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We compute the zero-point renormalization (ZPR) of the optical band gap of diamond from many-body
perturbation theory using the perturbative G0W0 approximation as well as quasiparticle self-consistent
GW. The electron-phonon coupling energies are found to be more than 40% higher than standard density
functional theory when many-body effects are included with the frozen-phonon calculations. A similar
increase is observed for the zero-point renormalization in GaAs when G0W0 corrections are applied. We
show that these many-body corrections are necessary to accurately predict the temperature dependence of
the band gap. The frozen-phonon method also allows us to validate the rigid-ion approximation which is
always present in density functional perturbation theory.
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The coupling of electrons to a bosonic field generally
causes a renormalization of the energy levels. Whereas
in vacuum, the electromagnetic fluctuations lead to the
Lamb shift observed in the hydrogen atom levels, in
condensed matter, the phonon field renormalizes the band
structure, even at zero temperature. Being as large as
several hundreds of meV [1], this renormalization is critical
to the predictive power of ab initio calculations when it
comes to absorption spectra [2], photovoltaic materials [3],
or topological insulators [4].
Following the early work of Fan and others in the 1950 s

[5–7], the problem was addressed by Allen, Heine, and
Cardona (AHC) [8,9], whose theory provides perturbative
expressions in terms of the electron-phonon coupling; they
find, at the lowest order, that two diagrams contribute to the
renormalization, the Fan diagram coming from two first-
order electron-phonon coupling vertices, and the Debye-
Waller diagram coming from one second-order vertex.
Using semiempirical methods, and later on, density func-
tional theory (DFT), the temperature dependence of the
band gap could be obtained for several semiconductors
[10–18]. Among those, diamond has been a case study
[19], both for the strong band gap renormalization it
exhibits [20–25] and its phonon-driven superconductivity
enabled by boron doping [26–29].
The reliability of DFT for the electron-phonon coupling

has however been questioned in recent years. Since the
scattering of an electron by a phonon probes the excited
states of a system, a theory describing this process should
rely on an accurate unrenormalized band structure, unlike
the one of DFT. This has motivated the use of nonlocal DFT
functionals [30–33]. These studies have shown that, as well
as correcting the band gap, exact exchange functionals are
also necessary to accurately describe the electron-phonon
coupling. A truly ab initio scheme, however, would rely on

many-body perturbation theory. As such, it was reported
that G0W0 corrections led to a significant increase of the
electron-phonon coupling in C60 fullerene and in graphene
[31,32]. In this work, we show that the G0W0 [34] and GW
[35] treatments of the electron-electron interaction enhance
the zero-point renormalization (ZPR) in diamond by more
than 40% with respect to DFT in the local-density approxi-
mation (LDA), and that these corrections allow us to obtain
the correct temperature dependence of the band gap.
We combine the frozen-phonon method and density

functional perturbation theory (DFPT) [36,37] to compute
the direct band gap renormalization. This allows us to
revise an important approximation of the AHC theory,
namely, the rigid-ion approximation. In all perturbative
calculations, the Debye-Waller interaction term is simpli-
fied to allow its computation from linear response. The
approximation breaks down in the case of diatomic
molecules [38], but its reliability in solids has not been
verified to our knowledge. Here we assert the validity of the
rigid-ion approximation in diamond, and in general for
three-dimensional systems.
Method.—The temperature dependence of the electronic

eigenvalues originates from the phonon population and the
thermal expansion of the lattice [1,13], the latter effect
being relatively small. Neglecting dynamical effects (i.e.,
the phonon energy is assumed to be small with respect to
electronic excitations), the phonon contribution gives
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where ε0α are the eigenvalues at equilibrium, and the sum
over the N phonon modes involves the electron-phonon
coupling energies (EPCEs) ∂εα=∂nj, and the Bose-Einstein
occupation numbers nj. With the frozen-phonon method,
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and in the harmonic approximation, the EPCEs are
obtained from the second-order derivatives of the eigen-
values at equilibrium:

∂εα
∂nj ¼
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2Mωj

∂2

∂z2 εα
h
zuj
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where M is the reduced atomic mass, ωj is the phonon
frequency, and εα½zuj

τ� is an eigenvalue computed with the
atoms displaced along the normalized polarization vector
uj
τ, with τ labeling the atoms of the unit cell. Each EPCE

requires a supercell calculation to account for the wave-
length of the phonon. Although this makes the technique
more computationally demanding than DFPT, it offers
several theoretical advantages. It makes no approximation
for the Debye-Waller term, and it gives complete liberty on
the method to compute the electronic structure.
We compute the ZPR of the top of the valence band of

diamond (Γ0
25v) and the first optically accessible state

(Γ15c) using a 4 × 4 × 4 Γ-centered q-point grid. The
lattice parameter (3.55 Å) was obtained by relaxation
of the structure with a Trouiller-Martins LDA pseudopo-
tential [39]. All calculations were done with the ABINIT
code [40].
Rigid-ion approximation.—In the AHC theory, the

EPCEs are expressed as
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where Φ is the Hessian matrix of an eigenvalue derived
with respect to all atomic positions, given by

Φα
τ;τ0 ¼ ðhψαj∇τHj∇τ0ψαi þ c:c:Þ þ hψαj∇τ∇τ0Hjψαi:

ð4Þ
The first term in Eq. (3) splits into the Fan and the Debye-
Waller terms, when combined with the first and second
terms of Φ, respectively. The former describes the scatter-
ing of electronic states by a phonon, and the latter
corresponds to a second-order electron-phonon interaction,
which is difficult to compute in DFPT. By virtue of the
acoustic sum rule [8], the two other “rigid-ion” terms in
Eq. (3) give a null contribution to the EPCE, but they allow
for the desired approximation. Assuming the Debye-Waller
term to be diagonal in atom sites (τ ¼ τ0), the second-order
derivative can be completely dropped, since Eq. (3) is
explicitly off diagonal. The rigid-ion terms now assume the
Debye-Waller contribution using only the first-order deriv-
atives of the Hamiltonian and the wave functions, which are
obtained self-consistently in DFPT. This simplification of
the perturbation theory expressions is a major achievement
of the AHC theory, albeit depending critically on the
validity of the rigid-ion approximation.

The DFPT scheme allows for a fine sampling of the
Brillouin zone (BZ), as shown on Fig. 1. Diamond being an
indirect gap insulator, a divergence occurs in the Γ15c
EPCEs when a phonon wave vector connects this state to
another one with close energy. This is handled by adding a
small imaginary part to the energy differences (0.1 eV)
[41]. Although most of the divergences cancel out after
integration, the broad peak at Γ gives an important
contribution to the renormalization of electronic energies.
The central region covering one eighth of the BZ, accounts
for 45% of the Γ0

25v ZPR and 20% of the Γ15c ZPR.
The rigid-ion approximation is not present in the frozen-

phonon approach. Remarkably, using minute displace-
ments (∼0.01% of the bond length), the coupling energies
computed from Eq. (2) fall closely on the DFPT curve. The
total ZPR obtained with the frozen-phonon method differs
by less than 3% from the DFPT value (see Table I), a
discrepancy we attribute to the rigid-ion approximation.
Since the neglected nondiagonal Debye-Waller term is a
short-ranged interaction between neighboring atomic sites,
it does not become any stronger near Γ than it is at the BZ
boundary. Therefore, this term should be of negligible
importance in any three-dimensional crystal, where the BZ
center area accounts for a significant portion of the ZPR.

FIG. 1 (color online). Electron-phonon coupling energies for
the top of the valence band (lower panel) and the bottom of the
conduction band at Γ (middle panel), calculated in DFPT (solid
line) and with the frozen-phonon method (circles). The top panel
shows the band structure with dashed lines indicating the Γ25v

0
and Γ15c energies.
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Many-body corrections.—Displacing the atoms by 0.1%
of the bond length causes the electrons to move from the
contracting bonds to the stretching bonds, in favor of lower
kinetic energy. This charge transfer pushes the Γ0

25v energy
upward, causing a renormalization of 119 meV in the LDA.
With the G0W0 corrections [41], the EPCE is uniformly
increased all over the Brillouin zone by about 50 meV per q
point, as shown on Fig. 2. Although the Γ15c state shows a
negative renormalization of −318 meV in LDA, the EPCE
elements are positive in the Γ-X direction, where the
lowest conduction band reaches its minimum. The G0W0

corrections increase the amplitude of the negative EPCE

elements while reducing the positive elements, bringing
the Γ15c ZPR to −477 meV, and increasing the band gap
renormalization by more than 40%, as reported in Table I.
We observed the same trend in gallium arsenide, which is a
direct band gap semiconductor. Whereas the LDA predicts
a band gap renormalization of −23 meV in this material,
the ZPR is increased by −10 meV when G0W0 corrections
are applied.
The self-energy is thus more sensitive to the perturbation

than the LDA exchange-correlation potential. This reflects
the fact that the LDA is based on the jellium model. The
electron-electron interaction is overly screened in the
bonding region, where the charge density packs up. In
contrast, retaining only the bare exchange corresponds to a
Hartree-Fock calculation with the DFT wave functions.
Such a calculation overestimates the renormalization of the
Γ0
25v (207 meV), which is located in the bonds, while the

Γ15c ZPR (−473 meV) does not suffer from the lack of
correlation. This illustrates the importance of proper
screening in the high density region. The same feature
was reported in graphene to a higher extent, due to the
shorter sp2 bonds[32].
Quasiparticle GW calculations of the EPCE were per-

formed on a subset of our q-point grid (Γ, Λ, L, X). The
self-consistency increases slightly the EPCE of the Γ0

25v
(∼8 meV, on average) and the Γ15c (∼ − 22 meV). Such a
small change results from two cancelling effects. While the
self-energy allows for a greater interstitial charge density, it
also reduces the electron mobility by opening the band gap
much more than G0W0 does [41]. Overall, the LDAþ
G0W0 calculation seems to agree well with the electron-
phonon coupling obtained from self-consistent GW.
Temperature dependence of the band gap.—Our coarse

sampling of the Brillouin zonemight not capture the relative
importance of the strongly coupling modes. Hence, we
interpolate the many-body corrections on a dense q-point
grid using a cubic polynomial fit for the G0W0 corrections
to the EPCE [41]. We obtain the band gap renormalization
and its temperature dependence from a DFPT calculation
on a 32 × 32 × 32 q-point grid, as reported in Table II. This
fine sampling reveals a bigger G0W0 correction to the Γ15c
ZPR due to the strong positive contributions near X being
reduced and those near Γ being enhanced. As a result, the
band gap ZPR is increased from −404 meV to −628 meV
when many-body corrections are applied.

FIG. 2 (color online). Electron-phonon coupling energies for
the top of the valence band (lower panel) and the bottom of the
conduction band at Γ (top panel), in DFT (squares), in G0W0

(circles) and in GW (stars).

TABLE II. Zero-point renormalization (meV) computed on a
32 × 32 × 32 q-point grid. The G0W0 and GW corrections are
interpolated with the models discussed in the text.

Γ0
25v Γ15c Gap

DFPT 141 −263 −404
Δ G0W0 þ26 −183 −209
ΔGW-G0W0 þ4 −11 −15
Total 171 −457 −628

TABLE I. Zero-point renormalization (meV) computed on a
4 × 4 × 4 q-point grid in frozen-phonon (finite differences) and in
DFPT (perturbative DFT).

Γ0
25v Γ15c Gap

Rigid-ion approximation
Perturbative DFT 113 −314 −427
Finite differences harmonic a 117 −320 −437

Many-body effects
Finite differences DFT b 119 −318 −437
Finite differences G0W0

b 145 −477 −622
aPhonon displacement: ∼0.01% of the bond length.
bPhonon displacement: ∼0.1% of the bond length.

PRL 112, 215501 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
30 MAY 2014

215501-3



Figure 3 shows the temperature dependence of the direct
band gap of diamond computed in DFPT and with many-
body corrections. In this figure, the bare band gap (7.732 eV)
was obtained from a full-frequency G0W0 calculation
starting from an LDA band structure with a scissor shift
of 1.5 eV which reproduces the renormalized gap [41].
Clearly, the DFPT method underestimates the ZPR, and the
many-body corrections are critical to restore the agreement
with experiments. The high-temperature slope is also
increased from −0.42meV=K to −0.67meV=Kwith many-
body corrections, in good agreement with experimental
data (−0.60 and −0.69 meV=K [42]).
The correspondence between theoretical and experimen-

tal results is remarkable, given that several approximations
were made. On the one hand, our calculations were
performed in the adiabatic approximation, whereas the full
treatment should include dynamical effects as well. We
checked, using the dynamical AHC theory, that those
effects have a small impact, changing the band gap ZPR
by þ5 meV. However, it was reported that the dynamical
electron-phonon self-energy causes a spreading of the main
quasiparticle peak in the Γ15c spectral function, reducing
further the optical gap by about 50 meV [23]. On the other
hand, the harmonic approximation was used throughout the
study, whereas anharmonic effects are believed to reduce
the renormalization of the band gap (in absolute value)
[24]. Hence, it would seem that those effects we neglected
tend to cancel each other, leading to the agreement of the
static harmonic DFPTþ GW scheme to within 50 meV of
the experimental data.
In conclusion, the frozen-phonon method allowed us to

go beyond the DFPT framework for the zero-point renorm-
alization of the optical band gap of diamond and gallium
arsenide. We validated the rigid-ion approximation for
crystals, proving the DFPT scheme to be a reliable DFT
calculation of the EPCE. The electron self-energy as

obtained from G0W0 corrections revealed to be much more
sensitive to ionic displacements than the LDA exchange-
correlation potential. Bringing GW calculations to self-
consistency further increased the coupling, but the G0W0

approximation captures most of the many-body correc-
tions. Those corrections increase the zero-point renormal-
ization of the band gap as well as its high-temperature slope
by more than 40%. Overall, we find that the DFPTþ GW
scheme reproduces accurately the temperature dependence
of the direct band gap of diamond. While DFPT remains the
most efficient method to treat the electron-phonon inter-
action, our results call for a more accurate scheme. Ideally,
an improvement of the linear response would include
nonlocal exchange and dynamical screening in the ways
of the many-body perturbation theory. We hope this work
motivates such development.
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