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Abstract

A common design in social psychology involves the use of two independent variables, an experimental manipulation and a

measured individual difference, and the interest is in the interaction between them. In such designs, there are often obvious co-

variate(s), correlated with the measured independent variable, which the researcher wishes to control. Typically this is done by

including the covariate in the analytic model. We show that in most cases this is an inadequate model. In general, the interaction

between the two independent variables will be estimated without bias only when the interaction between the covariate and the

manipulated independent variable is included in the analysis. We present simulations showing the factors affecting the magnitude of

the bias and provide a survey of recent social psychological literature illustrating the frequency of the problem. Finally, we discuss

cases where both independent variables are manipulated and the covariate is a potential mediator.

� 2003 Elsevier Inc. All rights reserved.
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Introduction

It is well known in the methodological literature (e.g.,

Judd & McClelland, 1989) that there are two reasons
why one might choose to include a covariate in an an-

alytic model: power and adjustment. The first is served

when the covariate is highly related to the dependent

variable, but unrelated to the independent variables of

interest. This condition is generally assured with a co-

variate that is measured prior to the delivery of inde-

pendent variables to which participants have been

randomly assigned. In this case, the inclusion of the
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covariate in the analytic model leads to a reduction in

the variance of the residuals, thereby increasing the

power of the test of the independent variables. Addi-

tionally, because there is no redundancy between the
covariate and the independent variables, the inclusion of

the covariate has no impact on the effect estimates as-

sociated with the independent variables. In other words,

the adjusted means will not be different from the un-

adjusted means.

The adjustment function occurs when the covariate is

related to the independent variables. The inclusion of

the covariate in the analytic model accordingly results in
‘‘adjustments’’ in the effect estimates associated with the

independent variables. The effects of the independent

variables are then partial effects, controlling for or re-

moving the impact of the covariate. There tend to be

two classic cases where these adjusted effect estimates

are sought out. The first is when one or more of the

independent variables is confounded with the covariate

and one wishes to remove the confound in assessing the
impact of the independent variables. This is the classic

adjustment function of analysis of covariance when used
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in the analysis of quasi-experimental and correlational
designs. The second case is when the covariate is sus-

pected to be a mediator of the effects of the independent

variables. One then controls for the covariate in order to

examine whether the partialled effect estimates of the

independent variables are reduced in magnitude, com-

pared to the zero-order effects, thereby supporting the

mediational conjecture. The distinction between these

two cases is a theoretical rather than analytic one. In the
first the covariate is simply confounded with the inde-

pendent variables; in the latter it is assumed to be caused

by the independent variables.

An interesting and common use of the adjustment

function occurs when the covariate is related to one

independent variable that is thought to interact with

another independent variable with which the covariate is

uncorrelated. This situation often arises when the first
independent variable is a measured variable, for instance

a stable disposition of research participants, while the

second one is a manipulated one, to which participants

have been randomly assigned. Designs that cross these

independent variables, one measured and one manipu-

lated, are used routinely in social psychology where a

central theoretical concern has focused on situation by

person interactions, i.e., the impact of situational vari-
ables depends on some stable individual difference.

Typically this has been done by exposing participants to

different levels of a situational manipulation and ex-

amining whether the impact of that manipulation de-

pends on some measured individual difference.

In such designs, it is often the case that there exists a

covariate that is related to the measured variable, either

as a confounded variable or a potential mediator, and
one seeks to adjust for its effect as a covariate in the

analytic model. Here the theoretical focus is on the

predicted interaction between the measured independent

variable and the manipulated one. And one wishes to

estimate the impact of that interaction while controlling

for the covariate that is correlated with the measured

independent variable.

In general, the analysis is conducted by including the
covariate in the model while testing the predicted in-

teraction between the manipulated independent variable

and the measured one. The point of the present paper is

to suggest that this analytic model is frequently incom-

plete and results in a biased effect estimate for the in-

teraction. Whenever the covariate is confounded with

the measured independent variable and additionally,

participants have been randomly assigned to levels of
the manipulated independent variable, then the pre-

dicted interaction between the measured and manipu-

lated independent variables will be confounded with the

interaction between the covariate and the manipulated

independent variable. When this is the case, then the

interaction between the manipulated and measured in-

dependent variable will be estimated with bias unless
both the covariate and the interaction between the co-
variate and the manipulated variable are controlled.

We illustrate the problem with an example drawn

from a highly cited recent article in social psychology.

Steele and Aronson (1995) argued that when a test is

defined as diagnostic of an ability and when the absence

of that ability is stereotypically associated with a par-

ticular ethnic group, stereotype threat ensues and per-

formance on the test is impaired for members of that
group. To support this argument, they recruited par-

ticipants from different ethnic groups (the measured

independent variable) and randomly assigned them to

conditions where a test is defined to be diagnostic of an

ability or not (the manipulated independent variable).

Their central prediction concerned the interaction of

these two independent variables: diagnosticity will lower

performance only among that group for whom the
ability in question is stereotypically threatening. Because

the ethnic groups that are used typically differ in prior

performance in the ability domain (for example, in

SAT performance), the analytic model includes that

prior performance measure as a covariate when testing

the predicted interaction.

But there really are two alternative interactions that

compete here. On the one hand, there is the one that is
theoretically preferred by Steele and Aronson (1995):

diagnosticity lowers performance only among members

of the ethnic group for whom the (lack of) ability is

stereotypically threatening. On the other hand, maybe

this effect really has nothing to do with ethnicity per se.

Maybe it is a more general performance induced effect:

diagnosticity lowers performance among those people

who perform less well in the domain for which the test is
supposedly diagnostic. To argue for the first (and pre-

ferred) of these two interactions, Steele and Aronson

should have controlled for the second. They did not.

And simply including prior performance as a covariate

does not adequately control for its interaction with di-

agnosticity. If in fact prior performance does interact

with diagnosticity, then the estimated effect of the eth-

nicity by diagnosticity interaction will be biased unless
the prior performance by diagnosticity interaction is

included in the analytic model. Including the covariate

alone does nothing to reduce this bias.

In 1992, Hull, Tedlie, and Lehn published a short

article in Personality and Social Psychology Bulletin in

which they argued a very similar point to the one we are

making. Three issues motivate us to believe that the

point needs to be made again, more forcefully. First, as
the example we have just given illustrates (and, as we

review later, there are many other recent cases), the

lesson from the Hull et al. paper has not been attended

to. Second, this lack of attention has largely been

caused, we think, by the fact that Hull et al. article

confined its discussion of the issue to research in per-

sonality psychology. Indeed the title of the article is
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‘‘Moderator variables in personality research.’’ As the
example from Steele and Aronson (1995) illustrates, the

issue they (and we) point to deserves attention from

the broader social psychological audience. Moreover,

the problem is not confined to cases where the covariate

is related to a measured independent variable but is also

relevant for situations in which all independent variables

are manipulated and the covariate assumes the role of a

potential mediator. Third, Hull et al. discuss the issue in
general terms. They did not actually demonstrate the

bias nor explore factors that affect its magnitude. In

what follows, we do both.

In the following section we demonstrate the bias an-

alytically. We then report some simulations that exam-

ine factors that affect its magnitude. Following this, we

report our survey of articles published in 2002 in four

leading journals in social psychology. This survey doc-
uments the frequency of the problem and the general

failure to appropriately deal with it. In a final section,

we address the issue of the use of covariates in media-

tional analyses.
Demonstration of bias

Let us assume that X1i is a measured independent

variable, representing some stable disposition of par-

ticipants. We assume it is normally distributed in the

population with an expected value of zero and a vari-

ance of r2X1
.1

Next, assume that X2i is a manipulated independent

variable, with two levels to which participants are ran-

domly assigned with equal probabilities. We will adopt a
contrast-code convention, so that the levels of X2i are

coded as +1 and 1. Accordingly, the expected value of

X2i is also zero and its variance equals 1.0.

Third, we assume there is some measured covariate,

Ci, again normally distributed with an expected value of

zero and a variance of r2C. Additionally, we assume it

covaries with X1i in the population, rX1;C 6¼ 0. This co-

variance may be due to a variety of functional rela-
tionships between the two: one may cause the other or

some other variable may be responsible for variation in

both. Although the distinctions among the functional

relationships between Ci and X1i are theoretically im-

portant, analytically all that matters is that the two

covary.2

Finally, assume there is some variable Yi that is

considered the dependent variable, and that its values
1 The derivation that follows applies even when the independent

variable is a dichotomous and potentially manipulated one as well, so

long as the distribution of the independent variable is symmetrical (i.e.,

equal numbers in both categories).
2 We will assume that the two variables have been scaled so that

their covariance is positive.
are a function of the previous variables, interactions
among those variables, and residual normally distrib-

uted random errors:

Yi ¼ b11X1i þ b12X2i þ b13Ci þ b14X1iX2i þ b15CiX2i þ e1i;

ð1Þ
where X1iX2i ¼ X1i � X2i and CiX2i ¼ Ci � X2i. This is as-

sumed to be the ‘‘true’’ population model, meaning that

it specifies the factors responsible for variation in Yi.
The expected values of all variables are zero (in-

cluding the residual) and hence in the population there is

no intercept. Notice we are assuming that the manipu-

lated independent variable, X2i, interacts with both Ci

and X1i, but that these two variables, while correlated,

do not interact with each other in affecting Yi.
The question of bias in the estimation of the coeffi-

cient of the X1iX2i interaction focuses on whether its

parameter estimate is biased if one estimates a model in
which the CiX2i interaction is not included as a predic-

tor. In other words, assuming that one estimates the

following misspecified model (i.e., the classic ANCOVA

model):

Yi ¼ b21X1i þ b22X2i þ b23Ci þ b24X1iX2i þ e2i ð2Þ
the question is whether b24 differs from its true value,

b14.

As we demonstrate in the Appendix A, from these

two expressions and the assumptions we made, we can
derive

b24 ¼ b14 þ b15

rC;X1

rX 2
1

:

Accordingly, only in two conditions will the parameter

estimate in the misspecified model (b24) equal the pa-
rameter in the correct model (b14). The first is when Ci

and X1i do not covary. The second condition is when b15,

the effect of the CiX2i interaction, equals zero. In other

words, assuming that Ci and X1i are related and that the

effect of the CiX2i interaction is not zero, then the coef-

ficient for the X1iX2i interaction will be biased unless one

includes the CiX2i interaction in the model. Note also

that if Ci and X1i have equal variances, then the ratio
rC;X1

=r2
X1

equals the correlation between the two vari-

ables. In this case, the degree of bias will be a linear

function of that correlation. When the correlation is

zero, there will be no bias. With a correlation ap-

proaching 1.00, the biased coefficient will approach

b14 þ b15.

One additional result is of interest. Suppose a mis-

specified model were estimated with both Ci and the
CiX2i interaction omitted as predictors

Yi ¼ b31X1i þ b32X2i þ b33X1iX2i þ e3i: ð3Þ

Because the expected covariance between Ci and

X1iX2i equals zero (as shown in the Appendix A), the

coefficient for the X1iX2i interaction in this second
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misspecified model (b33) would exactly equal the biased
coefficient in the first misspecified model (b24). In other

words, including the covariate in the model, but failing

to include its interaction with X2i does nothing to elim-

inate the bias in the estimate of the effect of the X1iX2i

interaction.
Simulations

In order to demonstrate the bias more concretely, we

conducted Monte Carlo simulations. The results of these

are necessarily consistent with the analytic results just
presented. However, the simulation results provide a

fairly dramatic illustration of the problems to be en-

countered.

In these simulations, we focused in particular on

Type I error rates. Accordingly in the true model

Yi ¼ b11X1i þ b12X2i þ b13Ci þ b14X1iX2i þ b15CiX2i þ e1i

ð1Þ
we constrained b14 to exactly equal zero while fixing b11,
b12, and b13 to 1. The variance of the residuals, r2

e1
, was

fixed at 5 and the variances of both Ci and X1i were set at

1. We then varied the magnitude of b15 (between .00 and

1.00 in increments of .20) and the magnitude of the

correlation between Ci and X1i (between .00 and .80 in

increments of .20). We allowed these two factors to vary

because the derivation we have just presented shows that

they determine the degree to which b24 is biased. Since
b14 was fixed at zero, finding a significant b24 constitutes

a Type I error. Accordingly, in our simulations we ex-

amined not only the mean values of b24 but also the

relative frequency with which b24 was significant. At

each combination of the parameters that varied, we

conducted 1000 simulation trials, randomly sampling

100 cases each time.

Reported in Table 1 are the mean values (and stan-
dard errors) of b24, the coefficient for the X1iX2i inter-

action in the misspecified ANCOVA model (Eq. (2)).

Given our simulation specifications, the analytic results

we gave earlier mandate that the expected value for b24
equals the product of the two parameters that vary

across the simulations, i.e., b15 and the correlation be-
Table 1

b24 in the incomplete model as a function of the effect of b15 and the correla

b15 0 .2

0 )0.018 (0.0162) )0.017 (0.0138) 0.

.2 )0.026 (0.0168) 0.020 (0.0152) 0.

.4 0.025 (0.0167) 0.068 (0.0145) 0.

.6 0.001 (0.0166) 0.132 (0.0151) 0.

.8 0.007 (0.0165) 0.175 (0.0146) 0.

1 )0.032 (0.0168) 0.214 (0.0150) 0.
tween Ci and X1i. Within sampling error, this is true in
every case.

Reported in Fig. 1 are the probabilities of Type 1

errors from the simulation as a function of the two

factors that varied. Recall that in the simulations there

was no effect of the X1iX2i interaction in the correctly

specified model. The probabilities reported in Fig. 1 are

the probabilities that the coefficient for that interaction

was significant in the incorrectly specified model that
omitted the CiX2i interaction. As should be the case,

these Type I error rates equal .05 when either the effect

for the CiX2i interaction equals zero or when Ci and X1i

are uncorrelated. However, they increase as these factors

depart from zero. Although this is the general result, the

specific values given in Fig. 1 are of course contingent on

the specifications used in these simulations.

One additional set of results from these simulations is
of considerable interest. In the correctly specified model,

we could assess the probability that the effect of the CiX2i

interaction emerged as significant, assuming in fact its

parameter b15 was something other than zero. This

amounts to the statistical power to detect the CiX2i in-

teraction effect in the correctly specified model. These

power results are given in Fig. 2.What is remarkable here

is that it is frequently the case that there will be substantial
bias in the estimate of the X1iX2i interaction effect in the

misspecified model (i.e., b24) even when the power to de-

tect the presence of the CiX2i interaction effect in the

correctly specified model is relatively low. For instance,

when the true effect of the CiX2i interaction is .6 and the

correlation betweenCi andX1i is .80, the amount of bias in

estimating the X1iX2i interaction effect in the misspecified

model (i.e., b24) is considerable. Instead of the true effect
of zero, the average estimated coefficient for the interac-

tion will be .48 in the misspecified model and the proba-

bility of a Type I error in that model equals .508. Yet, the

power to detect the actual effect of the CiX2i interaction

effect in the correctly specified model is quite low (.349).

What this means is that a significance test of the CiX2i

interaction in the correctly specified model should not be

used to decide whether or not to retain it in the model.
Even if theCiX2i interaction is found to be non-significant,

the test of the X1iX2i interaction effect in the misspecified

model may well be seriously biased.
tion between C and X1 (standard error in parentheses)

rðC;X1Þ

.4 .6 .8

002 (0.0128) 0.017 (0.0107) )0.004 (0.0073)

067 (0.0126) 0.110 (0.0107) 0.163 (0.0071)

167 (0.0130) 0.263 (0.0105) 0.320 (0.0070)

241 (0.0127) 0.365 (0.0105) 0.479 (0.0074)

305 (0.0127) 0.487 (0.0111) 0.638 (0.0074)

421 (0.0133) 0.594 (0.0109) 0.789 (0.0077)



Table 2

Survey of the 2002 literature

JESP PSPB JPSP EJSP

One-way 0 3 5 2

Repeated-measures

analysis

1 2 3 1

Power analysis 0 1 5 1

Irrelevance 1 2 4 1

Misspecification 5 7 8 1

Total # of papers 7 15 25 6

% Relevant 71% 47% 32% 17%

% Wrong/relevant 100% 100% 100% 100%

Note. JESP, Journal of Experimental Social Psychology; PSPB,

Personality and Social Psychology Bulletin; JPSP, Journal of Per-

sonality and Social Psychology; EJSP, European Journal of Social

Psychology.

Fig. 1. Type 1 error in the test of b24 in the incomplete model as a

function of b15 and the correlation between C and X1.

Fig. 2. Power of the test of b15 in the complete model as a function of

b15 and the correlation between C and X1.
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A survey of the literature

The statistical literature that is most frequently en-

countered on analysis of covariance is that contained in

the classic books on factorial analysis of variance (e.g.,

Keppel & Zedeck, 1989; Kirk, 1995; Maxwell & Dela-

ney, 1990; Myers & Well, 1991; Winer, Brown, &

Michels, 1991). Although these treatments talk about a
related issue in analysis of covariance, the homogeneity

of regression assumption, they do not discuss the issue

we are addressing. What we have shown is that when a

covariate is confounded with one independent variable,

and when that independent variable interacts with a

second one, the test of the interaction will be biased

unless the covariate interaction is controlled.

As we mentioned earlier, one previously published
paper we are aware of explicitly addresses the issue

(Hull, Tedlie, & Lehn, 1992). However, it seemed to us
that the issue continues to be problematic in the litera-

ture. To demonstrate this, we searched the recent social

psychological literature to determine how often the
problem occurred. We surveyed all articles that ap-

peared in the 2002 issues of the Journal of Personality

and Social Psychology, the Journal of Experimental So-

cial Psychology, the Personality and Social Psychology

Bulletin, and the European Journal of Social Psychology.

We compiled a list of all articles that mentioned

using analysis of covariance or ANCOVA. As shown in

Table 2, we found 53 such articles. We examined whe-
ther the covariate was used in conjunction with one or

several independent variables. We eliminated those cases

where only a single independent variable was used.

We next eliminated those studies where all but one of

these varied within subjects. Although the issue we are

raising is potentially important when using covariates in

the analysis of repeated measures, typically covariates in

such models vary only between subjects. In such situa-
tions, the standard analytic packages used to conduct

repeated measures analyses automatically include the

covariate by within-subject interactions in the models.

Next, we eliminated those cases in which the authors

used a covariate that was uncorrelated with all inde-

pendent variables for the sole purpose of increasing

power. Our concerns are relevant only when the covar-

iate is correlated with one of the independent variables.
Another category of studies involved cases in which

the authors made clear predictions for and indeed only

found main effects of their independent variables on

their dependent variables. Our focus is on the use of

covariates in contexts where one is primarily interested

in the interaction between two independent variables,

with one of them correlated with a covariate.

Finally, we were left with those papers (21 in total;
40% of all papers using analysis of covariance) where

there was a clear prediction of an interaction between

two independent variables and where a covariate was

included that likely was correlated with at least one

of them. In all of these papers, only the covariate was
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included in the analytic model. None of them tested the
predicted interaction while including the relevant co-

variate interaction. Thus, all of these papers seem to

have made the error that we are pointing to, with

the result that their reported interaction effects may well

be biased.
Covariate models

A covariate and an independent variable may be

correlated because of three possible causal processes: the

independent variable causes the covariate, the covariate

causes the independent variable, and they are spuriously

related because some third variable or variables cause

them both. Since a covariate is a measured, rather than

manipulated variable, the second and third processes
can rarely be teased apart. However, in some cases the

first process can be distinguished from the other two.

For instance, suppose the independent variable was

manipulated rather than measured, with participants

randomly assigned to its levels. In this case, any corre-

lation between it and a subsequently measured covariate

must be due to the causal effect of the independent

variable on the covariate.
When a potential covariate is caused by an indepen-

dent variables, then the inclusion of the covariate in the

model, and the resulting adjustment function, is rou-

tinely labeled a mediational analysis, in which it is

thought that the covariate mediates the effect of the

independent variable on the dependent one. One in-

cludes the covariate to examine whether the adjusted

effect of the independent variable is reduced once the
mediator is controlled (Baron & Kenny, 1986; Judd

& Kenny, 1981).

A consideration of this case thus points us to a situ-

ation where the issue we have raised may well be a

problem even when both independent variables, whose

interaction is of theoretical interest, have been experi-

mentally manipulated. Suppose, for instance that both

X1i and X2i have been experimentally manipulated and it
is their interaction that is of theoretical interest. And

suppose further that Ci is affected by X1i, as a potential

mediator. Then it will be the case that the X1iX2i inter-

action will be confounded with the CiX2i interaction.

More formally, when Ci is measured after the inde-

pendent variables have been manipulated, then one can

specify a model for their effects on the covariate

Ci ¼ b41X1i þ b42X2i þ b43X1iX2i þ e4i: ð4Þ
In the present context, we assume that only X1i affects Ci

(i.e., that both b42 and b43 equal zero). If we take the
correct model for Yi given earlier

Yi ¼ b11X1i þ b12X2i þ b13Ci þ b14X1iX2i þ b15CiX2i þ e1i

ð1Þ
and substitute first for Ci (according to Eq. (4)) in the
covariate interaction, we get

Yi ¼ b11X1i þ b12X2i þ b13Ci þ ðb14 þ b15b41ÞX1iX2i þ e5i:

ð5Þ
This shows that the estimate of the interaction under the

correct model b14 will be the same as the one found in

the incomplete model b24 whenever either b15 or b41 is

equal to 0. Not surprisingly, this conclusion is the same

as the one derived earlier because it is the case that b41

equals rC;X1
=rX 2

1
, assuming that both b42 and b43 equal

zero.

If we now substitute for the remaining Ci in Eq. (5),

we get

Yi ¼ ðb11 þb13b41ÞX1iþb12X2i þðb14þb15b41ÞX1iX2iþ e6i:

ð6Þ
This sequential substitution nicely illustrates that, under

the current assumptions we have made about the effect
of the independent variables on Ci, the inclusion of the

covariate interaction in the analytic model affects the

interaction between the independent variables (see Eq.

(5)) whereas the inclusion of the covariate only affects

the coefficient associated with X1i (see Eq. (6)).

Thinking of the covariate in this manner, as a po-

tential mediator, allows the specification of different

mediational cases that may be of interest. For instance,
it may be the case that it is the interaction between X1i

and X2i that affects Ci (i.e., that both b41 and b42 equal

zero but b43 does not). In this case, Ci can be seen as a

possible candidate to mediate the effect of the interac-

tion of the two independent variables on the dependent

variable. If this is the true model for the covariate (i.e.,

mediator), then it can be shown that an analytic model

that only adjusts for the covariate is unbiased.
These two cases that we have just considered, where

Ci is a mediator for the effects of the manipulated in-

dependent variables, define the alternative cases of what

Baron and Kenny (1986) and Wegener and Fabrigar

(2000) call ‘‘mediated moderation.’’ In the first case, one

independent variable, which interacts with a second,

affects the covariate. One thus needs to control for the

covariate�s interaction with the second manipulated
variable. In the second case, the interaction between the

two independent variables affects the covariate. One

then needs to control only for the covariate.

The lesson is that in the case of a covariate as a

mediator, one needs to think about the true model of the

effects of the independent variables on the mediator.

Estimating a model for the mediator can only inform

this process. Even outside of the mediational context,
researchers should think about how the covariate relates

to their independent variables and, in light of that, the

specific adjustments that are accomplished by the in-

clusion of the covariate or covariate interactions in their

analyses.



3 A reviewer of this paper suggested that since measurement error

generally attenuates effects, the presence of error may lead to less bias

in the misspecified model that omits the covariate interaction, since it is

the errorful covariate that has been omitted rather than the perfectly

measured one. However, in models with multiple predictors, measure-

ment error may either attenuate or exaggerate parameter estimates.

Thus, the relative magnitude of additional bias if an errorful covariate

interaction is omitted is unclear.
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Conclusions

Whenever one�s attention is focused on the interac-

tion between two independent variables, an interesting

situation emerges when one also wishes to control for

some covariate(s) known to correlate with one of the

independent variables. This state of affairs commonly

arises when the design includes a measured independent

variable that is crossed with a manipulated independent
variable. The covariate is then likely to correlate with

the measured variable and the goal is to ascertain the

interaction between the independent variables adjusting

for the covariate. It can also occur when the study in-

volves two manipulated independent variables and the

researcher is concerned about a covariate that is affected

by one of them and may be a potential mediator.

The standard strategy is simply to include the co-
variate in the model. As we have shown analytically, this

strategy leads to biased estimates of the effect of the

interaction between the two independent variables un-

less one also controls for the interaction between the

covariate and the independent variable with which it is

uncorrelated.

Our simulations illustrated the harmful consequences

of model misspecification. We systematically varied the
two factors that our derivation showed to affect the

magnitude of the bias: the relation between the covariate

and the independent variable with which it is correlated,

on the one hand, and the true effect of the covariate

interaction on the other. Whenever these factors de-

parted from 0, the inclusion of the covariate in the an-

alytic model without the covariate interaction resulted in

biased estimates and a substantial increase in Type I
errors. An interesting case emerged when the power to

detect the true effect of the covariate interaction was

low. In such a case, one might find the covariate inter-

action to be non-significant and omit it from the final

model. Nevertheless, our simulations show that even in

this case, substantial bias can result. In general, we

would recommend including the covariate interaction in

the model, regardless of its significance.
In spite of the potential seriousness of the problem

that we have pointed to, we found no mention of this

issue in the classic manuals on experimental design. We

did find a journal article (Hull et al., 1992) that ad-

dressed the issue explicitly. However, perhaps because

these authors limited their scope to research in person-

ality psychology, the larger social psychological audi-

ence seems to have overlooked the problem altogether.
A survey of four major outlets of our discipline revealed

that in none of the situations that called for the inclusion

of the covariate interaction was the issue addressed.

The experimental design books do discuss the ho-

mogeneity of regression assumption in the analysis of

covariance, a somewhat related issue. This assumption

requires that the relationship between the covariate and
the dependent variable be the same across the different
cells of an experimental design. In the context of a de-

sign involving two independent variables and one co-

variate, this assumption would be tested by the

comparison of two models. A full model includes the

covariate, the main effects of the two independent vari-

ables, all possible two-way interactions, and the triple

interaction. This model would be compared with a re-

stricted one that omits all of the covariate interactions
(i.e., the ANCOVA model). If one rejects the restricted

model in favor of the full one, then that means that the

covariate interacts with at least one of the independent

variables that define that design, thereby making inter-

pretation of the adjusted means problematic.

The issue we have raised and the assumption of ho-

mogeneity of regression in ANCOVA are both focused

on covariate by independent variable interactions.
However, the problem we emphasize here is more fo-

cused since we argue that the test of an interaction be-

tween a measured and a manipulated independent

variable will be biased unless the interaction between the

covariate and the manipulated independent variable is

included. This is only one of the terms that would be

added and tested, with multiple degrees of freedom, in

examining the homogeneity of regression assumption.
The difference between the two issues is perhaps clearest

when one considers a design with only a single inde-

pendent variable: the homogeneity of regression as-

sumption still is important whereas the issue we are

concerned about is irrelevant.

A final issue should be mentioned. Throughout, we

have acted as if all our variables were measured without

error. Clearly, this is never the case. Our derivations
would be considerably more complicated had we as-

sumed measurement error. Our major conclusions,

however, hold regardless of the presence or absence of

errors of measurement.3

Does the present warning mean that some findings

widely accepted in the literature, such as the stereotype

threat results discussed in our introduction, ought to be

reevaluated? Perhaps. On the other hand, it is also
possible that the covariate by manipulated independent

variable interaction (i.e., SAT by the diagnosticity in-

teraction) in that work would have proven to have no

effect, had it been included. In fact, it is conceivable

(although unlikely) that the effect of the predicted eth-

nicity by diagnosticity interaction would actually have

been larger had the researchers controlled for the SAT
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by diagnosticity interaction. The point is that we cannot
know for sure the direction of the bias in the test of the

crucial interaction when only the covariate (SAT), but

not its interaction with diagnosticity, has been included

in the model. This is indeed unfortunate.
1

Appendix A

Given the assumptions we have made, one can derive

the expected values of all variances and covariances of

the variables (Aiken & West, 1991, pp. 177–182; see also

Kenny, 1979; McClelland & Judd, 1993). These are gi-

ven in Table A1. From this table and the models we

defined, it follows that
b14 ¼
rY ;X1X2

� rY ;CX2rC;X1
r2C

r2
X1
�

r2C;X1
r2C

:

In the misspecified model, the coefficient for the X1iX2i

interaction is given by

b24 ¼
rY ;X1X2

r2
X1

:

From these two expressions and the results in Table A1,

one can show that

b24 ¼ b14 þ b15

rC;X1

r2
X

:

Table A1. Variances and covariances in the true model
X1i X
2i C
i
 X1iX2i
 CiX2i Y
i
X1i
 r2
X1
X2i
 0 1
Ci
 rC;X1
0
 r
2

C

X1iX2i
 0 0
 0
 r2
X1
CiX2i
 0 0
 0
 rC;X1

r2
C

Yi
 b11r
2
X1
þ b13rC;X1

b
12 b
11rC;X1
þ b13r

2
C
 b14r

2
X1
þ b15rC;X1
b14rC;X1
þ b15r

2
C b
2

11r
2
X1
þ b2

12

þ b2
13r

2
C þ b2

14r
2
X1

þ b2
15r

2
C þ 2b11b13rC;X1

þ2b14b15rC;X1
þ r2

e1
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