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Abstract
Brinkman et al. (2019) recently introduced an innovative metric—infoVal—to assess the informational value of classification images
(CIs) relative to a random distribution. Although this measure constitutes a valuable tool to distinguish random from nonrandom CIs,
we identified two noteworthy discrepancies between themathematical formalization of the infoValmetric and the authors’ computation.
Specifically, the computation was based on the one norm instead of the Euclidean norm, and the k constant was omitted in the
denominator of the ratio that produces infoVal. Accordingly, the simulations and experimental results reported byBrinkman et al. do not
build on the correct infoVal computation but on a biased index. Importantly, this discrepancy in the computation affects the statistical
power and Type I and error rate of the metric. Here we clarify the nature of the discrepancies in the computation and run Brinkman
et al.’s Simulation 1 anew with the correct values, to illustrate their consequences. Overall, we found that relying on the miscomputed
infoVal metric can lead to misguided conclusions, and we urge researchers to use the correct values.
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In their recent article BQuantifying the Informational Value of
Classification Images,^ Brinkman et al. (2019) introduced an
objective informational value metric—infoVal—as a means to
statistically assess the degree to which signal rather than noise
is present in facial representations (i.e., classification images
or CIs) obtained from reverse-correlation (RC) experiments
(see Dotsch, Wigboldus, Langner, & van Knippenberg,
2008; Mangini & Biederman, 2004). Indeed, as was argued
by the authors, one of the main caveats of RC experiments is
that they will always yield a CI, whether that image builds on
random or on meaningful responses. Researchers or external
judges may thus erroneously interpret the CI as containing
signal when there is in fact none. In light of this limitation,
this innovative measure aims to distinguish CIs containing
noise from those containing signal. To ascertain the quality
of their new metric, Brinkman et al. thoroughly simulated
and empirically tested and validated the internal and

convergent validity of infoVal. On the basis of their findings,
they recommend the use of infoVal scores as a new standard of
good practice for RC studies.

As much as infoValmay prove to be a valuable tool, closer
inspection of the manuscript led us to notice that the compu-
tation of infoVal in the R code available from the authors
(Brinkman et al., 2019; see https://osf.io/v3y5e/) differed
from the metric’s formal conceptualization in two ways. To
be in a position to gauge the impact of the discrepancies
between the Bcorrect^ and Bincorrect^ computations of the
infoVal metric, we first reran the Simulation 1 proposed by
Brinkman et al. Concretely, we independently wrote an R
script building upon the information provided in Brinkman
et al.’s manuscript.1 Note that although we restricted the
present analysis to their Simulation 1, the impact of these
discrepancies on the other analyses presented by Brinkman
et al. should be similar.

In this simulation, participants’ responses to a typical RC
task are simulated in such a way that they vary from complete-
ly random (i.e., pure noise) to completely accurate (i.e., pure
signal). As can be seen in Table 1 and Fig. 1, the data obtained

1 All our computations were performed with R version 3.5.3 (R Core Team,
2015). The R scripts can also be run with Microsoft R Open (Version 3.5.3,
Microsoft & R Core Team, 2017; see https://mran.microsoft.com/) for
improved performance. The noise pattern (i.e., the noise matrix) was
generated with the developmental version of the rcicr package (Dotsch, 2017).
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from our simulation match within rounding errors those pre-
sented by Brinkman et al. (2019; see their Fig. 3 and Table 1).
Our data, R code, and materials are available on the Open
Science Framework (see the Open Practices Statement
section).

According to Brinkman et al. (2019), the infoValmetric can
be interpreted as a z score. It compares the observed CI’s
vector length to a reference distribution of simulated vector
lengths based on random responses. The vector length, or
norm, is defined as the squared root of the sum of squares
(i.e., the Euclidean norm) over all the pixels of the CI (pi ),
as in

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑I
i¼1pi

2
r

ð1Þ

As for the infoVal metric, Brinkman et al. define it as

infoVal ¼ xobs−xesim
σsim

ð2Þ

where xobs is the vector length of the empirically
observed CI, xesim is the median of the lengths of the
simulated vectors, and σsim is the approximated stan-
dard deviation of the lengths of the simulated vectors,
as in

σsim ¼ k �MAD
x
esim

ð3Þ

where k is a fixed constant equal to 1.4826, andMADx
esim

is

the median absolute deviation of the lengths of the simulated
vectors.

The aforementioned formal definition of infoVal, as pre-
sented in Brinkman et al. (2019), differs from the actual com-
putation in two remarkable ways. First, although the vector

lengths, or norms, of the observed or simulated CIs are con-
ceptualized as the Euclidean norm [i.e., norm(x, type =
BF^) in R; see Eq. 1], they were in fact computed as the one
norm [i.e., norm(x) or, equivalently, norm(x, type =
BO^) in R]. The difference here is that the one norm is com-
puted as the sum of the absolute values of each pixel from the
CI, whereas the Euclidean norm is computed as the square
root of the sum of squared CI’s pixels.2 Although the central-
ity (e.g., mean or median) and dispersion (e.g., standard devi-
ation or median absolute deviation) of the distributions of
empirical or simulated CIs’ norms are relatively larger when
the one norm rather than the Euclidean norm is computed,
both distributions are highly correlated (r = .995). As a con-
sequence, the effect of relying on one or the other norm—that
is, the Euclidean versus the one norm—should be very small
if not inconsequential for the infoVal metric (see the
supplementary materials for the norm distributions and the
effect of the computed norm on infoVal).

A second discrepancy is that the standard k = 1.4826 con-
stant was omitted in Brinkman et al.’s (2019) computation
(see Eq. 3). Given that k is introduced as a denominator of
the difference between the observed norm (xobs) and the me-
dian of the simulated CIs’ norms (~xsim ), the value of infoVal
computed with k should be 32.55% times smaller than the one
computed without k (or, equivalently, with k = 1).
Accordingly, there should be a loss of statistical power but
also a reduction in Type I error rate when using k = 1.4826.
Also, because infoVal is close to zero when the CI contains no
or very little signal, and grows rapidly as the signal rate in-
creases, the loss of statistical power should be more pro-
nounced than the reduction of Type I error rate. Using the

Table 1 Proportions of H0 rejections (H0 = CI generated by a random
process) out of 1,000 simulation runs per level of P[random] for two
different critical values (1.96 and 3) and for the Bcorrect^ (Euclidean

norm and k = 1.4826) versus Bincorrect^ (one norm and k = 1)
computation of the infoVal metric

P[random] infoVal > 1.96 infoVal > 3

Correct Computation Incorrect Computation Correct Computation Incorrect Computation

.000 1.000 1.000 1.000 1.000

.125 1.000 1.000 1.000 1.000

.250 1.000 1.000 1.000 1.000

.375 1.000 1.000 1.000 1.000

.500 1.000 1.000 .983 1.000

.625 .878 .970 .543 .866

.750 .302 .553 .060 .282

.875 .032 .125 .002 .028

1.000 .006 .041 .000 .005

2 For more information about the computation of the norm in R, see https://
www.rdocumentation.org/packages/base/versions/3.6.0/topics/norm.
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same logic, the k constant should also narrow the spread of the
infoVal distribution by 32.55% (see the supplementary
materials for an illustration of the effect of k on the infoVal
metric).

To visualize the effect of these two discrepancies in the
computation of the infoValmetric, we compared the Bcorrect^
computation of infoVal (i.e., as formalized by Brinkman et al.,
2019; i.e., with the Euclidean norm andwith k = 1.4826) to the
Bincorrect^ computation (i.e., as computed byBrinkman et al.,
2019; i.e., with the one norm and k = 1). We expected the
effects of both miscomputations to be additive while mainly
being driven by the difference in the k constant. The results
from our Simulation 1 are illustrated in Fig. 1 (see also
Brinkman et al., 2019, Fig. 3) and Table 1 (see also
Brinkman et al., 2019, Table 1).

Visual inspection of Fig. 1 confirms that the Bcorrect^ com-
putation of infoVal is less powerful than the Bincorrect^ com-
putation, especially as the level ofP[random] responses approx-
imates 0% (i.e., as the signal rate increases). At the same time,
the statistical power of infoVal remains at 100% in both cases
forP[random] ≤ 50% (see Table 1). The plot (see Fig. 1) and the
actual statistics (see Table 1) also suggest that the Bcorrect^
computation has a smaller Type I error rate for P[random] re-
sponses approaching 100%, as one would expect. Finally, we
observe that the dispersion is lower for the Bcorrect^ infoVal
distributions than for the Bincorrect^ distributions, which may
yield more consistent infoVal values. This is an important result,
given that more consistent statistical tests could positively

contribute to the replicability issue in psychological sciences
(see Simmons, Nelson, & Simonsohn, 2011).

In sum, our examination of the discrepancies between
the formalization and the actual computation of
Simulation 1 proposed by Brinkman et al. (2019) shows
that the Bcorrect^ computation of infoVal is more con-
servative than its miscomputation. The bias stems main-
ly from the omission of the k constant. The Bcorrect^
computation of this metric is therefore relatively less
powerful than expected, while also having a lower
Type I error (false positive) rate than the Bincorrect^
computation. The miscomputation of infoVal has direct
implications for researchers, since they might erroneous-
ly discard meaningful CIs (i.e., Type II errors) or read
signal in CIs when there is fact none (i.e., Type I er-
rors), leading them to misguided conclusions.

In spite of the fact that the present commentary
points out issues with the way Brinkman et al. (2019)
implemented their measure, we converge with them in
stressing the importance of such a measure to assess the
informational value of CIs. We thus recommend that

3 The first author of this comment (M.S.) submitted a pull request on the
GitHub repository for the rcicr package from Dotsch (2017) to correct for
computation of the infoVal metric. The request was approved by Ron Dotsch
(see https://github.com/rdotsch/rcicr/issues/96, and https://github.com/
rdotsch/rcicr/pull/97). For all practical purposes, researchers can thus use the
developmental version of the rcicr R package (available at https://github.com/
rdotsch/rcicr/) for the Bcorrect^ computation of the infoVal metric.
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Fig. 1 Relationship between the infoVal metric and the probability of
random responses, P[random], as a function of the Bcorrect^ (Euclidean
norm and k = 1.4826) versus Bincorrect^ (one norm and k = 1)

computation of this metric. The dashed line represents 1.96 units of
approximated standard deviation.
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future work on reverse-correlation experiments rely on
the Bcorrect^ computation of this metric, as presented
formally by Brinkman et al.3
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