same as the one we presented earlier, that is, c� c0 ¼ ab. Alternatively,

b31 ¼ b11 � b32b21:

Hence, we can see that when we move from Equation 1 to Equation 3, the slope for X1

is adjusted by the value of what could be labeled an ‘‘adjustment product,’’ that is, b32b21.

Within this adjustment product, the first parameter (i.e., b32) designates the effect of a

variable that is controlled in Equation 3 (e.g., Me), and the second one (i.e., b21) desig-

nates the effect of a variable on Me in Equation 2 that is being controlled for (e.g., a X1

effect on Me). Said otherwise, the inclusion of Me in Equation 3 (i.e., b32) controls for the

effect of X1 on Me in Equation 2 (i.e., b21). As we shall see, things become quite a bit

more complicated when two crossed independent variables (i.e., two Xs) are being

considered.

Adjustment Function in the Context of Two Crossed Treatment Variables

First, let us go back to our empirical example. Recall that two independent variables

were manipulated: performance of the hotel desk clerk and authenticity of the smile. One

potential mediator of the treatment main effects and/or their interaction is perceived com-

petence of the clerk. The question we wish to address now is the following: Depending on

the effect observed on the mediator (in the context of our example, an authenticity main

effect, a performance main effect, or their interaction) and the effect of interest on the out-

come variable (again in that case, an authenticity main effect, a performance main effect,

or an interaction), what predictors must be included in the final regression model where

the adjusted effect of the treatment or treatments and/or their interaction is to be esti-

mated? For instance, the results of our study may reveal the presence of an authenticity

main effect on satisfaction (the outcome variable) and an authenticity by performance

interaction on perceived competence (the mediator). Understandably, we would be inter-

ested in testing the authenticity main effect on satisfaction controlling for the latter effect.

Would it be satisfactory to add only perceived competence as a covariate in the model that

has satisfaction as a dependent variable? That is, among others, the question we will

address. We do so first analytically, and then we illustrate our results with relevant

simulations.

In the general case, we are dealing with a situation in which there are two crossed

manipulated dichotomous independent variables (i.e., X1 and X2), units being randomly

assigned to the resulting four conditions. We also assume that the mediator, Me, has been

measured after the independent variables have been manipulated and before measuring Y .

Importantly, throughout our discussion, we are assuming that all variables have expecta-

tions of zero (their means being close to zero in any sample—and we recommend center-

ing all variables based on sample means). Using these four variables, we will refer to

the three models presented in Equations 4, 5, and 6: an ANOVA model in which Y is

regressed on X1, X2, and their product X1X2, capturing their interaction; a second

ANOVA model in which Me is regressed on X1, X2, and their product X1X2; and finally a

full model in which Y is regressed on X1, X2, Me, and all possible products (all three
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products of pairs of these variables and the triple product among all three), capturing all

three two-way interactions and the three-way interaction. The slope parameters in these

three models can be interpreted as defined in Table 1:

Y ¼ b40 þ b41X1 þ b42X2 þ b43X1X2 þ e4 ð4Þ

Me ¼ b50 þ b51X1 þ b52X2 þ b53X1X2 þ e5 ð5Þ

Y ¼ b60 þ b61X1 þ b62X2 þ b63X1X2 þ b64Meþ b65MeX1 þ b66MeX2 þ b67MeX1X2 þ e6: ð6Þ

Starting from these models and applying the same method as in the case of a single

independent variable, we demonstrate in the appendix that the following three equalities

hold (Equations 7, 8, and 9). These equalities specify how the various estimated effects in

the overall ANOVA model (Equation 4) are adjusted by the inclusion of the various addi-

tional predictors in the full model (Equation 6):

b61 ¼ b41 � ðb64b51 þ b65b50 þ b66b53 þ b67b52Þ ð7Þ

b62 ¼ b42 � ðb64b52 þ b65b53 þ b66b50 þ b67b51Þ ð8Þ

b63 ¼ b43 � ðb64b53 þ b65b52 þ b66b51 þ b67b50Þ: ð9Þ

As was the case with only one independent variable, these equations allow one to exam-

ine the adjustment that is produced by introducing Me and its interactions. In other words,

the slopes of the two manipulated independent variables and their interaction in Equation 6

Table 1

Interpretation of the Slope Parameters in Equations 4, 5, and 6

Slope Parameter Interpretation of Slope Parameter

b41 Total X1 effect on Y on average across the two X2 levels

b42 Total X2 effect on Y on average across the two X1 levels

b43 Change in total X1 (or X2) effect on Y as X2 (or X1) increases

b51 Total X1 effect on Me on average across the two X2 levels

b52 Total X2 effect on Me on average across the two X1 levels

b53 Change in total X1 (or X2) effect onMe as X2 (or X1) increases

b61 Residual direct X1 effect on Y at the average level of Me

b62 Residual direct X2 effect on Y at the average level of Me

b63 Change in residual direct X1 (or X2) effect on Y as X2 (or X1)

increases at the average level of Me

b64 Mediator effect on Y on average within the two X1 and X2 levels

b65 Change in mediator effect on Y as X1 increases

b66 Change in mediator effect on Y as X2 increases

b67 Change in mediator effect on Y as X1X2 increases
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differ from those of Equation 4 because of various products of other parameters, represent-

ing the adjustments that are being made. Within each of these parameter-product terms

(e.g., b64b51), the first parameter designates the effect of a variable that is controlled in

Equation 6 (e.g.,Me represented by b64), and the second one designates the effect of a vari-

able onMe in Equation 5 that is being controlled for (e.g., aX1 effect onMe, that is b51).

To illustrate, let us first focus on Equation 7, which deals with the adjustments in the

effect of X1 on Y . As was the case with one independent variable, we see that the inclu-

sion of Me in Equation 6 (the corresponding parameter being b64) controls for the effect

of X1 on Me in Equation 5 (i.e., b51). The inclusion of the X2 by Me interaction in Equa-

tion 6 (the parameter b66) controls for the interactive effect X1X2 on Me in Equation 5

(i.e., b53). Finally, the inclusion of the X1 by X2 by Me interaction in Equation 6 (the cor-

responding parameter being b67) controls for the effect of X2 on Me in Equation 5 (i.e.,

b52). Note that the X1 by Me interaction in Equation 6 (the corresponding parameter being

b65) controls for the intercept in Equation 5 (i.e., b50). Because all variables are assumed

to have expected values of zero, this intercept will equal zero.

Table 2 summarizes these adjustments. In this table, the rows refer to the variable whose

effect is adjusted as we move from Equation 4 to Equation 6. The columns refer to the

effects of the variables in Equation 5 that are being adjusted for. And the entries in the body

of the table indicate which term in Equation 6 produces the respective adjustment. The first

row of the table summarizes what we have just seen about the adjustment of the effect of

X1 on Y as we move from Equation 4 to Equation 6. First, the inclusion of Me in Equation

6 adjusts the X1 effect on Y for the effect X1 has on Me. Second, the inclusion ofMeX1X2

in Equation 6 adjusts the X1 effect on Y for the effect X2 has onMe. Third, the inclusion of

MeX2 in Equation 6 adjusts the X1 effect on Y for the effect X1X2 has on Me. Looking at

Equation 8, or at the second row of Table 2, we can see that the inclusion of MeX1X2 in

Equation 6 adjusts the X2 effect on Y for the effect X1 has on Me in Equation 5, the inclu-

sion of Me in Equation 6 adjusts the X2 effect on Y for the effect X2 has onMe in Equation

5, and the inclusion of MeX1 in Equation 6 adjusts the X2 effect on Y for the effect of

X1X2 on Me in Equation 5. Finally, looking at Equation 9, or the last row in Table 2, we

can see that the inclusion ofMeX2 in Equation 6 adjusts the X1X2 effect on Y for the effect

X1 has on Me in Equation 5, the inclusion of MeX1 in Equation 6 adjusts the X1X2 effect

on Y for the effect X2 has on Me in Equation 5, and the inclusion of Me in Equation 6

adjusts theX1X2 effect on Y for the effect X1X2 has onMe in Equation 5.

It is noteworthy that the diagonal in Table 2 reveals a straightforward correspondence:

The inclusion of Me in Equation 6 permits us to examine the effects of X1, X2, and X1X2

on Y while controlling for the effects that X1, X2, and X1X2, respectively, have on Me.

For instance, we include Me in the model when one is interested in the X1X2 interaction

on Y and this same interaction has been found to affect Me. But note that although the

inclusion of Me as the sole predictor in Equation 6 accomplishes the adjustments specified

on the diagonal of Table 2, its inclusion will not adjust for other effects, specified in the

off-diagonal terms of Table 2. Suppose we were interested in the adjusted effects of X2 on

Y over and above the various factors that affect Me. If, for instance, X1 affected Me, then

we would need to include the three-way interaction, MeX1X2, as a predictor in Equation

6 to properly estimate the adjusted X2 effect on Y . Alternatively, suppose that we were

interested in the adjusted effects of the X1X2 interaction on Y . If, for instance, both X1
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and X2 had effects on Me, then we would need to include both the MeX2 interaction and

theMeX1 interaction as predictors in the model to accomplish the appropriate adjustments

(MeX2 to adjust for the effect of X1 on Y andMeX1 to adjust for the effect of X2 on Y).

We can now return to our example, asking the question that we posed there about com-

petence as a mediator. Would it be sufficient to add only perceived competence (the

potential mediator) as a covariate when one is interested in testing the authenticity main

effect on the dependent variable and when an authenticity by performance interaction has

been found on the potential mediator? In terms of Table 2, we are thus dealing with the

column where X1X2 has an impact on Me and the row where the factor of interest is X2

(we arbitrarily designate the performance factor as X1 and the authenticity factor as X2).

Table 2 reveals that the crucial predictor that should be included is MeX1. Hence, if the

sole interest was in the authenticity main effect on satisfaction and the authenticity by per-

formance interaction was the only significant effect on perceived competence, the model

that should be used is the following:4

Satisf ¼ b0 þ b1Perf þ b2Authþ b3Perf∗Authþ b4Compþ b5Perf∗Compþ e:

Concretely, this means that two interactive terms would be computed by calculating the

products of performance and authenticity on one hand and the product of performance and

perceived competence on the other. A regression, with satisfaction as a criterion, would

then be conducted with the five resulting predictors (i.e., performance, authenticity, per-

ceived competence, and the performance products with authenticity and perceived com-

petence). From this, it is clear that an ANCOVA model that only includes perceived

competence as a predictor without the perceived competence by performance interaction

would not accomplish the necessary adjustment.

For the sake of the example, imagine now that the results of our example study revealed

the presence of a performance main effect (X1) on perceived competence (Me). If we were

interested in testing the authenticity main effect (X2) on satisfaction, controlling for that

effect, Table 2 shows that we would have to include the perceived competence by authen-

ticity by performance three-way interaction (MeX1X2Þ: In the next section, we will pre-

sent simulated data that illustrate the bias that could result from not including this term in

the model. A second simulation will examine another configuration that will also be illu-

strated with our example study, this time using perceived friendliness as our intervening

variable.

Table 2

Critical Variables to Be Added as a Function of the

Existing Effect onMe and the Factor of Interest

Effects onMe

Factor of Interest X1 X2 X1X2

X1 Me MeX1X2 MeX2

X2 MeX1X2 Me MeX1

X1X2 MeX2 MeX1 Me
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Simulations

The persuasive power of the analytic demonstration notwithstanding, it is instructive to

examine the consequences of misspecification in the context of simulated data. We chose

to rely on Monte Carlo simulations. In this approach, one constructs a true model and then

many samples (we will use 10,000) of a fixed sample size (we will use 100) are randomly

drawn from the population in which the true model is known to hold. One then generates

parameter estimates of various models in each sample and compares them to the known

parameter values of the true model. We can then determine whether these parameter esti-

mates, across samples, from various estimated models are biased or not. For instance,

suppose in the true model, some parameter value is fixed at zero. Across samples, its esti-

mated value ought to be zero on average and ought to be significant in any one sample

only 5% of the time (given a ¼ :05). If the mean value of the estimate departs from zero

and if it is significant more than 5% of the time, then it was estimated with bias.

In the present article, we decided to conduct two such simulations. The first one more

concretely illustrates that a biased parameter estimate results for X2 on Y whenever there

is an impact of X1 on Me and the MeX1X2 interaction term is not included in the model.

The second simulation illustrates how a biased parameter estimate results for X1X2 on Y

whenever there is an impact of X1 and X2 on Me and the MeX1 and MeX2 interactions

are not included in the model.

First Illustration

The aim of this first simulation is to show that the X2 effect on Y will be wrongly esti-

mated whenever X1 has an effect on Me and MeX1X2 is not included in the model (unless

this three-way interaction equals zero). We are thus focusing on the case in the second

row, first column, of Table 2. We generated data based on the following true model:

Y ¼ b60 þ b61X1 þ b62X2 þ b63X1X2 þ b64Meþ b65MeX1 þ b66MeX2 þ b67MeX1X2 þ e6; ð6Þ

constraining b60, b61, b62, b64, b65, and b66 to equal zero while fixing b63 at 1 and b67 at

0.75. These effects were included because one usually conducts a study with two crossed

treatment variables when an interaction is expected, and also the model specifies that this

interaction is in turn moderated by Me. The variance of the residuals, s2
e6
, was fixed at 5.

Furthermore, in the true model for Me,

Me¼ b50 þ b51X1 þ b52X2 þ b53X1X2 þ e5; ð5Þ

we constrained b50, b52, and b53 to equal zero while fixing b51 at 0.80. Thus, only X1 was

allowed to have an impact on Me. The variance of these residuals, s2
e5
, was fixed at 1. We

conducted 10,000 simulation trials, randomly sampling 100 cases each time.

Given the specific question with which we are dealing, we will be paying particular atten-

tion to the parameter estimates and significance forX2 across four different models. Accord-

ingly, in our simulations, we examined not only the mean values of the X2 parameter

estimate in the various models but also the relative frequency with which this parameter
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was found to be significant across the 10,000 samples in each one of the models. The four

models that will be presented are (a) the ANOVA model crossingX1 and X2 (i.e., Equation

4), (b) an ANCOVA model adding onlyMe to the ANOVA model, (c) a correct (full) model

with the critical MeX1X2 interaction and its lower order interactions, and (d) an incomplete

model including all the parameters but the critical (in this context) three-way interaction.

Reported in Table 3 are the mean values (and the rate of significance at a ¼ :05) of the

coefficients for the various components of each model. The first row shows the misspeci-

fied ANOVA model (Equation 4), and as expected the mean value for the X2 parameter is

overestimated. In agreement with Equation 8, we would expect the effect of X2 on Y to be

biased by b67b51, that is, 0.75 × 0.80 or 0.60. As a matter of fact, instead of being 0 as it

should be, the simulation shows it to be 0.601. Moreover, this parameter is found to be

significant in almost 21% of the samples.

Turning to the second row, we notice that the standard ANCOVA model, which only

includes Me, does nothing to correct the problem. The X2 parameter and the Type I error

rates are equivalent to those found in the ANOVA model.

Crucially, the third row presents the correct model. Here, we can see that the X2 para-

meter is correctly estimated once the MeX1X2 (and its lower-order components) interac-

tion is included. Moreover, this parameter is found to reach significance in only 5.2% of

the samples, approximately what would be expected using a .05 level of significance.

The model presented in the last row is incomplete and was included to show that the

critical term in the correct model is indeed the three-way interaction. As expected, the

inclusion of all the parameters but the three-way interaction again leads to a slope for X2

that is overestimated by the same amount (i.e., 0.601). Not surprisingly, the inflation in

the Type I error is comparable to the one observed in the ANCOVA model (reaching

20.6% instead of 5%).

Finally, it should be noticed that the correct estimation of the X2 parameters comes with

a price. As a matter of fact, moving from the ANCOVA model to the correct model entails

a loss of power for the test for the X1X2 interaction (significance rate falls from 48.3% of

the samples to 31.1%). Note that the coefficient for this interaction is accurately evaluated

as 1 across the different models. This is the case because b66 equals zero (see Table 2 and

Equation 9).

What is the lesson of this simulation in terms of the empirical example we have been using

in the introduction? If a performance main (X1) effect is found on perceived competence

(Me), and if one wants to test the authenticity main (X2) effect on satisfaction over and above

that effect on competence, one needs to include the perceived competence by authenticity by

performance interaction in the model. As is clear from the simulation, in this context, the

usual ANCOVA model would not accomplish the necessary adjustment. Hence, we would

conclude that the effect is there when it is not. In more general terms, failing to include the

necessary set of predictors in the model would lead to erroneous conclusions.

Second Illustration

Our second simulation again relies on our empirical example but focuses on the second

potential mediator (i.e., perceived friendliness). Imagine that we found an authenticity by

performance interaction on the main dependent variable (i.e., satisfaction) and both a
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Table 3

Simulation 1: Parameter Estimates and Rates of Rejection of the Null Hypothesis

(a = .05) as a Function of the Type of Model

Predictors

Intercept X1 X2 X1X2 Me MeX1 MeX2 MeX1X2

Model PE RR PE RR PE RR PE RR PE RR PE RR PE RR PE RR

ANOVA 0.002 0.049 0.007 0.046 0.601 0.209 1 0.487

ANCOVA 0.002 0.049 0.002 0.049 0.601 0.209 0.999 0.483 0.007 0.053

Correct 0.004 0.046 −0.002 0.050 0.003 0.052 0.996 0.311 0.009 0.049 −0.002 0.051 0.003 0.046 0.747 0.276

Incomplete 0.003 0.049 0 0.050 0.601 0.206 0.998 0.313 0.009 0.057 0 0.058 0.002 0.055

Note: Y is the outcome variable. PE = parameter estimate; RR = rate of rejection of the null hypothesis.
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performance effect and an authenticity effect on perceived friendliness. In other words,

the effect of interest would be the X1X2 interaction on Y , and both X1 and X2 have signif-

icant effects on the potential mediator, Me. Again, would it be sufficient to include only

Me in the model on Y? Table 2 shows that this should not be the case. Our simulation

nicely illustrates this.

The aim of the second simulation is thus to show that the X1X2 interaction effect on Y

will be biased whenever X1 and X2 have an effect on Me and both MeX2 and MeX1 are

not included in the model (unless these two interactions equal zero). Thus, we are dealing

with the first two columns of the last row of Table 2. We relied on the true model,

Y ¼ b60 þ b61X1 þ b62X2 þ b63X1X2 þ b64Meþ b65MeX1 þ b66MeX2 þ b67MeX1X2 þ e6, ð6Þ

in which we constrained b60, b62, b63, b64, and b67 to equal 0 while fixing b61 at 1 and both

b65 and b66 to 0.75. b61 was set at 1 to demonstrate that unnecessarily relying on the full

model will lead to a loss in power without improving parameters estimation. The variance

of the residuals, s2
e6
, was again fixed at 5. Furthermore, in the true model for Me,

Me ¼ b50 þ b51X1 þ b52X2 þ b53X1X2 þ e5 ð5Þ

we constrained b50 and b53 to equal 0 while fixing b51 and b52 at 0.80. Thus, both X1 and

X2 were allowed to have an impact on Me. The variance of these residuals, s2
e5
, was fixed

at 1. We conducted 10,000 simulation trials, randomly sampling 100 cases each time.

Given the specific question we are dealing with, we will be paying particular attention to

the parameter estimates and significance for X1X2 across four different models. The four

models that will be presented are (a) the ANOVA model crossingX1 and X2 (i.e., Equation

4), (b) an ANCOVA model adding onlyMe to the ANOVA model, (c) a correct model with

the criticalMeX1 andMeX2 interactions, and (d) a full model including all parameters.

Reported in Table 4 are the mean values (and the rate of significance at a ¼ :05) of the

coefficients for the various components of each model. The first row shows the misspeci-

fied ANOVA model (Equation 4), and as expected the mean value for the X1X2 parameter

is overestimated. In agreement with Equation 9, we would expect the effect of X1X2 on

Y to be biased by b65b52 þ b66b51, that is by (0.75 × 0.80) + (0.75 × 0.80), which

equals 1.20. As a matter of fact, instead of being 0 as it should be, the simulation shows it

to be 1.203. Moreover, this parameter is found to be significant in 63% of the samples.

Turning to the second row, we notice that the standard ANCOVA model, which only

includes Me, hardly does a better job. As it turns out, the X1X2 parameter and the Type I

error are equivalent to those found in the ANOVA model.

The third row presents the correct model that includes both MeX1 and MeX2, in addi-

tion to their components. Now, the X1X2 parameter is correctly estimated as being 0.

Moreover, this parameter is found to reach significance in only 5.1% of the samples.

The model presented in the last row is the full model. We present it to make clear that

relying on the full model, when it is unnecessary, will be less efficient, even though it

clearly yields unbiased estimates. As we have analytically demonstrated, the parameter

values are equivalent to those estimated in the third model, but there is a definite loss of

power, most notably for X1. We would argue that a loss of power in testing some
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Table 4

Simulation 2: Parameter Estimates and Rates of Rejection of the Null Hypothesis

(a = .05) as a Function of the Type of Model

Predictors

Intercept X1 X2 X1X2 Me MeX1 MeX2 MeX1X2

Model PE RR PE RR PE RR PE RR PE RR PE RR PE RR PE RR

ANOVA 1.203 0.641 1.006 0.482 0 0.051 1.203 0.631

ANCOVA 1.203 0.635 1 0.322 −0.007 0.055 1.202 0.629 0.008 0.057

Correct 0.002 0.050 0.999 0.322 −0.007 0.054 0 0.051 0.009 0.049 0.748 0.287 0.752 0.298

Full 0.002 0.051 1 0.242 −0.004 0.052 −0.002 0.050 0.009 0.049 0.748 0.280 0.753 0.289 −0.003 0.049

Note: Y is the outcome variable. PE = parameter estimate; RR = rate of rejection of the null hypothesis.
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parameters is worth enduring when it comes with more accurate estimates of other para-

meters. However, when more powerful models yield equivalent unbiased estimates, then

they are definitely to be preferred. Finally, note that in contrast to what happened in the

previous simulation, X2 is now accurately estimated across the different models. This is

so because both b64 and b67 equal 0.

Going back to our example, this simulation again highlights that the usual ANCOVA

model would do nothing to adjust the effect of interest (i.e., the authenticity by perfor-

mance interaction on satisfaction). In other words, if the proper terms (in this case, the

interactions between perceived friendliness and both factors) are not included in the

model, the estimate of this critical interaction will be biased and often (erroneously) found

to be significant when the incorrect model is estimated.

Discussion

Researchers in the behavioral sciences are increasingly confronted with so-called

ANCOVA models. In the context of mediation analysis, one often relies on the ANCOVA

model to test the mediator effect on the dependent variable controlling for the treatment

and to evaluate the treatment effect controlling for the mediator effect. The ANOVA

model, in which the treatment effect on some outcome is examined, is thus modified into

a model that includes the mediator (or the covariate) as an additional predictor. Although

this strategy is entirely justified when only one treatment variable is being considered, the

inclusion of only Me as a covariate is likely to lead to bias when examining issues of med-

iation in the case of two treatment variables that are crossed (Muller et al., 2005; Yzerbyt,

Muller, & Judd, 2004).

The present article examined factors that contribute to adjustment because of mediation in

the context of two crossed treatment variables. We demonstrated analytically that, depending

on the specific variable or variables that have an impact on Me, one should examine a fully

specified model, which may include more predictors than simply the mediator as a covariate.

In addition, our first simulation concretely showed how, in the context of an effect of X1 on

Me, the critical predictor that needs to be included to correctly estimate the effect of X2 in

the model of Y is the MeX1X2 interaction. Unless this precaution is taken, the X2 parameter

will be dangerously biased. Our second simulation showed how, in the context of effects of

X1 and X2 on Me, the critical predictors that need to be included to correctly estimate the

effect of X1X2 in the Y model are the MeX1 and MeX2 interactions. Unless these two inter-

actions are included, theX1X2 parameter will be incorrectly estimated.

There are several cases in which the terms to be included in the full Y model are far

from obvious. The consequence is that, more often than not, researchers who rely solely

on the inclusion of Me in their ANCOVA model will end up with biased and misleading

results. A seemingly reasonable way to handle the situation is to always estimate the full

Y model, including Me along with all possible interactions. We would not recommend

such a blanket strategy, at least in the case of two dichotomous independent variables.

Indeed, although the use of such an ‘‘exhaustive’’ model allows for the proper estimation

of the various parameters, the estimation of unnecessary predictors comes with a definite

cost in efficiency. Even if researchers are not aware of the true underlying model
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governing their data, we would therefore advise that they first examine a model in which

Me is the criterion and the independent variables the predictors. Awareness of those speci-

fic predictors that exert an impact on Me should then allow them, relying on Table 2, to

figure out which critical covariates need to be included in the Y model.

We have deliberately confined the discussion in this article to the case where there are

two crossed independent variables, each having two levels. In this case, the analytic solu-

tion to the problem of adjustment is tractable. The bad news is that even in a very simple

design as the one studied here, things are quite a bit more complex than one could think at

first sight. The good news, however, is that embracing the framework presented here,

these analyses can be conducted safely. But of course there are many other more complex

cases that should and ought to be considered. For instance, one of the two predictors could

be continuous (say, because it is measured rather than manipulated). In such a case,

although the derivation would be more complex than the one presented in this article, the

guidelines presented in Table 2 would hold.

Another example of a somewhat more complex situation occurs when one, or both, of

the independent variables have more than two levels. In such a situation, simply including

the covariate, but not the other terms, in the adjustment model will generally not accom-

plish the desired adjustment and will lead to biased estimates. Through simulations, such

as those we have illustrated in this article, one could identify the necessary terms that

ought to be included to yield unbiased estimates, given the pattern of treatment effects on

the mediator and the adjusted effects of interest. But we have been unable to develop a

general analytic solution that promises to yield the equivalent to Table 2 in these more

complex situations. Although this goal remains elusive, the good news is that if one were

to estimate the full model in such cases, including the mediator and all possible mediator

by treatment interactions, then the full adjustment of all effects of interest would be

accomplished and unbiased estimates would result. Therefore, in these more complicated

scenarios, we encourage the researcher to estimate this full model. We also hope that the

present work will provide a springboard for a more comprehensive and creative treatment

of the issues we have raised in the context of more complex research designs.

Given the topic of this special issue, we restricted the present contribution to those situa-

tions in which there is a strong suspicion of the presence of mediation. It should be noted,

however, that our analytical framework is more general. As a matter of fact, the same ratio-

nale applies in cases where researchers would like to show that some variable plays no

mediating role in the relation between the treatments and the outcome. For instance, again

in the context of our ongoing example, within a study such as Grandey et al.’s (2005), one

could be interested in showing that the effect of the independent variables could not be

explained by perceived competence or perceived friendliness. Here, one would be interested

in showing that the effect on the dependent variable (e.g., satisfaction) persisted over and

above the effect on the mediator (e.g., perceived competence). As we have seen, a tempting

strategy might be to include only perceived competence as a covariate in the satisfaction

model. We think that we have now made clear the risks associated with such a strategy.

To conclude, many researchers dealing with ANCOVA models involving more than

one independent variable continue to overlook the costs of model misspecification. In the

present article, we hope to have shed some light on the potential costs and possible reme-

dies to this situation. A careful examination of the variables affecting the mediator should
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prove most informative in specifying the correct Y model to achieve unbiased parameter

estimates in the most efficient manner.

Appendix

Derivation of the Adjustment Functions

Let us assume that Equations 5 and 6 represent the theoretical models that are respon-

sible for generating the variance in both the mediator and the outcome. Accordingly, the

model presented in Equation 4 is misspecified. It then becomes possible to derive the

values of the parameters in this misspecified model in terms of the parameter estimates of

Equations 5 and 6. To do so, we first combine Equations 5 and 6 by substituting for Me in

Equation 6 according to Equation 5. This leads to the following result:

Y ¼ b60 þ b61X1 þ b62X2 þ b63X1X2

þ b64ðb50 þ b51X1 þ b52X2 þ b53X1X2 þ e5Þ

þ b65ðb50 þ b51X1 þ b52X2 þ b53X1X2 þ e5ÞX1

þ b66ðb50 þ b51X1 þ b52X2 þ b53X1X2 þ e5ÞX2

þ b67ðb50 þ b51X1 þ b52X2 þ b53X1X2 þ e5ÞX1X2 þ e6; ð60Þ

which is given equivalently as

Y ¼ b60 þ b61X1 þ b62X2 þ b63X1X2

þ b64b50 þ b64b51X1 þ b64b52X2 þ b64b53X1X2 þ b64e5

þ b65b20X1 þ b65b51X
2
1 þ b65b52X1X2 þ b65b53X

2
1X2 þ b65X1e5

þ b66b50X2 þ b66b51X1X2 þ b66b52X
2
2 þ b66b53X1X

2
2 þ b66X2e5

þ b67b50X1X2 þ b67b51X
2
1X2 þ b67b52X1X

2
2 þ b67b53X

2
1X

2
2 þ b67e5X1X2 þ e6: ð60Þ

When X1 and X2 are contrast-coded dichotomous variables, then X2
1 and X2

2 are constant

for all cases (i.e., their variances equal 0). In this case, Equation 6’ reduces to

Y ¼ b60 þ b61X1 þ b62X2 þ b63X1X2

þ b64b50 þ b64b51X1 þ b64b52X2 þ b64b53X1X2 þ b64e5

þ b66b50X1 þ b65b51 þ b65b52X1X2 þ b65b53X2 þ b65X1e5

þ b66b50X2 þ b66b51X1X2 þ b66b52 þ b66b53X1 þ b66X2e5

þ b67b50X1X2 þ b67b51X2 þ b67b52X1 þ b67b53 þ b67e5X1X2 þ e6: ð60Þ

Finally, this can be reformulated as,

Y ¼ ðb60 þ b64b50 þ b65b51 þ b66b52 þ b67b53 þ b64e5 Þ

þ ðb61 þ b64b51 þ b65b50 þ b66b53 þ b67b52 þ b65e5ÞX1

þ ðb62 þ b64b52 þ b65b53 þ b66b50 þ b67b51 þ b66e5ÞX2

þ ðb63 þ b64b53 þ b65b52 þ b66b51 þ b67b50 þ b67e5ÞX1X2 þ e6: ð60Þ
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Accordingly, the parameter associated with X1, X2, and their interaction X1X2 in the

respecified Equation 60 must equal their parameters in the misspecified Equation 4. Note

that products involving e5 drop out because this residual is uncorrelated with X1, X2;
and

X1X2, and hence its product with them is as well. We are left with

b41 ¼ b61 þ b64b51 þ b65b50 þ b66b53 þ b67b52 ðA1Þ

b42 ¼ b62 þ b64b52 þ b65b53 þ b66b50 þ b67b51 ðA2Þ

b43 ¼ b63 þ b64b53 þ b65b52 þ b66b51 þ b67b50: ðA3Þ

These three equations are equivalent to, respectively,

b61 ¼ b41 � ðb64b51 þ b65b50 þ b66b53 þ b67b52Þ ð7Þ

b62 ¼ b42 � ðb64b52 þ b65b53 þ b66b50 þ b67b51Þ ð8Þ

b63 ¼ b43 � ðb64b53 þ b65b52 þ b66b51 þ b67b50Þ ð9Þ

Notes

1. We use the variables examined in this article as an example throughout this article. However, it is not
our intention to follow the work conducted by Grandey, Fisk, Mattila, Jansen, and Sideman (2005) in every
aspect. Our choice in this specific study is solely based on the fact that the issues it addresses allow us to illus-
trate our points in an organizational context, although they apply to many other contexts as well.

2. Note that Grandey et al. (2005) did not explicitly talk about mediation although their discussion and ana-
lyses are mediational.

3. Throughout we will use bs to refer to unknown population parameters and bs to refer to their sample
estimates. We have omitted the i subscript, referring to observations, from all variables.

4. Within this example, the critical term to be included is the competence by performance interaction. The
reader may wonder why we also included the competence term. The reason here and throughout is that a pro-
duct term is never included without its lower-order components (here, competence and performance; cf. Judd
& McClelland, 1989). Only partialled products examine interactions.
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