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Abstract 

In light of current concerns with replicability and reporting false-positive effects in psychology, we 

examine Type I errors and power associated with two distinct approaches for the assessment of 

mediation, namely the component approach (testing individual parameter estimates in the model) 

and the index approach (testing a single mediational index). We conduct simulations that examine 

both approaches and show that the most commonly used tests under the index approach risk 

inflated Type I errors compared to the joint-significance test inspired by the component approach. 

We argue that the tendency to report only a single mediational index is worrisome for this reason 

and also because it is often accompanied by a failure to critically examine the individual causal paths 

underlying the mediational model. We recommend testing individual components of the indirect 

effect to argue for the presence of an indirect effect and then using other recommended procedures 

to calculate the size of that effect. Beyond simple mediation, we show that our conclusions also 

apply in cases of within-participant mediation and moderated mediation. We also provide a new R-

package that allows for an easy implementation of our recommendations. 
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New recommendations for testing indirect effects in mediational models: 

The need to report and test component paths 

Techniques for the assessment of causal mediation have been the subject of extensive 

development for the last 30 years (Baron & Kenny, 1986; Judd & Kenny, 1981; Preacher, Rucker, & 

Hayes, 2007). The early literature recommended that mediation be demonstrated by examining and 

testing a set of individual parameter estimates within the overall model. We refer to this as the 

“component” approach that relies on joint-significance testing of multiple parameter estimates. Such 

practices were also recommended in more complex cases involving within-participant mediation 

(Judd, Kenny, & McClelland, 2001) and moderated mediation (Muller, Judd, & Yzerbyt, 2005). More 

recently, however, the literature has shunned this approach and has instead recommended an 

“index” approach of mediation (such as the PROCESS macro; Hayes, 2013), whereby trust in the 

underlying causal model rests on a single test of a mediational index. The purported advantages of 

this include a single statistical test rather than numerous ones, an increase in statistical power for 

mediation claims (a decrease in Type II errors, i.e., concluding there is no mediation effect when 

there is one in fact), and a single index that can be used to point to the plausibility of the underlying 

causal model. The downsides, from our perspective, are twofold. First, the reliance on a single index 

risks Type I errors (an increase in Type I error, i.e., concluding there is a mediation effect when there 

is none in fact). Second, and importantly, such reliance may discourage researchers from ever 

examining the individual parameter estimates in the model or thinking critically about the model as a 

whole in light of these.  

Our purpose is to revisit the distinction between the component approach (i.e., jointly testing 

individual parameter estimates in the model) and the index approach (i.e., computing and testing 

only a single mediational index, for instance a bias corrected bootstrap test). We present simulations 

that examine both Type I and Type II statistical error probabilities associated with the two 

approaches. We show that commonly used tests under the index approach risk inflated Type I errors, 

compared to the joint-significance test inspired by the component approach. Given the current 
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concern with replicability and reporting false-positive effects in psychology1, we suggest that sole 

reliance on the index approach to mediation is worrisome, even while it does have small power 

benefits at least for the most biased of the index approach tests. Ultimately, we recommend testing 

and reporting individual components of the indirect effect to argue for mediation and then using 

other procedures to calculate the size and standard error of the indirect effect. 

We devote most of our discussion to simple mediation but additionally demonstrate that our 

conclusions apply as well in cases of within-participant mediation and moderated mediation. We also 

present a new R package that allows for an easy implementation of our recommendations.  

Simple Mediation: The Model and the Two Analytic Approaches  

In psychology and related disciplines, a major research concern has been the search for 

intervening processes responsible for observed causal effects (Judd, Yzerbyt, & Muller, 2014). 

Specifically, the goal is to move beyond the demonstration of a relation between an independent 

variable and a dependent variable in order to provide evidence for some presumed underlying causal 

mechanism for that relation.  

Illustrating Simple Mediation. In a recent study, Ho, Kteily, and Chen (2017, Study 3) 

hypothesized that telling African American participants that biracial individuals do versus do not 

experience discrimination would influence “hypodescent.” They defined “hypodescent” as the 

tendency to see biracial individuals as resembling more their low-status minority parent than their 

high-status one. They further argued that the relationship between the independent variable (the 

belief that biracials either do or do not experience discrimination) and hypodescent would be 

mediated by a sense of ‘linked fate’ with biracial individuals. A total of 824 Black US participants first 

read one of two articles that either made salient discrimination towards Black-White biracial 

individuals or did not (e.g., the article either claimed that such individuals experience discrimination 

in employment or claimed they did not).  Participants then completed an 8-item linked-fate measure 

comprising such items as “Do you think what happens with Black people in this country will have 

something to do with what happens with Black-White biracials?”, “Black and Black-White biracials 
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share a common fate”, and “Racial progress for Black people also means racial progress for Black-

White individuals”. Finally, participants answered a 3-item measure of “hypodescent” which began 

with the stem “If a Black American and a White American have a kid…” followed by “would you think 

of the kid as relatively Black or relatively White?”, “would you consider the kid more Black or more 

White?”, and “how would categorize the kid?”. For all three items, the scale ranged from 1 (= More 

Black) to 4 (= Equally Black and White) to 7 (= More White) and was reverse-scored. Ho et al. 

conducted analyses of the resulting data that confirmed their hypotheses and we repeat these below 

following our exposition of methods for supporting claims of mediation. 

Commonly used approaches for demonstrating a causal mediating process in data like these 

derive from recommendations of Baron and Kenny (1986; see also Judd & Kenny, 1981) that involve 

estimating three linear least-squares regression models (see Equations 1 to 3;  10b , 20b , and 30b  are 

the intercepts in the three equations). The first examines whether the independent variable, X, 

affects the dependent variable, Y. The second examines the impact of the independent variable on 

the mediator, M. Finally, the third examines both X and M as simultaneous predictors of the 

dependent variable, Y.  Assuming that the underlying assumptions about causal effects can be 

satisfied, mediation is claimed if the “total effect” of X on Y ( 11c ) is larger in absolute value than the 

“residual effect” of X on Y once M has been partialled out of both X and Y ( 31'c ).  

 

10 11 1b c X eY             (1) 

20 21 2b a X eM            (2) 

30 31 32 3'b c X b M eY            (3) 

 

In our example, estimating Model 1, participants indicated a higher belief in hypodescent in 

the high discrimination than in low discrimination condition, 11c = 0.17, p < .04. Second, estimating 

Model 2, discrimination condition also influenced the perception of linked fate, 21a  = 0.77, p < .001. 
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Finally, in Model 3 with both the perception of linked fate and condition (high versus low 

discrimination) as predictors of judged hypodescent, condition was no longer predictive, 31'c  = 0.03, 

p = .74, while the partial effect of linked fate was significant, 32b  = 0.19, p < .001. Thus, the three 

linear models yielded results consistent with the authors’ predictions (see Figure 1). 

 

 

 

 

Figure 1. Mediation model from Ho et al. (2017, Study 3). Coefficients are unstandardized regression 

coefficients. The unstandardized regression coefficient representing the total relationship between 

condition and hypodescent is in parentheses. * p  .05. ***  p  .001. 

 



If the models in Equations 1-3 are correctly specified, then there is an underlying equality to 

the mediational model, such that the total effect, 11c , is equal to the sum of the residual direct 

effect, 31'c , and the product of the other two effects in the model, 21a  and 32b : 

11 31 21 32'c c a b   

An algebraic re-expression of this yields the “fundamental equality” of mediation: 

11 31 21 32'c c a b   
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In other words, the difference between the total effect of X on Y and the residual direct effect once 

M is controlled (i.e., 11 31'c c ) must equal what is called the indirect effect: the product of the 

effect of X on M ( 21a ) and the partial effect of M on Y ( 32b ). In the data example, this algebraic 

equality is estimated as 

0.17 – 0.03 = 0.77 * 0.19  

And the indirect effect is estimated as approximately 0.14. 

The two approaches. Earlier we contrasted two general approaches to testing this indirect 

effect, calling one the component approach and the other the index approach. Both of these focus 

on the right side of the equality above, i.e., 21 32a b , as the estimate of the indirect effect. The 

component approach proceeds by demonstrating that the two components of the indirect effect (

21a  and 32b ) are both significant. A test doing just that has been referred to as the “joint-

significance” test (MacKinnon et al., 2002) or the “causal steps” test (Biesanz, Falk, & Savalei, 2010). 

One compares both 21a  and 32b  with their respective standard errors, under normal distribution 

assumptions² (or one can use the two corresponding confidence intervals; Cumming, 2014). This 

amounts to the results one gets for 21a  and 32b  when testing them in Models 2 and 3 using ordinary 

least square regression. An indirect effect is claimed, according to the joint-significance test, only if 

both of these individual coefficients are simultaneously significant (or if neither of their confidence 

intervals includes 0). Going back to Ho et al.’s (2017) study, both 21a  and 32b were highly significant, 

confirming the presence of an indirect effect.  

In contrast to the component approach, the index approach to testing mediation is based on 

the assumption that there should only be one overall test of the indirect effect, rather than two 

separate tests of its different components. Thus, the index approach uses various methods to 

provide a statistical test of whether the 21 32a b  product as a whole, rather than its components 

individually, differs significantly from zero. The rationale provided for this, given in multiple 

publications (Hayes, 2013; 2015; for a recent example, see Montoya & Hayes, 2017, p. 7), is that 
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multiple hypothesis tests are inherently problematic because Type I errors are inflated across 

multiple tests. 

 Before we examine the specific methods used to test the indirect effect under the index 

approach, it is important to say that this argument against the component approach (and its joint-

significance test), appealing as it seems, is incorrect. The inflation of Type I errors by conducting 

multiple tests applies in cases where the overall null hypothesis is rejected if any of the tests yields a 

significant result. For instance, if one did two tests and required that only one of them be significant, 

using for each  = .05 the overall Type I error rate (known as familywise error rate) would be 1 – (1 - 

)², which is .0975. However, with the joint-significance test, both 21a  and 32b  must be 

simultaneously significant for an indirect effect to be claimed, so this rationale against two tests is 

unwarranted. 

 The index approach tests the product 21 32a b  with one test of statistical significance, with the 

null hypothesis that the product equals zero. Many such tests exist in the literature. Early 

recommendations for testing this ab product derived its standard error from the pooled standard 

errors of the individual components, an approach frequently labeled the Sobel test (Baron & Kenny, 

1986; Sobel, 1982). This test, however, has largely been abandoned due to violations of the normality 

assumption in testing the product of two coefficients (MacKinnon, Warsi, & Dwyer, 1995). Therefore, 

more robust methods are now the norm for testing the ab product. 

The most widely-used methods for testing the 21 32a b  product rely on resampling or 

bootstrapping procedures, in which one resamples observations with replacement from the original 

data, computes the 21 32a b  product in each new sample, and then examines the distribution of these 

products across many samples (for an overview, see Ong, 2014). In the present context, there are 

three different versions of this method. The first, the percentile bootstrap, computes the 95% 

percent confidence interval for the true value of 21 32a b , given all the resampled estimates. If the 

value of zero is outside of this interval, then one concludes that the estimated value in one’s data 
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permits rejection of the null hypothesis that the indirect effect index equals zero. The second, the 

bias-corrected bootstrap, deals with the fact that the mean 21 32a b  product of the bootstrapped 

samples does not always equal the actual 21 32a b  product estimated in the data. This second method 

corrects for that. Finally, a third version, the accelerated bias-corrected bootstrap, adjusts for the 

fact that the variance of the 21 32a b  estimates across the bootstrapped samples varies. In recent 

years, the most widely-used of the macros that was available 

(http://www.processmacro.org/index.html) relied on these bootstrapping procedures with the 

default being the bias-corrected bootstrap (but see the PROCESS 3.0 macro released early 2018). 

Another method avoids, like bootstrapping, the distributional assumptions of traditional 

statistical inference. Known as the Monte Carlo test, it uses the 21a  and 32b estimates and their 

standard errors (MacKinnon, Lockwood, & Williams, 2004). Assuming these come from two normal 

distributions, it independently samples individual values of each from those underlying distributions 

and then computes the product of the sampled values. This is repeated a very large number of times, 

generating again a confidence interval for the true 21 32a b  product value. A distinct advantage here is 

that the confidence interval can be generated without access to the raw data since only the 21a  and 

32b estimates and their standard errors are necessary (for an implementation in R, see Tofighi & 

MacKinnon, 2011 and the R package we provide with this article).  

Comparative performance of methods. Several papers have evaluated these various tests in 

terms of their susceptibility to both Type I and Type II errors (Biesanz et al., 2010; Fritz & MacKinnon, 

2007; Fritz, Taylor, & MacKinnon, 2012; Hayes & Scharkow, 2013; MacKinnon, Fritz, Williams, & 

Lockwood, 2007; MacKinnon, Lockwood, & Williams, 2004). Most have focused on the four tests of 

the index approach (i.e., percentile bootstrap, bias-corrected bootstrap, accelerated bias-corrected 

bootstrap, and Monte Carlo) and have shown somewhat superior power for the bias-corrected 

bootstrap and the accelerated bias-corrected bootstrap than for the other index approach tests. As a 

result, all else being equal, this means that slightly fewer observations are required to demonstrate a 
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significant indirect effect using these two tests. On the other hand, starting with MacKinnon et al. 

(2004), there are demonstrations of inflated Type I error rates for the two bias-corrected tests, 

mostly when the true value of either 21a  or 32b  (but not both) equals zero. As a result, Fritz et al. 

(2012) recommend the two bias-corrected tests if statistical power is the major concern, but the 

percentile bootstrap or Monte Carlo tests if Type I errors are more worrisome. Reservations 

regarding the use of the accelerated bias-corrected test also emerged from extensive simulations by 

Biesanz et al. (2010). These authors actually conclude that the accelerated bias-corrected test should 

not be used due to unacceptably inflated Type I error rates.  

Although the joint-significance test, based on the component approach to testing the indirect 

effect, was sometimes included in these studies, the lessons that could be drawn from comparison of 

it with the index approach tests were generally overlooked. First, in terms of statistical power, Fritz 

and MacKinnon’s (2007) and Biesanz et al.’s (2010) simulations showed that the joint-significance 

test was at least as powerful as the percentile bootstrap (in fact, it was often more powerful), while 

these two tests were a bit less powerful than the two adjusted bootstrap tests. This pattern confirms 

our earlier comment that the component approach, relying on two tests of individual coefficients, is 

not inherently less powerful than an index test that relies on a single test. Additionally, in terms of 

Type I error, previous work rarely included or discussed the relative performance of the joint-

significance test when the true value of either 21a  or 32b  (but not both) equals zero. One notable 

exception can be found in the work by Biesanz et al. (2010) who examined several methods for 

testing indirect effects using a variety of data structures (i.e., normal and non-normal, complete, and 

incomplete data sets).  

As we suggested earlier, recent difficulties in replicating effects in psychology underline the 

importance of holding Type I error rates at appropriate and known levels. Accordingly, comparisons 

of alternative testing procedures in terms of their statistical power should preferably be done only 

when it is known that those procedures do not yield inflated Type I error rates. The existing literature 

fails to provide definitive answers about the comparison between the component and the index 
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approaches in terms of Type I error rates. Therefore, we conducted simulations to examine the 

performance of the various tests, focusing on the differences between the joint-significance test and 

the various tests of the ab index. In doing so, we partially replicate portions of the extensive 

simulations conducted by Biesanz et al. (2010). These authors’ efforts have remained relatively 

unknown and it seems useful to examine the reliability of their conclusions.  

Beyond the convergence of our results with those of Biesanz et al. (2010), our simulations 

provide focus and extensions that should be particularly compelling for social psychologists. First, we 

consider the bias-corrected bootstrap index approach, which was not included in the Biesanz et al. 

simulations, allowing us to compare the performance of this method to the joint-significance test. 

This is important because it is this index method that has been the default recommended option of a 

popular mediation package, i.e., the PROCESS macro, until very recently and because our review of 

the literature (reported later) suggests that this approach is very widely used. The second very 

important extension is that we develop our argument well beyond the case of simple mediation, 

exploring index versus component approaches in situations that social psychologists frequently 

encounter, specifically within-subject mediation models as well as moderated mediation models.  

In sum, and importantly, although our simulations end up reinforcing Biesanz et al’s 

conclusions (2010) about the joint-significance test (what they call the causal steps approach), those 

conclusions were not the central focus of their paper.  Our paper is focused on the distinction 

between what we call the component and index approaches, thus making salient for readers the 

importance of examining individual parameter estimates in mediation models. Ultimately, our 

message is that researchers should not simply report and test a single index and assume that doing 

so demonstrates and capture all there is to mediation. That message is not conveyed in the Biesanz 

et al. paper, in spite of its many virtues. 

Simple Mediation: The Simulations 

The simulations we report are similar to those reported by others (e.g., Biesanz et al., 2010; 

Fritz & MacKinnon, 2007; Hayes & Scharkow, 2013)3. A simple mediation model was assumed, 
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varying sample sizes and true parameter values for 21a  and 32b . In light of samples typically used in 

psychology, the three sample sizes used were 50, 100, and 200. True values for 21a  and 32b were set 

at .00, .14, .39, and .59, corresponding to zero, small, medium, and large effects (given the error 

variances used). Every combination of the two values for 21a  and 32b were used. The true value of 

31'c   was always set to zero. Values of X were sampled from a normal distribution with mean 0 and 

variance 1. Errors to both M and Y were similarly sampled. For each combination of true parameter 

values and sample sizes (48 different combinations), 10,000 samples were generated and 

mediational analyses conducted in each sample. In 21 of the 48 different combinations of sample size 

and parameter values, the null hypothesis of no mediation is correct (i.e., an indirect effect of zero 

because one or both of 21a  and 32b equals zero). In the remaining 27 cases, there is in fact true 

mediation. Type I errors were examined in the first context (finding a significant mediation effect 

when none is present) and power was examined in the second context (finding a significant 

mediation effect when such an effect is present). 

In each sample, we compared five different procedures to test for the presence of mediation. 

First, the joint-significance test was used, testing the 21a  and 32b components individually. The 

other four tests were index approaches, testing the significance of the 21 32a b  product with the four 

methods discussed earlier: Monte Carlo, percentile bootstrap, bias-corrected bootstrap, and 

adjusted bias-corrected bootstrap.  

For the joint-significance test, we computed two ordinary least-squares regression analyses 

(see Equations 2 and 3, above) for each sample and estimated coefficients 21a  and 32b along with 

their respective standard errors. An indirect effect was declared significant when both coefficients 

21a  and 32b  were significant. 

In order to calculate the Monte Carlo confidence interval for each of the 10,000 samples, we 

sampled 1,000 independent random pairs of normal deviates with means 21a  and 32b and their 
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standard errors from the above regressions. The standard normal deviates of each pair were then 

multiplied to produce a distribution for each sample and the endpoints of the 95% confidence 

interval were calculated as the products defining the 2.5th and the 97.5th percentile values of the 

distribution. An indirect effect was declared significant for the given sample if the confidence interval 

failed to include zero4. 

For the bootstrap methods, for each of the 10,000 samples, we generated 1,000 bootstrap 

samples of the same number of cases by sampling from the sample with replacement. Fritz and 

MacKinnon (2007) indicated that a higher number of bootstrap samples did not affect the proportion 

of Type I errors. Coefficients 21a  and 32b , along with their product, 21 32a b , were calculated for 

each bootstrap sample. These products produce a distribution across the samples and the endpoints 

of the 95% confidence interval are calculated as the products defining the 2.5th and the 97.5th 

percentile values of that distribution. Again, an indirect effect was declared significant for the sample 

if the confidence interval failed to include zero. The bias-corrected and accelerated bias-corrected 

were based on the same initial bootstrap samples, but adjusted for bias using the bias adjustments 

proposed by Hayes (2013), MacKinnon (2008), and Preacher and Selig (2012). 

Type I errors.  For 21 of the 48 simulations, at least one of the two true parameter values, 

21a  and 32b , was zero.  As a result, their true product must be zero, corresponding to the absence 

of an indirect effect. Results for these are given in the left panel of Table 1. Values given are the 

proportion of samples (out of 10,000) yielding a significant indirect effect (empirical Type I error 

rates), using alpha of .05. Values above .05 indicate that the error rate for a particular test is inflated. 

Regardless of sample size and parameter values, the prevalence of Type I errors for the joint-

significance test never exceeds .05. This is not true for any of the four index methods. Whenever one 

of the parameter values was either moderate or large, and the other one was zero, both the bias-

corrected and the adjusted bias-corrected bootstrap procedures yielded empirical Type I error rates 

that were consistently larger than .05. The other two index methods (Monte Carlo and percentile 
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bootstrap) yielded more appropriate Type I error rates, but even these were frequently above the .05 

value. In sum, only the joint-significance test showed no inflation in Type I error rates. 

Power. In 28 of our simulations, there was a true indirect effect, since both of the true 

parameter values of 21a  and 32b  were nonzero. In these cases, the matrix on the right of Table 1 

gives power values (proportion of samples in which a significant indirect effect was found) for each 

test. Unsurprisingly, higher power is found with larger sample sizes. Additionally, the methods can be 

grouped into two clusters, with the joint-significance test, the Monte Carlo sampling method, and 

the percentile bootstrap method on the one hand, and the two bias-corrected methods on the other.  

Power is consistently higher for the two bias-corrected methods than for the other three.  

Importantly, power for the joint-significance test is equal to that obtained for the Monte Carlo and 

percentile bootstrap approaches.  

Type I Method Inconsistencies. In addition to these results, it is important to examine the 

number of samples in which pairs of methods yield conflicting results (Hayes & Scharkow, 2013), 

particularly in the case of Type I errors (i.e., one method finds a significant effect in the absence of a 

true effect while the second does not).  Given our focus on the component approach and the index 

approach, we compared the joint-significance test to the Monte Carlo method and, more specifically, 

the two bootstrapping methods (percentile and bias-corrected) in terms of inconsistencies in those 

cases where no true indirect effect exists. Table 2 shows, for each pair of tests, the number of times 

(out of 10,000 simulated samples) one method yielded a significant effect (Type I error) and the 

other did not. The joint-significance test fares relatively better than the percentile bootstrap method, 

the latter leading to 1.67 times more unique Type I errors. The comparison with the bias-corrected 

bootstrap method is even more telling, with almost 14 times more unique Type I errors than the 

joint-significance test. 
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Table 1. Type I errors (left panel) and power (right panel) for the simple mediational analysis as a function of the population values of coefficients 21a  and 

32b , sample size, and method. 

 

Type 1 Error 

 
a = 0 a = 0 a = .14 a = 0 a = .39 a = 0 a = .59 

n = 50 b = 0 b = .14 b = 0 b = .39 b = 0 b = .59 b = 0 

JS 0.0020 0.0072 0.0069 0.0343 0.0406 0.0486 0.0474 

MC 0.0016 0.0062 0.0063 0.0351 0.0409 0.0528 0.0537 

PB 0.0025 0.0080 0.0074 0.0391 0.0438 0.0595 0.0604 

BC 0.0084 0.0200 0.0199 0.0698 0.0765 0.0864 0.0869 

ABC 0.0111 0.0255 0.0293 0.0812 0.0868 0.0945 0.0943 

 
a = 0 a = 0 a = .14 a = 0 a = .39 a = 0 a = .59 

n = 100 b = 0 b = .14 b = 0 b = .39 b = 0 b = .59 b = 0 

JS 0.0033 0.0148 0.0146 0.0478 0.0469 0.0509 0.0514 

MC 0.0023 0.0112 0.0110 0.0485 0.0479 0.0568 0.0577 

PB 0.0029 0.0121 0.0114 0.0541 0.0500 0.0626 0.0609 

BC 0.0073 0.0314 0.0295 0.0817 0.0792 0.0779 0.0758 

ABC 0.0087 0.0372 0.0355 0.0864 0.0834 0.0814 0.0766 

 
a = 0 a = 0 a = .14 a = 0 a = .39 a = 0 a = .59 

n = 200 b = 0 b = .14 b = 0 b = .39 b = 0 b = .59 b = 0 

JS 0.0027 0.0239 0.0261 0.0519 0.0503 0.0508 0.0490 

MC 0.0021 0.0180 0.0201 0.0559 0.0555 0.0541 0.0510 

PB 0.0025 0.0207 0.0217 0.0578 0.0582 0.0569 0.0533 

BC 0.0066 0.0463 0.0472 0.0735 0.0734 0.0674 0.0613 

ABC 0.0079 0.0520 0.0501 0.0751 0.0773 0.0687 0.0620 

 

     Power     

 
a = .14 a = .14 a = .14 a = .39 a = .39 a = .39 a = .59 a = .59 a = .59 

n = 50 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 

JS 0.0248 0.1150 0.1534 0.1160 0.5523 0.7257 0.1502 0.7298 0.9448 

MC 0.0218 0.1158 0.1641 0.1139 0.5542 0.7364 0.1643 0.7428 0.9492 

PB 0.0240 0.1177 0.1729 0.1172 0.5543 0.7314 0.1636 0.7304 0.9395 

BC 0.0508 0.1826 0.2234 0.1839 0.6455 0.7887 0.2158 0.7895 0.9589 

ABC 0.0587 0.1942 0.2316 0.1963 0.6496 0.7837 0.2216 0.7842 0.9522 

 
a = .14 a = .14 a = .14 a = .39 a = .39 a = .39 a = .59 a = .59 a = .59 

n = 100 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 

JS 0.0759 0.2629 0.2851 0.2783 0.9311 0.9625 0.2793 0.9604 0.9996 

MC 0.0662 0.2655 0.2971 0.2781 0.9327 0.9646 0.2912 0.9616 0.9995 

PB 0.0657 0.2695 0.3053 0.2848 0.9302 0.9643 0.2949 0.9595 0.9995 

BC 0.1291 0.3377 0.3420 0.3534 0.9511 0.9712 0.3322 0.9682 0.9995 

ABC 0.1418 0.3446 0.3438 0.3539 0.9505 0.9691 0.3307 0.9655 0.9994 

 
a = .14 a = .14 a = .14 a = .39 a = .39 a = .39 a = .59 a = .59 a = .59 

n = 200 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 

JS 0.2545 0.5073 0.4991 0.5070 0.9987 0.9996 0.5033 0.9994 1.0000 

MC 0.2290 0.5174 0.5072 0.5156 0.9988 0.9996 0.5123 0.9994 1.0000 

PB 0.2290 0.5190 0.5105 0.5130 0.9986 0.9996 0.5120 0.9996 1.0000 

BC 0.3402 0.5636 0.5316 0.5563 0.9990 0.9996 0.5299 0.9996 1.0000 

ABC 0.3487 0.5597 0.5326 0.5572 0.9987 0.9995 0.5307 0.9996 1.0000 

Notes: JS = joint-significance test, MC = Monte Carlo sampling method, PB = percentile bootstrap, BC = bias-corrected bootstrap, ABC = accelerated bias-
corrected bootstrap. Bold numbers are Type I error rates significantly above .05, i.e., for which .05 falls below the 95% confidence interval.  
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Table 2. Type I errors uniquely due to one as opposed to the other method as a function of the values of coefficients 21a  and 32b , pair of methods, and 

sample size in the context of a simple mediational analysis. 

                      

  
a = 0 a = 0 a = .14 a = 0 a = .39 a = 0 a = .59 

  
    b = 0 b = .14 b = 0 b = .39 b = 0 b = .59 b = 0 Sub-Mean Mean 

Comparison n                   

           

JS = 1 & MC = 0 50 5 14 14 40 30 29 25 22.43 
 

 
100 14 46 40 40 42 18 14 30.57 

 

 
200 7 67 68 27 30 26 29 36.29 29.76 

JS = 0 & MC = 1 50 1 4 8 48 82 71 88 43.14 
 

 
100 4 10 4 47 52 77 77 38.71 

 

 
200 1 8 8 68 82 59 49 39.29 40.38 

           
JS = 1 & PB = 0 50 6 32 20 72 91 83 70 53.43 

 

 
100 12 53 57 73 77 51 64 55.29 

 

 
200 9 66 72 52 40 51 54 49.14 52.62 

JS = 0 & PB = 1 50 11 40 25 120 123 192 200 101.57 
 

 
100 8 26 25 136 108 168 159 90.00 

 

 
200 7 34 28 111 119 112 97 72.57 88.05 

           
JS = 1 & BC = 0 50 1 5 6 20 22 26 25 15.00 

 

 
100 2 6 13 20 17 26 34 16.86 

 

 
200 1 10 12 25 14 29 39 18.57 16.81 

JS = 0 & BC = 1 50 65 133 136 375 381 404 420 273.43 
 

 
100 42 172 162 359 340 296 278 235.57 

 

 
200 40 234 223 241 245 195 162 191.43 233.48 

                      

Notes: JS = joint-significance test, MC = Monte Carlo sampling method, PB = percentile bootstrap, BC = bias-corrected bootstrap. A 1 means that the method 

led to the decision of the presence of an indirect effect and a 0 means that the method led to the decision of an absence of indirect effect. For instance, 

when a = 0 and b = 0 and JS = 1 and MC = 0 and n = 50, 5 means that on 5 occasions (out of 10,000) the joint-significance test led to conclude in favor of an 

indirect effect when the Monte Carlo sampling method did not.



RUNNING HEAD: TESTING INDIRECT EFFECTS  18 
 

Implications and the Practice of Reporting Simple Mediation Analyses 

The message emanating from the present simulations converges with the earlier simulation 

work conducted by Biesanz et al. (2010). These authors also note that, when it comes to null 

hypothesis testing, the joint-significance test (which they call the causal steps method) has the best 

balance of Type I error and statistical power. They also reached the same conclusions when they 

simulated non-normally distributed data and datasets with missing observations.  

Biesanz et al. (2010) suggest that the accelerated bias-corrected method for testing the 

indirect effect should be discarded altogether because its Type I error rate is simply too high in some 

cases (above .07, sometimes close to .10). They argue that its apparent power benefits are not worth 

the associated risk of alpha inflation when the null hypothesis is true. Our own simulations, which are 

entirely consistent with those of Biesanz et al., lead us to concur. Additionally, we have shown that 

the bias-corrected method, which was not considered by Biesanz et al. (2010), is equally problematic. 

This is an important finding insofar as the bias-corrected method has been the default method in the 

most popular mediation macro for a long time and until very recently (version 2.16 still relies on this 

method as its default method and it has been removed only in version 3.00 which came out in early 

2018: http://www.processmacro.org/index.html). Given the prevalence of this method we suspect 

that a substantial number of reported tests of mediation in the literature may be problematic. 

 The consistency of Biesanz et al.’s (2010) findings with our own leads us to believe that the 

most sensible way to approach an indirect effect is to start by examining the individual coefficients 

and establish that both of them are indeed significant. At the same time, and despite the obvious 

merits of the component approach advocated here, we acknowledge the fact that sole reliance on 

the joint-significance test does not provide researchers with a single p value or, for that matter, with 

a confidence interval for the indirect effect. This is an issue to which we return below.   

Earlier we suggested that researchers may often rely exclusively on index tests to claim 

mediation. The results of our simulations clearly show that relying only on index tests, particularly 

the two bias adjusted bootstrap methods, risks Type I errors. This is especially true if one never 

http://www.processmacro.org/index.html
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examines nor reports the individual 21a  and 32b estimates. To survey what in fact is current 

practice, we reviewed the 2015 volumes of three journals in the field that frequently report 

mediation analyses (Journal of Personality and Social Psychology, Personality and Social Psychology 

Bulletin and Psychological Science). In that year, there were 97 simple mediation analyses reported in 

JPSP, 130 in PSPB; and 66 in PS. 

Of the 97 reports of simple mediation analyses reported in JPSP that year, 82 reported and 

tested the 21 32a b   product (with the vast majority of these using some form of bootstrap procedures, 

with specifics often not reported). Of these, there were 60 that also reported the individual 21a  and 

32b components and their associated component tests. Of the 130 simple mediation analyses 

reported in PSPB, 117 reported and tested the 21 32a b  product, using various methods (99 of these 

used some form of bootstrap procedure). Of these, there were 43 instances in which both 

components 21a  and 32b , and their associated component tests, were also reported. A similar 

story emerges for the mediational analyses reported in PS. Of the 66 reported analyses, 54 report 

and test the 21 32a b product, again primarily using bootstrapping procedures. Of these 24 report the 

individual 21a  and 32b estimates and their associated inferential statistics. In total, across the three 

journals in 2015, 293 separate simple mediation analyses were reported, with the vast majority of 

these testing the 21 32a b   product with some type of bootstrap procedure. Of these 293 analyses, only 

137 reported the individual 21a  and 32b coefficients and their associated standard errors. Thus in 

53 percent of all reported analysis, one has no idea of the magnitude and reliability of the individual 

21a  and 32b estimates. 

Given our simulation results and those reported by others (Biesanz et al., 2010), statistical 

power is clearly gained by using one of the bias-adjusted bootstrap methods to test the indirect 

effect. But these methods also risk inflated Type I error rates unless the individual components of the 
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indirect effect are reported and tested. Our survey of mediation reports in the literature suggests 

that all too often researchers only report the 21 32a b  product and its test without reporting the 

individual 21a  and 32b coefficients. When one of these estimates is close to zero, there are 

substantial risks that index tests of the 21 32a b  product are producing spurious evidence for 

mediation. Our simulations reveal that unless one examines and tests the individual 21a  and 32b

components, the possibility of false mediation claims is far from trivial, particularly when using one 

of the more popular bias-corrected bootstrap procedures.  

Before we draw final conclusions, we examine the generality of our simulation results in 

more complex mediation cases. To explore this, we ran a series of additional simulations in the cases 

of two other mediational models for which the index approach has recently been advocated, namely 

within-participant mediation and moderated mediation. 

The Within-Participant Mediation Model 

 Montoya and Hayes (2017) recently examined mediational analysis in the context of a design 

where each participant is measured on a dependent variable Y and a mediator M in both of two 

different conditions. In so doing, these authors revisit an earlier approach proposed by Judd, Kenny, 

and McClelland (2001) utilizing the following set of models: 

2 1 41 4Y Y c e            (4) 

         (5) 

 (6) 

In order to test for the presence of within-participant mediation, Judd et al. (2001) suggest 

examining and testing the 51a  and 62b  coefficients separately, parallel to the component approach 

in between-participants mediational analysis. In line with that approach, a within-participant indirect 

effect is said to exist when both coefficients are significant. In sharp contrast, Montoya and Hayes 

52 1 51M M a e  

2 1 61 62 2 1 63 1 2 1 2 6' ( ) [0.5( ) 0.5( )]c b d eY Y M M M M M M        
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(2015, p. 24) recommend making an inference about the indirect effect as a single index ( 51 62a b ) and 

disregarding the component approach proposed by Judd et al. (2001). To examine the relative merits 

of the component approach and the index approach, we ran a series of simulations. 

The simulations. We adopted the same strategy as for the simple mediation model except 

that we relied on the more complex Equations 4 and 5. Values of M1 and Y1 were sampled from a 

standard normal population. Values of M2 were generated from M1 as a function of 51a  and a 

standard normal error. Values of Y2 were generated from Y1 as a function of 62b  times the 

difference between M1 and M1 and a standard normal error. For the sake of the present simulations, 

61'c   and 63d  were always set at zero. 

To simulate a diverse range of situations, the population parameters 51a  and 62b  were set 

to be either non-existent, small, medium or large, i.e., 0, .14, .39 and .59. In light of the samples 

generally encountered in within-participant settings, we retained three different sample sizes, 

namely 25, 50, and 100. For each of the 48 combinations of conditions, we generated 10,000 

samples. We tested for the presence of the indirect effect using the joint-significance test, the Monte 

Carlo sampling method, and three bootstrap resampling methods, namely the percentile bootstrap, 

the bias-corrected bootstrap, and the accelerated bias-corrected bootstrap.  

Type I errors.  As in the simple mediation simulations, 21 of the 48 populations that we 

examined were characterized by the absence of an indirect effect because at least one of the two 

coefficients, 51a  or 62b , was zero (see Table 3). The relevant numbers for each of the five methods 

reveal that the Type I errors never exceeds 5% for the joint-significance test. The Monte Carlo 

sampling method produces more than 5% Type I errors in 2 cases out of 21, followed closely by the 

percentile bootstrap method with 3 cases out of 21. These errors always emerge when coefficient 

51a  is .59.  
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In contrast, the bias-corrected and the accelerated bias-corrected bootstrap methods 

produce an excessive number of Type I errors, with no less than 11 cases out of 21 exceeding 5%. 

Clearly, when one of the two coefficients 51a  or 62b  is moderately high, these tests prove too 

liberal, nearly doubling the proportion of errors when coefficient 51a  reaches .59. 
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Table 3. Type I errors (left panel) and power (right panel) for the within-participants mediational analysis as a function of the population values of coefficients 

51a  and 62b , sample size, and method. 

 

 

Type 1 Error 

 
a = 0 a = 0 a = .14 a = 0 a = .39 a = 0 a = .59 

n = 25 b = 0 b = .14 b = 0 b = .39 b = 0 b = .59 b = 0 

JS 0.0020 0.0043 0.0069 0.0144 0.0247 0.0293 0.0391 

MC 0.0022 0.0044 0.0075 0.0150 0.0277 0.0339 0.0451 

PB 0.0023 0.0058 0.0089 0.0162 0.0332 0.0347 0.0549 

BC 0.0075 0.0069 0.0206 0.0394 0.0611 0.0683 0.0880 

ABC 0.0096 0.0081 0.0219 0.0421 0.0634 0.0704 0.0897 

  a = 0 a = 0 a = .14 a = 0 a = .39 a = 0 a = .59 

n = 50 b = 0 b = .14 b = 0 b = .39 b = 0 b =.59 b = 0 

JS 0.0014 0.0071 0.0086 0.0295 0.0373 0.0459 0.0499 

MC 0.0011 0.0064 0.0072 0.0273 0.0399 0.0503 0.0563 

PB 0.0020 0.0070 0.0088 0.0293 0.0454 0.0510 0.0638 

BC 0.0067 0.0176 0.0215 0.0587 0.0806 0.0820 0.0906 

ABC 0.0072 0.0187 0.0223 0.0630 0.0836 0.0833 0.0911 

  a = 0 a = 0 a = .14 a = 0 a = .39 a = 0 a = .59 

n = 100 b = 0 b = .14 b = 0 b = .39 b = 0 b = .59 b = 0 

JS 0.0036 0.0096 0.0153 0.0463 0.0489 0.0469 0.0503 

MC 0.0028 0.0071 0.0130 0.0450 0.0499 0.0523 0.0551 

PB 0.0029 0.0080 0.0139 0.0476 0.0559 0.0532 0.0594 

BC 0.0084 0.0108 0.0338 0.0783 0.0860 0.0707 0.0744 

ABC 0.0089 0.0109 0.0342 0.0801 0.0848 0.0691 0.0776 

 

     Power     

 
a = .14 a = .14 a = .14 a = .39 a = .39 a = .39 a = .59 a = .59 a = .59 

n = 25 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 

JS 0.0081 0.0330 0.0642 0.0413 0.1553 0.2949 0.0719 0.2830 0.5240 

MC 0.0079 0.0336 0.0710 0.0443 0.1673 0.3163 0.0810 0.3076 0.5500 

PB 0.0103 0.0363 0.0713 0.0502 0.1685 0.3086 0.0899 0.3061 0.5394 

BC 0.0231 0.0694 0.1223 0.0885 0.2667 0.4222 0.1366 0.4062 0.6435 

ABC 0.0255 0.0757 0.1236 0.0918 0.2591 0.4098 0.1374 0.3931 0.6216 

  a = .14 a = .14 a = .14 a = .39 a = .39 a = .39 a = .59 a = .59 a = .59 

n = 50 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 

JS 0.0222 0.0989 0.1552 0.1078 0.4958 0.7084 0.1273 0.6373 0.9149 

MC 0.0182 0.0972 0.1638 0.1098 0.4944 0.7194 0.1376 0.6542 0.9212 

PB 0.0186 0.0984 0.1669 0.1134 0.4924 0.7197 0.1463 0.6535 0.9171 

BC 0.0445 0.1654 0.2199 0.1690 0.6100 0.7924 0.1880 0.7144 0.9407 

ABC 0.0468 0.1644 0.2170 0.1693 0.5945 0.7719 0.1847 0.7038 0.9303 

  a = .14 a = .14 a = .14 a = .39 a = .39 a = .39 a = .59 a = .59 a = .59 

n = 100 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 

JS 0.0636 0.2609 0.2840 0.2209 0.8892 0.9701 0.2314 0.9176 0.9986 

MC 0.0526 0.2613 0.2909 0.2255 0.8926 0.9723 0.2407 0.9226 0.9985 

PB 0.0554 0.2616 0.2996 0.2289 0.8885 0.9720 0.2528 0.9206 0.9982 

BC 0.1044 0.3412 0.3414 0.2916 0.9256 0.9793 0.2814 0.9326 0.9987 

ABC 0.1029 0.3355 0.3410 0.2910 0.9190 0.9776 0.2813 0.9267 0.9987 

Notes: JS = joint-significance test, MC = Monte Carlo sampling method, PB = percentile bootstrap, BC = bias-corrected bootstrap, ABC = accelerated bias-
corrected bootstrap. Bold numbers are Type I error rates significantly above .05, i.e., for which .05 falls below the 95% confidence interval. 
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Table 4. Type I errors uniquely due to one as opposed to the other method as a function of the values of coefficients  and , pair of methods, and sample size in 

the context of a within-participant mediational analysis. 

                      

  
 

a = 0 a = 0 a = .14 a = 0 a = .39 a = 0 a = .59 
  

    b = 0 b = .14 b = 0 b = .39 b = 0 b = .59 b = 0 Sub-Mean Mean 

Comparison n                   

           
JS = 1 & MC = 0 25 2 7 10 21 18 28 36 17.43 

 

 
50 4 16 29 47 32 31 33 27.43 

 

 
100 11 28 26 54 22 14 21 25.14 23.33 

JS = 0 & MC = 1 25 4 8 16 27 4 74 13 20.86 
 

 
50 1 9 59 25 58 75 43 38.57 

 

 
100 3 3 86 41 86 68 69 50.86 36.76 

           
JS = 1 & PB = 0 25 6 11 16 34 57 55 85 37.71 

 

 
50 4 14 22 55 64 35 79 39.00 

 

 
100 10 23 40 41 66 16 56 36.00 37.57 

JS = 0 & PB = 1 25 9 26 36 52 142 109 243 88.14 
 

 
50 10 13 24 53 145 86 218 78.43 

 

 
100 3 7 26 54 136 79 147 64.57 77.05 

           
JS = 1 & BC = 0 25 0 3 1 6 19 11 29 9.86 

 

 
50 1 2 4 4 11 5 20 6.71 

 

 
100 0 3 4 2 15 5 41 10.00 8.86 

JS = 0 & BC = 1 25 55 96 138 256 383 401 518 263.86 
 

 
50 54 107 133 296 444 366 427 261.00 

 

 
100 58 131 189 322 386 243 282 230.14 251.67 

                      

Notes: JS = joint-significance test, MC = Monte Carlo sampling method, PB = percentile bootstrap, BC = bias-corrected bootstrap. A 1 means that the method 

led to the decision of the presence of an indirect effect and a 0 means that the method led to the decision of an absence of indirect effect. For instance, 

when a = 0 and b = 0 and JS = 1 and MC = 0 and n = 50, 2 means that on 2 occasions (out of 10,000) the joint-significance test led to conclude in favor of an 

indirect effect when the Monte Carlo sampling method did not.
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Power. A total of 27 simulations were characterized by the presence of an indirect effect of 

varying magnitude because both coefficients were non-zero. In general, power was somewhat higher 

for the two adjusted bootstrap procedures than for the joint-significance test, the Monte Carlo 

sampling method, and the percentile bootstrap method.  Of these latter three, the power of the 

joint-significance test was indistinguishable from the other two tests at the larger sample sizes.  

Type I Method Inconsistencies. We looked at the relative trustworthiness of the joint-

significance test and the Monte Carlo method, on the one hand, and that of the joint-significance test 

and the two main bootstrap methods, on the other. The two methods in the second cluster  

consistently showed greater power than those in the former. As can be seen in Table 4, the joint-

significance test does slightly better than the Monte Carlo method.  

We next compared inconsistencies in Type I errors between pairs of methods. Because the 

joint-significance test and the percentile bootstrap lead to generally appropriate Type I errors, few 

cases emerge in which these two tests disagree. Still, when this happens, the simulations indicate 

that the joint-significance is generally two times more trustworthy, with an average of 38 cases for 

the joint-significance test and 78 cases for the percentile bootstrap method across the different 

situations that were examined. The pattern is very different when we compare the joint-significance 

test and the bias-corrected bootstrap method. Not surprisingly, because the latter method is more 

liberal, many more situations arise in which this test uniquely leads to a Type I error compared to the 

joint-significance test. Across the simulated situations, the odds that the joint-significance test proves 

more trustworthy are in fact 28 to 1. It is noteworthy that, contrary to what was observed in the case 

of simple mediation, the number of unique Type I errors tends to be larger when it is the 51a  

coefficient that departs from zero (M = 98) than when 62b  does (M = 67). This difference is related 

to the total number of Type I errors.  

The Moderated Mediation Model 
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 Muller et al. (2005) provided the first formal treatment of moderated mediation models (see 

also Edwards & Lambert, 2007; Fairchild & MacKinnon, 2009; Preacher et al., 2007). Consistent with 

the component approach, Muller et al. (2005) argue that moderated mediation is demonstrated 

when a moderator, Z, significantly moderates at least one path in the causal process linking X to Y via 

M and when the remaining unmoderated path is also significantly different from zero (see Muller et 

al., 2005, for a full presentation). In contrast, Hayes (2013, 2015) argues that a single test of a 

product of regression coefficients, the so-called index of moderated mediation, should serve as a 

formal test of moderated mediation. As Hayes (2015) notes, relying on this test allows one to 

disregard the fact that the examined data fail to reveal the presence of a significant interaction 

between any variable in the model and the moderator. In other words, an indirect effect could be 

moderated even if one cannot show significant moderation of either of its components.  

As earlier, we wanted to compare the performance of the component approach and the 

index approach. Because a variety of patterns correspond to a situation of moderated mediation, we 

decided to focus on what is known as first-stage moderated mediation (Edwards & Lambert, 2007). 

In this situation (see Equations 7 and 8), the effect of X on M is moderated by Z, but the partial effect 

of M on Y is unmoderated.  

       (7) 

         (8) 

As Edwards and Lambert (2007) and Preacher et al., (2007) show, the indirect effect in this 

situation corresponds to the product of the conditional effect of X on M from Equation 7 times the 

effect of M on Y from Equation 8, , or equivalently . Because 

quantifies the impact of Z on the indirect of X on Y, Hayes (2015) calls it the index of moderated 

mediation, at least for the first stage (and direct) moderated mediation model. Comparable products 

can be computed for other models (see Hayes, 2015, for a detailed discussion). It should be clear by 

now that the component approach would recommend evaluating the statistical significance of both 

70 71 72 73 7M b a X a Z a XZ e    

80 81 82 8'Y b c X b M e   

71 73 82( )a a Z b 71 82 73 82a b a b Z 73 82a b
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coefficients making up the index, namely and . A moderated, or conditional, indirect effect 

would be supported only when both coefficients are found to be different from zero. We conducted 

simulations to try and clarify the relative performance of various methods relying on one or the other 

approach. 

The simulations. The simulations we conducted compared the performance of the same five 

methods as above in the context of a first stage moderated mediation model. To this end, we relied 

on Equations 7 and 8. Values of X and Z were sampled from a standard normal population and 

centered around the sample means before computing their product. Values of M were generated 

from XZ multiplied by the population path and adding a standard normal error. Values of Y were 

generated using the population path times M and adding a standard normal error. In other 

words, for the sake of the present simulations,  as well as and  were always set at zero, 

meaning that, in the population, only an interaction effect influenced M and no direct effect of X 

affected Y. As before, the standard normal errors were added to produce sampling discrepancy 

between the population parameters and their estimates5.  

To simulate a diverse range of situations, the population parameters and were set to 

be either non-existent, small, medium, or large, i.e., 0, .14, .39, and .59. Given the samples usually 

studied in a majority of psychology fields, we opted for three different sample sizes, namely 50, 100, 

and 200. As before, for each of the 48 combinations of conditions, we generated 10,000 samples. We 

tested for the presence of the conditional indirect effect using the joint-significance test, the Monte 

Carlo sampling method, and three bootstrap resampling methods, namely the percentile bootstrap, 

the bias-corrected bootstrap, and the accelerated bias-corrected bootstrap. 

Type I errors.  Out of the 48 situations examined, 21 were defined by an absence of a so-

called conditional indirect effect because at least one of the two coefficients,  and , was zero. 

Table 5 shows the numbers of Type I errors for each of the five methods. It can be seen that, 

regardless of sample size and parameter values, the prevalence of Type I errors for the joint-

73a 82b

73a

82b

81'c 71a 72a

73a 82b

73a 82b
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significance test significantly exceeds .05 only once. This pattern is not true for the four index 

methods. When one of the parameter values was either moderate or large and the other one was 

zero, the bias-corrected and the adjusted bias-corrected bootstrap procedures yielded empirical 

Type I error rates that were almost always larger than .05. The other two index methods (Monte 

Carlo and percentile bootstrap) yielded more appropriate Type I error rates, but even these were 

sometimes above the .05 value. In sum, only the joint-significance test showed essentially no 

inflation in Type I error rates. 

Power. In total, 27 situations were characterized by the presence of an indirect effect of 

varying magnitude because both coefficients were non-zero (see Table 5). Again, two clusters of 

methods can be distinguished, with the joint-significance test, the Monte Carlo sampling method, 

and the percentile bootstrap method, on the one hand, and the two remaining methods, on the 

other. The proportions of positive decisions suggest greater power for the methods in the latter 

cluster. In contrast, the three other methods are more conservative. The percentile bootstrap 

method proves slightly more powerful than the joint-significance test and the Monte Carlo sampling 

method.  

Type I Method Inconsistencies. We compared the trustworthiness of the joint-significance method 

to that of the two main bootstrap methods. As can be seen in Table 6, the joint-significance test 

performs slightly better than the Monte Carlo method. Also, because the joint-significance test and 

the percentile bootstrap lead to a limited number of erroneous decisions that an indirect effect is 

present when in fact there is none, a small number of cases emerge whereby one of these two tests 

errs when the other does not. However, when this happens, the joint-significance test is globally 

more trustworthy, with an average of 74 cases for the joint-significance test and 95 cases for the 

percentile bootstrap method across the different situations that were examined in the simulations. 

The pattern is very different when we compare the joint-significance test and the bias-corrected 

bootstrap method. Because the latter method is more liberal, many more situations arise in which 
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this test uniquely leads to a Type I error compared to the joint-significance test. The odds that the 

joint-significance test proves more trustworthy are 6 to 1 across the simulated situations. 



RUNNING HEAD: TESTING INDIRECT EFFECTS  30 
 

Table 5. Type I errors (left panel) and power (right panel) for the moderated mediation analysis as a function of the population values of coefficients and 

, sample size, and method. 

 

 

Type 1 Error 

 
a = 0 a = 0 a = .14 a = 0 a = .39 a = 0 a = .59 

n = 50 b = 0 b = .14 b = 0 b = .39 b = 0 b = .59 b = 0 

JS 0.0035 0.0080 0.0069 0.0382 0.0352 0.0475 0.0466 

MC 0.0029 0.0066 0.0053 0.0395 0.0334 0.0534 0.0503 

PB 0.0027 0.0070 0.0055 0.0386 0.0323 0.0510 0.0510 

BC 0.0068 0.0158 0.0119 0.0618 0.0544 0.0703 0.0734 

ABC 0.0075 0.0188 0.0132 0.0688 0.0485 0.0767 0.0623 

  a = 0 a = 0 a = .14 a = 0 a = .39 a = 0 a = .59 

n = 100 b = 0 b = .14 b = 0 b = .39 b = 0 b = .59 b = 0 

JS 0.0018 0.0140 0.0134 0.0451 0.0479 0.0497 0.0509 

MC 0.0011 0.0106 0.0107 0.0467 0.0493 0.0537 0.0537 

PB 0.0017 0.0125 0.0099 0.0537 0.0516 0.0560 0.0607 

BC 0.0054 0.0294 0.0253 0.0783 0.0788 0.0683 0.0734 

ABC 0.0059 0.0300 0.0259 0.0810 0.0641 0.0737 0.0612 

  a = 0 a = 0 a = .14 a = 0 a = .39 a = 0 a = .59 

n = 200 b = 0 b = .14 b = 0 b = .39 b = 0 b = .59 b = 0 

JS 0.0022 0.0230 0.0257 0.0537 0.0548 0.0494 0.0518 

MC 0.0012 0.0189 0.0205 0.0549 0.0581 0.0513 0.0556 

PB 0.0019 0.0219 0.0209 0.0625 0.0590 0.0575 0.0574 

BC 0.0056 0.0454 0.0453 0.0777 0.0746 0.0628 0.0637 

ABC 0.0064 0.0472 0.0425 0.0782 0.0596 0.0679 0.0526 

 

     Power     

 
a = .14 a = .14 a = .14 a = .39 a = .39 a  = .39 a = .59 a = .59 a = .59 

n = 50 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 b = .14 B = .39 b = .59 

JS 0.0245 0.1096 0.1463 0.1192 0.5382 0.6224 0.1851 0.7915 0.9150 

MC 0.0228 0.1104 0.1587 0.1208 0.5417 0.6751 0.1937 0.7982 0.9229 

PB 0.0196 0.0979 0.1374 0.1070 0.4797 0.6110 0.1846 0.7538 0.8851 

BC 0.0366 0.1447 0.1742 0.1549 0.5719 0.6804 0.2339 0.8182 0.9155 

ABC 0.0385 0.1489 0.1788 0.1393 0.5300 0.6421 0.1965 0.7568 0.8860 

  a = .14 a = .14 a = .14 a = .39 a = .39 a  = .39 a = .59 a = .59 a = .59 

n = 100 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 b = .14 B = .39 b = .59 

JS 0.0712 0.2590 0.2607 0.2946 0.9258 0.9394 0.3480 0.9884 0.9981 

MC 0.0627 0.2611 0.2719 0.2970 0.9282 0.9429 0.3596 0.9890 0.9983 

PB 0.0644 0.2535 0.2664 0.2913 0.9127 0.9282 0.3642 0.9863 0.9971 

BC 0.1125 0.3180 0.2978 0.3627 0.9409 0.9435 0.3951 0.9902 0.9979 

ABC 0.1085 0.3133 0.2938 0.3227 0.9180 0.9280 0.3478 0.9829 0.9958 

  a = .14 a = .14 a = .14 a = .39 a = .39 a  = .39 a = .59 a = .59 a = .59 

n = 200 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 b = .14 b = .39 b = .59 

JS 0.2461 0.4849 0.4906 0.5618 0.9994 0.9999 0.6154 1.0000 1.0000 

MC 0.2239 0.4940 0.5002 0.5688 0.9994 0.9991 0.6229 1.0000 1.0000 

PB 0.2214 0.4876 0.4933 0.5687 0.9989 0.9984 0.6234 0.9999 1.0000 

BC 0.3245 0.5132 0.5133 0.6119 0.9993 0.9987 0.6400 0.9999 1.0000 

ABC 0.3042 0.5163 0.5038 0.5630 0.9986 0.9980 0.5876 0.9999 1.0000 

Notes: JS = joint-significance test, MC = Monte Carlo sampling method, PB = percentile bootstrap, BC = bias-corrected bootstrap, ABC = accelerated bias-
corrected bootstrap. Bold numbers are Type I error rates significantly above .05, i.e., for which .05 falls below the 95% confidence interval. 
  

73a

82b
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Table 6. Type I errors uniquely due to one as opposed to the other method as a function of the values of coefficients and , pair of methods, and 

sample size in the context of a moderated mediation analysis. 

                      

  
a = 0 a = 0 a =.14 a = 0 a =.39 a = 0 a =.59 

  
    b = 0 b =.14 b = 0 b =.39 b = 0 b =.59 b = 0 Sub-Mean Mean 

Comparison n                   

           

JS = 1 & MC = 0 50 6 18 21 44 51 18 26 26.29 
 

 
100 7 44 34 36 39 20 24 29.14 

 

 
200 10 55 61 35 31 31 33 36.57 30.67 

JS = 0 & MC = 1 50 12 4 5 57 33 77 63 35.86 
 

 
100 0 10 7 52 53 60 53 33.57 

 

 
200 0 14 9 47 64 50 71 36.43 35.29 

           
JS = 1 & PB = 0 50 20 38 31 145 109 155 129 89.57 

 

 
100 9 57 59 94 92 120 50 68.71 

 

 
200 9 70 80 82 61 88 50 62.86 73.71 

JS = 0 & PB = 1 50 12 28 17 149 80 190 169 92.14 
 

 
100 8 42 24 180 129 183 148 102.00 

 

 
200 6 59 32 170 103 169 106 92.14 95.43 

           
JS = 1 & BC = 0 50 8 20 14 78 58 81 64 46.14 

 

 
100 3 15 14 31 22 78 28 27.29 

 

 
200 2 14 13 36 23 67 37 27.43 33.62 

JS = 0 & BC = 1 50 41 98 64 314 250 309 332 201.14 
 

 
100 39 169 133 363 331 265 253 221.86 

 

 
200 36 238 209 276 221 201 156 191.00 204.67 

                      

Notes: JS = joint-significance test, MC = Monte Carlo sampling method, PB = percentile bootstrap, BC = bias-corrected bootstrap. A 1 means that the method 

led to the decision of the presence of an indirect effect and a 0 means that the method led to the decision of an absence of indirect effect. For instance, 

when a = 0 and b = 0 and JS = 1 and MC = 0 and n = 50, 6 means that on 6 occasions (out of 10,000) the joint-significance test led to conclude in favor of an 

indirect effect when the Monte Carlo sampling method did not.

73a 82b
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To sum up, the simulations show that the pattern of the Type I errors, power, and 

inconsistencies is the same as the one observed for the simulations using the simple mediation 

model. It thus appears that here too claiming moderated mediation is safer, in terms of avoiding 

Type I errors, when relying on the component approach rather than the index approach. 

Recommendations  

Both recent recommendations and practice for those claiming mediation have been to rely 

on a single mediation index and test whether its bootstrap-based confidence interval excludes zero 

(Hayes, 2013). The wide availability of stand-alone or software-embedded macros has made this 

strategy easy and appealing. The simulations we conducted for simple mediation, within-participant 

mediation, and moderated mediation demonstrate the misconceptions and dangers of relying solely 

on such an approach. 

One misconception is that a component approach, which requires that both of two 

coefficients be significant to demonstrate mediation, leads to an inflation of Type I errors. This is 

simply not the case since the requirement is that they each be significant. In fact, our simulations 

confirm that the joint-significance test is the only one holding alpha at appropriate levels with only 

one instance in which the empirical Type I error rate exceeded 5% (across 63 studied situations). The 

most frequently used index method (i.e., the bias-corrected bootstrap, which was until recently the 

default approach in available macros) has substantially inflated alpha levels, particularly in cases 

where one of the two components of the indirect effect is in fact zero and the other is relatively 

large. As for power, our simulations reveal that the joint-significance test performs as well as other 

methods, except for the more liberal bias-corrected and accelerated bias-corrected bootstrap 

methods. In light of these findings, the joint-significance method constitutes the best compromise 

between Type I error rate and power and ought to be the method of choice (see Table 7). 

 

Table 7. Type I error and power associated with the various methods 
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              Type I error    Power 

             

Joint-significance test1   Very good performance  Good performance 

Monte Carlo    Good performance  Good performance 

Percentile Bootstrap   Good performance  Good performance 

Bias-corrected Bootstrap  Bad performance²  Very good performance 

Accelerated Bias-corrected Bootstrap Bad performance²  Very good performance 

             
1 The joint-significance test offers the best balance between Type I error rate and power. 
² The Type I error rate is substantially inflated when on component path of the indirect path is in fact 
zero and the other component path is large. 

 

Reliance on index tests unfortunately means that researchers may not even look at, let alone 

test, the components of the indirect effect. Indeed, our review of recently published reports of 

mediation shows that researchers very often fail to even report the magnitude of the indirect effect 

components when relying on index tests of its significance. The failure to critically examine these 

components, in our opinion, has possibly led to unwarranted claims of mediation that may not be 

replicable. This is particularly likely to be the case when one of the two component effects is 

especially large. Then that effect may by itself lead to a relatively large and significant mediation 

index. In simple mediation, this is especially likely to happen either when the mediator is but a 

manipulation check (leading to a large 21a  effect) or when it is essentially an alternative measure of 

the dependent variable (leading to a large 32b  effect). In both situations, claims of causal mediation 

are dubious.  

In a thoughtful contribution, Fiedler, Schott, and Meiser (2011) similarly stress the difficulties 

inherent to these two situations. These authors take the example of a researcher who wants to 

conduct a study inspired by the elaboration likelihood model showing that the quality of arguments 

(the independent variable X) affects attitude change (the dependent variable Y) through recipients’ 
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cognitive responses (the mediator M). Although the researcher’s mediational model may come as 

entirely warranted on theoretical grounds and can in fact be borne out in the collected data, a closer 

consideration of the individual components may shed interesting light on the viability of the 

hypothesized causal model. Indeed, one could argue that the mediator, M, is simply a second 

measure of the resulting attitude, Y. In other words, the supporting thoughts and counter-thoughts 

simply represent an alternative measure of the attitude change induced by the attitude strength 

manipulation. Because in this case both M and Y are interchangeable, and indeed highly correlated, 

consequences of X, the b path would be highly significant. Only looking at the significant indirect 

effect would likely be questionable in this situation. Alternatively, it could also be that M is simply 

another reflection of the independent variable X. After all, one way to come up with a strong versus 

weak message is to pretest the thoughts triggered by a series of arguments and then create the two 

messages accordingly. From this perspective, the cognitive responses are but a reflection of the same 

construct as the one underlying X. This situation would make for a high a component and again lead 

to a highly significant indirect effect, creating the same difficulty with respect to the causal claims of 

the researcher. 

 

Table 8. Recommendations for the analysis of mediation 

             

Step 1  Examine the component paths by means of joint-significance test 

If all component paths of the indirect effect are significant, then conclude in favor of 

 mediation and proceed 

Step 2  Examine the magnitude and confidence interval of indirect effect by means of  

   any resampling method (preferably Monte Carlo resampling method) 
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In light of the above, our recommendations are straightforward. Claims of mediation should 

properly be guided by the component approach and be based on joint-significance tests to avoid 

spurious mediation claims. At the same time, given the presence of mediation, one should then 

follow up with appropriate examinations of the magnitude of the effect, using resampling methods 

to examine the confidence interval of the overall indirect effect. With the exception of the 

accelerated bias-corrected (see Biesanz et al., 2010) and bias-corrected (the present simulations) 

methods that are decidedly too liberal, any resampling method would seemingly do the job. In light 

of our simulations for simple mediation, within-participant mediation, and moderated mediation, our 

preference is for the Monte Carlo method, since it is least likely to yield inconsistencies with the 

joint-significance test. 

An illustrative example and a dedicated package. Let us illustrate the recommended analytic 

strategy using the simple mediation example presented in the introduction (Ho et al., 2017). 

Remember that participants were found to report more hypodescent when informed that Black-

White biracials do versus do not experience discrimination, 11c  = 0.17, p = .04. In line with the 

present recommendations, one would first want to test the significance of the 21a  path linking the 

independent variable to the mediator and the significance of the 32b  path linking the mediator to 

the dependent variable. As predicted by the author, the high discrimination condition increased the 

perception of linked fate, 21a  = 0.77, p < .0001, and the perception of linked fate led to the more 

hypodescent, 32b  = 0.19, p < .001. Having established the presence of an indirect effect by means of 

the significance of both individual components (i.e., the joint-significance test), one would then 

proceed with Monte Carlo resampling to compute the confidence interval for the indirect effect, the 

product of these two estimated components. To do so, one would rely on the value of these two 

coefficients along with their respective standard errors, sea = 0.085 and seb = 0.033. Using 10000 

samples, the mean value of the indirect effect equals 0.14, which corresponds to the difference 
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between 11c  and 31'c , 0.17 and 0.03, respectively, with a 95% confidence interval ranging from 0.09 

to 0.21.  

These analyses can be conducted very easily with the JSmediation R package. After creating a 

contrast code for the condition variable (using -0.5 and +0.5 for the Low discrimination and High 

discrimination conditions, respectively, thanks to the build_contrast function), one would use the 

mdt_simple function, that is, the function for simple mediation. Using this function provides a direct 

test of the 11c , 31'c , 21a , and 32b  paths. Next, using the add_index function gives access to a point 

estimate for the ab indirect effect as well as the Monte Carlo 95% confidence. 

Issues of power. In this paper, we compared the power performance of various methods. 

Our simulations revealed that the joint-significance test proved quite satisfactory compared to other 

methods testing for the presence of an indirect effect whether in a situation of simple mediation, of 

within-participant mediation or moderated mediation. In general, researchers should indeed 

consider the level of power they would like to secure before they collect the data. Interested readers 

can definitely build upon several recent contributions dealing with this topic to help make their 

decision in this respect (Fritz & MacKinnon, 2007; Kenny & Judd, 2014; Loeys, Moerkerke, & 

Vansteelandt, 2014; Preacher & Kelley, 2011). 

Assumptions of normality. One potential limitation of the joint-significance test we are 

recommending is that it relies on normal distribution theory assumptions, whereas the tests of the 

21 32a b  index rely instead on nonparametric methods that may perform more adequately in the 

presence of outliers and other violations of the assumption that residuals in the mediation models 

have normal distributions. The original justification for using nonparametric methods for testing the 

21 32a b  index is that it is known that the product of coefficients does not have a normal sampling 

distribution. This is true even when normal distribution assumptions can be met for the models’ 

residual errors. Thus, index approaches were not originally justified based on their ability to deal 

more appropriately with ‘nasty and unruly data’ (McClelland, 2015). 
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We would like to stress that the presence of data (or more precisely models’ residuals) that 

violate normal distribution theory assumptions is an issue that is orthogonal to whether a 

component or an index approach is used to test for mediation. At the same time, a common intuition 

here is that nonparametric approaches such as bootstrapping are likely to be more appropriate than 

using standard errors that depend on normal distribution assumptions in order to test null 

hypotheses on the individual components. Accordingly, we would recommend that bootstrapping 

approaches be used in examining and evaluating the mediation components individually when it is 

known that model residuals are likely to violate normal distribution assumptions. Even in such cases, 

we would recommend that confidence intervals for the individual component coefficients be 

examined and reported rather than reporting only the ab indirect effect and its associated bootstrap-

derived confidence interval. 

As we mentioned earlier, Biesanz et al. (2010) also investigated the robustness of various 

mediation methods, among which were the joint-significance test, the percentile bootstrap method, 

and the accelerated bias-corrected bootstrap method, in the presence of non-normal residuals. 

Interestingly, their simulations reveal that the accelerated bias-corrected bootstrap method (and, we 

would venture in light of our own simulations, the bias-corrected bootstrap method as well) displays 

excessive Type I error rates, even with samples as large as N = 500. Both the joint-significance test 

and the percentile bootstrap perform satisfactorily, with a small advantage to the former. In short, 

based on Biesanz et al.’s (2010) efforts, it appears that, even without any correction for non-

normality, the component approach constitutes a sound analytic strategy to evaluate the presence of 

an indirect effect. 

Concluding Thoughts 

In the end, claims for mediation, whether in the simple case, in the within-participant case, 

or in the moderated case, all depend on the plausibility of the entirety of the mediational model. 

Such claims necessarily involve a close inspection of the estimated coefficients of the model. 

Examining and testing only a single index of mediation, the indirect effect, risks not only committing 
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Type I errors, but also failing to understand what the underlying model really signifies. Only after the 

individual components of the indirect effect are shown to support researchers’ claims, should one 

use resampling methods to compute a confidence interval for the indirect effect. The tests of the 

individual components are used to argue for the significance of the indirect effect. The confidence 

interval reveals its magnitude. 
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Footnotes 

1. As an illustration of such concerns is the recent call in favor of using .005 rather than .05 as the 

critical threshold for claims of new discoveries (Benjamin et al., 2017; but see Krueger & Heck, 2017) 

2. If the OLS assumptions are violated for any of the paths considered in the joint-significance 

approach, one would need to consider alternative means of checking for significance, with bootstrap 

being one possible strategy.  

3. All simulations presented in this paper were computed by means of dedicated programs using R 

version 3.1.0 (R Development Core Team, 2014). The programs are available from the authors upon 

request. 

4. The distribution of the product method, discussed in MacKinnon, Fritz, Lockwood, and Williams 

(2007) can be seen as an alternative to the Monte Carlo approach. Here, we only relied on the latter 

as these methods are largely interchangeable and rarely produce different inferences (Hayes & 

Scharkow, 2013). 

5. As can be seen in Equation 8, the stage 2 moderation is zero in the present simulations. This 

corresponds to the situation examined by Hayes (2017; see also Preacher et al., 2007). It should be 

noted that in any given dataset, one does not know whether the other stage moderation is truly 

zero. Therefore, contrary to what is done in the PROCESS macro, we recommend estimating both 

stage moderations, in line with Muller et al. (2005). As detailed in the Supplemental Material, the 

JSmediation package is consistent with this full model approach. 
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Supplemental Material 

Using the JSmediation package to test mediation in R 

 

In order to help readers apply the analytic strategy presented in this article, we 

developed the JSmediation package in R. The aim of this package is to provide a set of 

functions that rely on a consistent syntax in order to conduct joint-significance tests (i.e., mdt_* 

functions). Here we show the details of how to use this package to test simple mediation, within-

participant mediation, and moderated mediation. We also offer an overview of how to use some 

of the other functions of this package.  

First, to use the JSmediation package, one needs to download the package. Because the 

JSmediation package is not yet available on CRAN (the formal R package platform), readers 

cannot at this point use the regular R syntax needed to download a package from CRAN (i.e., 

install.packages("JSmediation")). Note that the JSmediation package will be soon 

submitted to CRAN, so this syntax will work eventually once the package is accepted. For now, 

readers will need to download it from GitHub instead. This can be done easily by using an R 

package (devtools) that enables one to download R packages from GitHub instead of from 

CRAN. To download this package, one can use the following R syntax: 

> install.packages("devtools") 

Note that the > symbol at the start of each line indicates the input prompt and is not an actual 

command entered by the user. After the devtools package is installed, one can download the 

JSmediation package with the following command: 

> devtools::install_github("cedricbatailler/JSmediation", build_vignettes = 

TRUE) 

The devtools:: command simply allows the use of the function install_github from this 

package without loading the devtools package for the whole R session. Then the 
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install_github("cedricbatailler/JSmediation", build_vignettes = TRUE) 

command tells R to download the JSmediation package from GitHub under Cédric Batailler’s 

GitHub profile. As with all R packages, one then needs to load the JSmediation package by 

using the following command: 

> library(JSmediation) 

Mediation models 

Simple mediation 

The JSmediation package contains a data set (called "ho_et_al") that can be used as 

an example. This data set comes from Ho et al. (2017; Expt. 3) and contains a number of 

variables that include the independent variable discrimination (labelled “condition”), the 

dependent variable "hypodescent", and the mediator "linkedfate". Because condition is 

coded "Low discrimination" and "High discrimination", the first step is to create a 

contrast code for this variable ("condition_c"). To do so, we provide the build_contrast 

function. It can be used as follows:  

> ho_et_al$condition_c <- build_contrast(ho_et_al$condition, "Low 

discrimination", "High discrimination") 

This function creates a new variable ("condition_c") with -0.5 for the "Low 

discrimination" condition and 0.5 for the "High discrimination" condition. Now, we can 

use the mdt_simple (which stands for mediation simple; there are two other functions of this 

kind—mdt_within and mdt_moderated—for within-participant mediation and moderated 

mediation, respectively).  

> my_model <- mdt_simple(data = ho_et_al, IV = condition_c, DV = 

hypodescent, M = linkedfate) 
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In this function, as is the case with the other  mdt_* functions, one designates the data frame to 

be used (data = ), the independent or X variable (IV = ), the dependent or Y variable (DV = ), 

and the mediator or M variable (M = ). 

Then, to view the results, we can enter the name of the fitted object as a command (here 

"my_model"). 

Test of mediation (simple mediation) 

============================================== 

Variables: 

- IV: condition_c  

- DV: hypodescent  

- M: linkedfate  

 

Paths: 

====  ==============  =====  ======================= 

Path  Point estimate     SE  APA                     

====  ==============  =====  ======================= 

a              0.772  0.085  t(822) = 9.10, p < .001 

b              0.187  0.033  t(821) = 5.75, p < .001 

c              0.171  0.081  t(822) = 2.13, p = .034 

c'             0.027  0.083  t(821) = 0.33, p = .742 

====  ==============  =====  ======================= 

 

Indirect effect index: 

Indirect effect index is not computed by default. 

Please use add_index() to compute it. 

 

Fitted models: 

- X -> Y  

- X -> M  

- X + M -> Y  

Figure A1. Output for the mdt_simple function 

As can be seen in Figure A1, at the top of the output, the mdt_simple function provides 

estimated parameter values and a summary of all the relevant tests (i.e., a, b, c, and c’; below we 

show how to access the details of the regression models underlying these tests), presented in 

American Psychological Association (APA) format, which the user could use directly in a 

manuscript. In line with the results presented by Ho et al. (2017), the c, a, and b paths are all 
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significant. The a and b paths being both significant, as required by the joint-significance test, 

one can conclude that there is a significant indirect effect. If, as we recommend, one also wishes 

to estimate the Monte Carlo 95% confidence interval for this indirect effect, one can use the 

add_index function. As shown in the mdt_simple output, this confidence interval is not 

displayed by default. Using the add_index function adds this confidence interval (with 5.000 

iterations by default, which can be changed with the "iter" argument) to the output. 

> add_index(my_model) 

Using this function produces an output similar to the one presented in Figure A1, but adds the 

point estimate and Monte Carlo confidence interval (see Figure A2). 

Test of mediation (simple mediation) 

============================================== 

Variables: 

- IV: condition_c  

- DV: hypodescent  

- M: linkedfate  

 

Paths: 

====  ==============  =====  ======================= 

Path  Point estimate     SE  APA                     

====  ==============  =====  ======================= 

a              0.772  0.085  t(822) = 9.10, p < .001 

b              0.187  0.033  t(821) = 5.75, p < .001 

c              0.171  0.081  t(822) = 2.13, p = .034 

c'             0.027  0.083  t(821) = 0.33, p = .742 

====  ==============  =====  ======================= 

 

Indirect effect index: 

- type: Indirect effect  

- point estimate: 0.144  

- confidence interval: 

  - method: Monte Carlo (5000 iterations) 

  - alpha: 0.05  

  - CI: [0.0906; 0.208] 

 

Fitted models: 

- X -> Y  

- X -> M  

- X + M -> Y  
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Figure A2. Output for simple mediation when using the add_index function 

As can be seen in Figure A2, the point estimate (i.e., the product ab) equals 0.144 with a 95% 

confidence interval ranging from 0.09 to 0.21. 

Within-participant mediation 

In order to illustrate a within-participant mediation design, we rely on the same example 

used by Montoya and Hayes (2017), namely the first experiment reported by Dohle and Siegrist 

(2014). These authors were interested in the effect of drug name complexity on willingness to 

buy. They tested the hypothesis that perceived hazardousness of the drug mediates the 

relationship between name complexity and willingness to buy. To do so, they used a within-

participant design as it is closer to a real-life situation where an individual can choose between 

several drugs. The dohle_siegrist data set contains willingness to buy (i.e., the dependent 

variable) and judgments of perceived hazardousness (i.e., the mediator) for both simple and 

complex name drugs. Since this is a within-participant design, each sampled unit (i.e., the 

participant) has two measures of the dependent variable and two measures of the mediator, one 

in each within-participant condition. The data may come either in long-format, where each 

sampled unit or participant has two rows of data, one for each condition, or in wide-format 

where each sampled unit has one row of data with all four measured variables We first cover the 

long format which allow the use of the mdt_within function using the same syntax as for the 

other mdt_* functions. We then present the mdt_within_w that allows users to use a wide-

format data frame as input.. 

In a long-format data frame, each sampled unit (the participants)—called here the 

grouping variable—has two rows, one for the first within-participant condition ("complex" in 

our example) and one for the second within-participant condition ("simple" in our example). 

In addition, each row has one observation for the DV (the hazardousness column in Figure A3) 

and one observation for the mediator (the willingness column). 
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  participants    name hazardousness willingness 

1            1 complex           4.4         3.6 

2            1  simple           3.8         4.4 

3            2 complex           5.2         2.0 

4            2  simple           4.2         4.2 

5            3 complex           4.0         4.0 

6            3  simple           4.0         4.0 

Figure A3. Preview of the dohle_siegrist data set. 

 As mentioned earlier, with a long-format data set, one would use the mdt_within 

function. This function is syntax-consistent with mdt_simple (as well as with mdt_moderated), 

comprising a data, an X, a Y, and a M argument. The only difference with mdt_simple is that 

users need to specify a grouping argument which is the variable containing the information 

identifying the sampled unit (e.g., participant number). To conduct the joint-significantce test 

with the dohle_siegrist data set, one would therefore use the following command: 

> mdt_within(data = dohle_siegrist, IV = name, DV = willingness, M = 

hazardousness, grouping = participant) 

When dealing with within-participant mediation, there is no need to create a contrast-

coded variable, as was the case with simple mediation. JSmediation automatically computes 

difference scores. As can be seen in the output presented in Figure A4, this difference is the 

simple condition minus the complex condition, both for the DV or the mediator. It follows that a 

significant positive c path to (i.e., the total effect) can be interpreted as a higher level of 

willingness to buy drugs with simple as opposed to complex names. In contrast, a significant 

negative a path can be interpreted as a lower level of perceived hazardousness for drugs with 

simple compared to complex names. Finally, because the effect of name complexity on perceived 

hazardousness is negative, a significant negative b path means that as this effect becomes less 

negative (i.e., it increases in relative terms), the effect of name complexity on willingness to buy 

decreases. Importantly, because a and b are jointly significant, we can conclude in favor of an 

indirect effect. Finally, as with the mdt_simple function, one can create an R object with the 
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mdt_within function (e.g., "my_model") and then use the add_index function to compute the 

Monte Carlo 95% confidence interval for this indirect effect.  

Test of mediation (within-participant mediation) 

================================================= 

Variables: 

- IV: name (difference: simple - complex) 

- DV: willingness  

- M: hazardousness  

 

Paths: 

====  ==============  =====  ====================== 

Path  Point estimate     SE  APA                    

====  ==============  =====  ====================== 

a             -0.800  0.258  t(21) = 3.10, p = .005 

b             -0.598  0.113  t(19) = 5.29, p < .001 

c              0.564  0.193  t(21) = 2.92, p = .008 

c'             0.085  0.158  t(19) = 0.54, p = .596 

====  ==============  =====  ====================== 

 

Indirect effect index: 

Indirect effect index is not computed by default. 

Please use add_index() to compute it. 

 

Fitted models: 

- 1 -> DV_diff  

- 1 -> M_diff  

- 1 + M_diff + M_mean -> DV_diff 

Figure A4. Output for mdt_within function. 

In the within-participant design, researchers might alternatively use what is known as 

the wide format for their data. Such a format does not allow one to use the mdt_within 

function. Rather, to conduct within-participant mediation with wide format, the JSmediation 

package provides the mdt_within_wide function. Again, note that this function is not syntax-

consistent with mdt_simple and other mdt_* functions and should be considered as a 

convenience function.  

In a wide format data frame (the dohle_siegrist_wide data set being an example), 

there is only one row for each sampled unit (e.g., each participant) and four columns: two for the 
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DV (one for each condition of the IV, namely, willingness_c and willingness_s respectively 

for the complex and simple conditions) and two for the mediator (hazardousness_c and 

hazardousness_s respectively for the complex and simple conditions; see Figure A5).  

  participants hazardousness_c hazardousness_s willingness_c willingness_s 

1            1             4.4             3.8           3.6           4.4 

2           10             4.6             3.2           3.8           4.6 

3           11             4.0             4.2           5.0           4.8 

4           12             5.6             4.4           1.6           2.8 

5           13             4.8             3.6           1.2           2.0 

6           14             5.4             7.0           1.0           1.0 

Figure A5. First rows of the wide format dohle_siegrist_wide data set. 

 

In such a situation, one could use the following commands to test the within-participant 

mediation: 

> my_model <- mdt_within_wide(data = dohle_siegrist_wide, DV_A = 

willingness_s, DV_B = willingness_c, M_A = hazardousness_s, M_B = 

hazardousness_c) 

> add_index(my_model) 

Apart from the difference in terms of arguments, the mdt_within_wide function can be used 

the same way one uses the mdt_within function. 

Moderated mediation 

JSmediation package also offers the mdt_moderated function, which conducts a joint-

significance test for moderated mediation models. To illustrate the use of this function, we 

return to the data set from Ho et al. (2017). These authors wanted to test whether the mediation 

from discrimination condition to hypodescent through linked fate was moderated by SDO. More 

precisely, the authors predicted that the effect of discrimination condition on linked fate should 
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be stronger for participants with low SDO scores, meaning that the indirect effect would be 

stronger for low SDO participant. This situation corresponds to a stage 1 moderated mediation.  

To conduct a joint-significance test of for a moderated mediation, the IV, the mediator, 

and the moderator need to be either contrast-coded or centered. As before, we handle this step 

by using the build_contrast function for dichotomous variables and the base R scale 

function to mean-deviate the continuous variables:  

> ho_et_al$condition_c <- build_contrast(ho_et_al$condition, 

                                        "Low discrimination", 

                                        "High discrimination") 

> ho_et_al$linkedfate_c <- scale(ho_et_al$linkedfate, scale = FALSE) 

> ho_et_al$sdo_c <- scale(ho_et_al$sdo, scale = FALSE) 

If the user forgets to contrast-code or to center some variables, the output will produce a 

warning message. 

After recoding the variables, one can use the following command to conduct the joint-

significance test of the moderated mediation hypothesis: 

> moderated_model <- mdt_moderated(data = ho_et_al, IV = condition_c, DV = 

hypodescent, M = linkedfate_c, Mod = sdo_c) 

 With moderated mediation models, the path that is expected to be moderated depends 

on the specific hypothesis being tested. In addition, because stage 1 and stage 2 moderated 

mediation models rely on the same underlying linear model (see Muller et al., 2005), the 

mdt_moderated output will contain paths that can be irrelevant for the hypothesis at hand. In 

their experiment, Ho et al. (2017) aimed to test a stage 1 moderated mediation. In this context, 

the relevant paths are the a*Mod path (i.e., the discrimination condition by SDO interaction) and 

the b path (i.e., the linked fate effect on hypodescent). As we can see in the output (see Figure 
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A6), these two paths are significant, meaning that the joint-significance test for this moderated 

mediation hypothesis is significant. 

Test of mediation (moderated mediation) 

============================================== 

Variables: 

- IV: condition_c  

- DV: hypodescent  

- M: linkedfate_c  

- Mod: sdo_c  

 

Paths: 

========  ==============  =====  ======================= 

Path      Point estimate     SE  APA                     

========  ==============  =====  ======================= 

a                  0.723  0.080  t(820) = 9.01, p < .001 

a * Mod           -0.323  0.076  t(820) = 4.25, p < .001 

b                  0.127  0.034  t(818) = 3.75, p < .001 

b * Mod           -0.049  0.031  t(818) = 1.57, p = .117 

c                  0.131  0.078  t(820) = 1.67, p = .095 

c * Mod           -0.035  0.074  t(820) = 0.47, p = .640 

c'                 0.021  0.082  t(818) = 0.25, p = .800 

c' * Mod           0.035  0.077  t(818) = 0.46, p = .645 

========  ==============  =====  ======================= 

 

Indirect effect index: 

Indirect effect index is not computed by default. 

Please use add_index() to compute it. 

 

Fitted models: 

- X * Mod -> Y  

- X * Mod -> M  

- (X + M) * Mod -> Y  

Figure A6. Output for the mdt_moderated function 

Although the mdt_moderated output has the same structure as the one for mdt_simple 

and mdt_within, it contains more information, namely the test of moderation of each of the a 

(already mentioned), b, c, and c’ paths. This output structure lends itself to a consideration of 

alternative predictions. For instance, predicting a stage 2 moderated mediation—namely 

whether discrimination condition has an effect on linked fate and whether the effect of linked 

fate on hypodescent is moderated by SDO— would require testing the a and b*Mod paths. 
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As with simple mediation and within-participant mediation, one can use the add_index 

function to compute the indirect effect index associated with our stage 1 moderated mediation 

hypothesis. Because moderated mediation can take two forms (stage 1 or stage 2), this function 

includes a new stage argument that needs to be used to specify whether we want to compute 

the index for a stage 1 or a stage 2 moderated mediation model.  

> add_index(moderated_model, stage = 1) 

As for the other two types of mediation, this command provides a Monte Carlo estimation of the 

proper index1 (see Figure A7). 

Indirect effect index: 

 
- type: Mediated moderation index (First stage)  
- point estimate: -0.041  
- confidence interval: 
  - method: Monte Carlo (5000 iterations) 
  - alpha: 0.05  
  - CI: [-0.0728; -0.0165] 

Figure A7. Indirect effect index for a stage 1 moderated mediation (excerpt of the output). 

Miscellaneous  

 The JSmediation package comes with a series of functions that allow the manipulation 

of mediation_model objects. Behind the scenes, when one uses a function of the mdt_* family 

(i.e., mdt_simple, mdt_within, or mdt_moderated), R fits the relevant linear models to 

conduct a joint-significance test. If one wants to a specific model, however, one can use the 

                                                           
1
 Rather than assuming that either the effect of the IV on the mediator or the effect of the 

mediator on the DV is potentially moderated (Hayes, 2015), the JSpackage relies on the full-

model specification to compute the ab point estimate and the corresponding Monte Carlo 

confidence interval, as recommended by Muller et al. (2005). This explains the slight difference 

between the ab point estimate computed by JSmediation for Ho et al.’ s (2017) data (0.041) 

compared to the one that was reported by these authors (0.06). 
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extract_models function. This function returns an lm object on which users can apply usual lm 

functions. For instance, after creating the object my_model with the mdt_simple function (see 

the Simple mediation section above), one could extract the model testing the total effect of X on 

Y using the following command: 

> model2 <- extract_models(my_model, index = "X -> M") 

Note that instead of extract_models(my_model, step = "X -> M"), one could use 

extract_models(my_model, step = 2), because this model is the second mdt_simple 

being fitted (see Fitted models part of the mdt_simple output). Extracting this model could 

prove very useful to examine the OLS assumptions since the created object is a regular lm object 

(i.e., the kind of objects associated with linear models, that is, OLS regressions). This means that 

one can apply all the R functions available for regression objects. For instance, one could check 

the OLS assumptions by using the plot function (here by using "plot(model2, ask = 

FALSE)"), which displays graphs enabling one to examine the normality of the residuals as well 

as whether they meet the homoscedasticity assumption (McClelland, 2014). 

The extract_models gives access to a specific model but it can also be convenient to 

display all the information one can get when applying the summary function with an lm object. 

JSmediation contains a display_models function which prints these summaries for every 

fitted model. This function takes only one argument which is the mediation model fitted with an 

mdt_* function: 

> display_models(my_model) 

 For an in-depth example of a simple mediation joint-significance test as well as some 

examples of a write-up that could be used in articles, please refer to the package’s vignette. This 

vignette is accessible through the following command: 

> vignette("jsmediation") 

 


