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The renormalization of the band structure at zero temperature due to electron-phonon coupling
is explored in diamond, BN, LiF and MgO crystals. We implement a dynamical scheme to com-
pute the frequency-dependent self-energy and the resulting quasiparticle electronic structure. Our
calculations reveal the presence of a satellite band below the Fermi level of LiF and MgO. We show
that the renormalization factor (Z), which is neglected in the adiabatic approximation, can reduce
the zero-point renormalization (ZPR) by as much as 40%. Anharmonic effects in the renormalized
eigenvalues at finite atomic displacements are explored with the frozen-phonon method. We use a
non-perturbative expression for the ZPR, going beyond the Allen-Heine-Cardona theory. Our results
indicate that high-order electron-phonon coupling terms contribute significantly to the zero-point
renormalization for certain materials.
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The electron-phonon coupling is at the heart of nu-
merous phenomena such as optical absorption1,2, ther-
moelectric transport3, and superconductivity4–7. It is
also a crucial ingredient in basic electronic structure
calculations, giving renormalized quasiparticle energies
and lifetimes. This renormalization causes the temper-
ature dependence of the band gap of semiconductors8,
and accounts for the zero-point renormalization (ZPR),
while the lifetime broadenings are observed through the
electron mobility9,10 and in photo-absorption/emission
experiments11.
Obtaining the quasiparticle structure from first prin-

ciples has been a challenge, addressed for the first
time for bulk silicon by King-Smith et al.12, in 1989,
using density functional theory (DFT), with a mixed
frozen-phonon supercell and linear response approach.
These authors pointed the inadequate convergence of
their results with respect to phonon wavevector sam-
pling, due to the limited available computing capabil-
ities. Fifteen year passed, before Capaz et al. com-
puted it for carbon nanotubes13 using DFT with frozen
phonons. At variance with the frozen-phonon approach,
the theory of Allen, Heine and Cardona (AHC)14–16

casts the renormalization and the broadening in terms
of the first-order derivatives of the effective poten-
tial with respect to atomic positions. Used initially
with empirical potentials, tight-binding or semi-empirical
pseudopotentials14–20, AHC was then implemented with
the density functional perturbation theory (DFPT)21–24,
providing an efficient way to compute the phonon band
structure and the electron-phonon coupling altogether.
This powerful technique allowed A. Marini to com-
pute, from first principles, temperature-dependent opti-
cal properties25.
While DFPT has been widely applied to predict struc-

tural and thermodynamical properties of solids26, few
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studies have used it to compute the phonon-induced
renormalization of the band structure. The scarcity of
experimental data is at least partly responsible for this
imbalance. Whereas the phonon spectrum is commonly
measured throuth Raman spectroscopy and neutron-
scattering experiments, evaluating the ZPR requires low-
temperature ellipsometry measurements or isotope sub-
stitutions, which are less abundant in literature. From
a theoretical point of view, the calculation of the ZPR
relies on several assumptions that we will be addressing
in this article.
We identify two kinds of approximations. The first

kind are those regarding the treatment of the electron-
electron interactions, which is achieved in DFT through
the Hartree and the exchange-correlation potentials. It
was shown that the strength of the electron-phonon inter-
action was highly sensitive to the choice of the exchange-
correlation functional27. Subsequent GW calculations
confirmed that standard functionals such as the local-
density approximation (LDA) tend to underestimate the
electron-phonon coupling by as much as 30%28–31.
The second kind of approximations are those made on

the self-energy of the electron-phonon interaction. One,
for example, usually performs the rigid-ion approxima-

tion, assuming that the second-order derivatives of the
Hamiltonian is diagonal in atom sites. This approxima-
tion proved to be valid in the case of crystals31,32, but
notably fails for diatomic molecules33.
Another assumption is the adiabatic approximation,

which implies that the phonon population can be treated
as a static perturbation. One would typically compute
the real part of the self-energy in a static way, and use
a dynamical expression to compute the imaginary part
and obtain the electronic lifetimes34. The adiabatic ap-
proximation breaks downs in certain materials such as
diamond and polyacetylene, as pointed out by Cannuc-
cia and Marini35,36. By considering the frequency depen-
dence of the self-energy, they showed that the electron-
phonon interaction smears out the energy levels, even
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obliterating the band structure.
Finally, the harmonic approximation is the assump-

tion that the total energy and electronic eigenvalues
vary quadratically with atomic displacements, which jus-
tifies the use of a second-order perturbation theory.
Higher order expansions have been used to compute
phonon wavefunctions, energies, and thermal expansion
coefficients37–39, but its impact on the ZPR was rarely
investigated.
In this work, we compute the ZPR and the quasipar-

ticle lifetimes of the band structure of diamond, BN,
LiF and MgO. We show that the inclusion of dynam-
ical effects in the AHC theory is important to obtain
correct quasiparticle energies and broadenings. We also
study the impact of anharmonic effects in the electronic
energies by means of frozen-phonon calculations, and
show that high-order terms do contribute to the electron-
phonon coupling in certain cases.
All calculations are performed with the Abinit code40.

For simplicity, we use an LDA exchange-correlation func-
tional. We do not expect this approach to fully capture
the strength of the coupling, as does the GW method.
Rather, it allows us to evaluate the impact of several com-
monly adopted approximations to the electron-phonon
coupling self-energy.

I. DYNAMICAL DFPT

The dynamical AHC theory is derived by expanding
the starting HamiltonianH0 up to second order in atomic
displacements as (using atomic units)

Hep = H0 +
∑

λλ′ν

1√
2Nων

〈ψλ|V (1)
ν |ψλ′〉 Aνc

†
λcλ′

+
∑

λλ′νν′

1

2N
√
ωνων′

〈ψλ|V (2)
νν′ |ψλ′〉 AνAν′c†λcλ′ ,

(1)

where c†λ and cλ are electron creation and destruction

operators, and Aν = aν + a†−ν , such that Aν/
√
2ων rep-

resents a phonon displacement operator. The electronic
states λ with wavefunctions ψλ and energies ε0λ are spec-
ified by a wavevector kλ, a band index bλ, and spin σλ,
while the phonon modes ν with frequencies ων are spec-
ified by a wavevector qν and a branch index mν , and N
is the number of phonon wavevectors.
The first-order perturbation potential is formed with

derivatives of the Hamiltonian with respect to atomic
displacements along a particular phonon mode as

V (1)
ν = ∇ν H0 =

∑

lκj

Uν
κje

iqν ·Rl∇lκj H0, (2)

where l labels a unit cell with lattice vectorRl, κ an atom
within a unit cell, j a cartesian direction, and Uν

κj is the
phonon displacement vector. The second-order pertur-

bation potential is then V
(2)
νν′ (r) = 1

2∇ν∇∗
ν′H0.

Within the DFT and DFPT approaches of this work,
H0 is an electron-only Hamiltonian, and the phonon
perturbations involve the derivatives of the local self-
consistent potential. Since the electronic density re-
sponds to the atomic displacements by screening the ions’
potential, these perturbations must be evaulated self-
consistently. Furthermore, the phonon displacement vec-
tors are a priori unknown and must be computed by di-
agonalization of the the dynamical matrix. Other formu-
lations of H0 could include the many-body interactions
between the electrons and the ions41. These alternatives
however fall beyond the scope of this work.

Following the usual many-body perturbation theory42,
the electron-phonon self-energy at second order is the
sum of the Fan and the Debye-Waller terms:

Σep
λλ′(ω) = ΣFan

λλ′ (ω) + ΣDW
λλ′ . (3)

The dynamical Fan term is given by

ΣFan
λλ′ (ω) =

∑

ν

1

2ων

∑

λ′′

〈ψλ|V (1)
ν |ψλ′′〉 〈ψλ′′ |V (1)∗

ν |ψλ′〉
[

nν(T ) + fλ′′(T )

ω − ε0λ′′ + ων + iη sgn(ω)
+

nν(T ) + 1− fλ′′(T )

ω − ε0λ′′ − ων + iη sgn(ω)

]

,

(4)

where nν and fλ are boson and fermion occupation fac-
tors, and η is a small parameter which is real and positive.
This parameter maintains causality by giving the correct
sign to the imaginary part of the quasiparticle energies.
It also smoothens the frequency dependence of the self-
energy when a finite sampling of phonon modes is used
(see appendix A). We note that the periodicity of the
phonon perturbation potential restricts the summation
over intermediate states to those at the k-point given by

kλ′′ + qν = kλ = kλ′ . In Eq. (4) and in the remaining
of this work, all the summations over the phonon modes
are implicitely normalized by the number of wavevectors
used to sample the Brillouin zone.

The frequency-independent Debye-Waller term is for-
mally defined as

ΣDW
λλ′ =

∑

ν

1

2ων

〈ψλ|V (2)
νν |ψλ′〉

[

2nν(T ) + 1
]

, (5)
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which also implies kλ = kλ′ . Within the rigid-ion ap-
proximation, the Debye-Waller term can be computed

using only the matrix elements of V
(1)
ν , in a form similar

to the Fan term, thanks to translational invariance43.
The interacting Green’s function is the solution of the

Dyson equation involving the full electron-phonon self-
energy, which is diagonal in (kλ,kλ′). If the bands are
well separated in energy, then the Green’s function can
be approximated with the diagonal elements of the self-
energy as

Gλ(ω) ≈
(

ω − ε0λ − Σep
λ (ω)

)−1
, (6)

where we use the shorthand Σep
λ (ω) ≡ Σep

λλ(ω). By con-
sidering only the diagonal elements of the self-energy, we
disregard the possible change in the electronic density
resulting from the electron-phonon interaction. Taking
this effect into account would involve solving the Dyson
equation for the Green’s function to obtain a new den-
sity, and applying the change in the DFT self-consistent
potential perturbatively. We are assuming however that
the change in the one-electron state densities among the
bands would compensate, and that the additional per-
turbative terms be negligible. Besides, we stress that the
Green’s function only needs to be corrected once, since
this procedure is a second-order perturbative approach.
Any attempt for self-consistency in the calculation of the
Green’s function and the self-energy belongs to a higher-
order treatment.
From the imaginary part of the Green’s function, one

obtains the spectral function

Aλ(ω) =
1

π

|ImΣep
λ (ω)|

[ω − ε0λ −ReΣep
λ (ω)]2 + ImΣep

λ (ω)2
, (7)

which directly relates to the signal observed in ARPES
experiments. The quasiparticle energies ελ are defined as
the position of the principal peak of Aλ(ω). Neglecting
the frequency dependence of the imaginary part of the
self-energy, the maximum of the spectral function is at
the energy given by

ελ = ε0λ +ReΣep
λ (ελ). (8)

Assuming furthermore that the quasiparticle energies are
close to the bare electronic energies, the latter can be
corrected perturbatively as

ελ ≈ ε0λ + ZλReΣep
λ (ε0λ) (9)

where

Zλ =
(

1−Re
∂Σep

λ (ω)

∂ω

∣

∣

ω=ε0
λ

)−1

(10)

is the renormalization factor. This procedure accounts
for a linearization of the self-energy near the bare eigen-
value, as illustrated in Fig 1.
The quasiparticle broadening γλ is defined as the

half width of the spectral function at half of its max-
imum, which means for a symmetrical quasiparticle
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FIG. 1. Upper: Real and imaginary part of the self-energy
for the top of the valence bands (VB) of LiF. The vertical
line indicates the bare eigenvalue, the x = y line gives the
renormalized eigenvalue at the intersection of the real part of
the self-energy, and the short-dashed line is the linearized self-
energy, which approximates the renormalized eigenvalue at
the intersection of the x = y line. Lower: The corresponding
spectral function. The position of the principal peak gives the
quasiparticle energy. This narrow peak collects ∼ 60% of the
weight, and the rest of the charge forms a broad satellite peak
below the bare eigenvalue. Note that the finite width of this
peak is an artifact of the imaginary parameter used (0.1 eV).

peak that Aλ(ελ ± γλ) = Aλ(ελ)/2. Neglecting the fre-
quency dependence of the self-energy near the quasipar-
ticle energies, the broadening can be approximated as
|ImΣep

λ (ελ)|, the imaginary part of the self-energy, which
writes

|ImΣep
λ (ω)| =

∑

ν

1

2ων

∑

λ′

| 〈ψλ|V (1)
ν |ψλ′〉 |2

×
[(

nν + fλ′

)

δ(ω − ε0λ′ + ων)

+
(

nν + 1− fλ′

)

δ(ω − ε0λ′ − ων)
]

. (11)

One recovers the static AHC expression for the ZPR
and the broadening by neglecting the phonon frequen-
cies in the self-energy. Such approximation is made on
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the basis that the phonon frequencies and the quasiparti-
cle corrections are much smaller than the typical energy
differences with transition states that contribute to the
self-energy. Under this assumption, the static Fan term
reads

Σ
static
Fan
λ =

∑

ν

1

2ων

∑

λ′

| 〈ψλ|V (1)
ν |ψλ′〉 |2

ε0λ − ε0λ′ + iη sgn(ε0λ)

[

2nν(T ) + 1
]

.

(12)

Evaluating Eq. (12) instead of Eq. (4) requires much less
computational efforts, especially if the Sternheimer equa-
tion is used to eliminate the summation over high-energy
electron bands.
In this work, we adopt a semi-static approximation to

compute the frequency-dependent self-energy. The terms
of Eq. (4) are being computed explicitely, up to a certain
band index bmax

λ , and the contribution of the remaining
bands above bmax

λ is treated statically with Eq. (12) using
the Sternheimer equation method33. For our materials,
the bands above bmax

λ lie more than 20 eV above the
states being corrected. Hence, the relative error on the
self-energy due to the static treatment of these bands’
contributions is a few percent at most.

Results and discussion

We compute the quasiparticle structure of four crys-
talline materials: diamond (C), boron nitride (BN) in
the zinc-blende structure, magnesium oxide (MgO), and
lithium fluoride (LiF) in the rock-salt structure. For all
materials, we use a 8×8×8 k-point grid for the electronic
wavefunctions and density, and a 32×32×32 q-point grid
for the phonon modes sampling.
The spectral functions at zero temperature are shown

in Fig. 2 for the full band structure. A distinctive quasi-
particle peak appears at the band edges, shifted from the
bare eigenvalues, while in the regions of flat bands the
spectral function is being diffused. The first conduction
band of the indirect band gap materials (diamond, BN)
exhibits a strong renormalization and a large broadening
at Γ. This is due to the presence of other states in the
Brillouin zone with close energies that are available for
scattering.
Another striking feature is the last valence band of LiF

and MgO being completely diffused due to strong intra-
band coupling. They show a narrow quasiparticle peak
above the bare eigenvalue, and a broad satellite peak
below. These features originate from the frequency de-
pendence of both the real and the imaginary parts of the
self-energy, as shown in Fig. 1 for the top of the valence
bands of LiF. The satellite peaks could be observed in
ARPES measurements, such as those performed on MgO
by Tjeng et al.44. However, a direct comparison with our
results would require the full experimental spectra along
the high-symmetry lines.
Table I presents the real part of the self-energy for the

states forming the optical band gap, namely the top of

the valence bands (VB), and the first conduction band
(CB) at Γ. At the bare eigenvalues, the self-energy shows
little difference between the static and dynamical DFPT
schemes, indicating that the phonon frequencies could
be safely ignored in its real part. However, the frequency
dependence produces an important renormalization fac-
tor Z, ranging from 0.60 to 0.93 for the valence bands,
and from 0.75 to 1.0 for the conduction bands. Thus,
the dynamical effects tend to reduce the zero-point cor-
rection, with respect to the static scheme. Comparing
the linearized self-energy with the quasiparticle correc-
tion obtained by solving Eq. (8) numerically or from the
position of the principal peak of the spectral function, the
linearization scheme proves to be a good approximation
to both.
The renormalization factor being larger than 1 indi-

cates a breakdown of the quasiparticle picture. If the
imaginary part of the self-energy is small, there is a well
defined quasiparticle peak, and Z can be interpreted as
the weight of that peak, which has to be smaller than 1.
Otherwise, the spectral function is diffused, there is no
such interpreation for Z and its value is unconstrained.
Table II presents the quasiparticle broadening of

the indirect-band gap materials computed with various
schemes. The difference in the broadenings obtained
from the static and the dynamical DFPT schemes is best
understood with Eq. (11). Only the electronic states in
a narrow energy range are available for scattering. The
imaginary part of the self-energy is thus sensitive to the
inclusion of phonon frequencies, since they affect the po-
sitioning of this energy range. For the same reason, the
broadening varies rapidly with frequency, which results
in an important difference between the imaginary part at
the bare eigenvalue and that at the renormalized eigen-
value. Comparing these values with the actual width of
the quasiparticle peak, we conclude that only the imagi-
nary part of the self-energy evaluated at the renormalized
energy is an accurate estimation of the broadening.

II. ANHARMONIC EFFECTS

The frozen-phonon method allows for a direct compu-
tation of the electron-phonon self-energy within the adi-
abatic approximation. We present here an extension of
this method, which allows to explore anharmonic effects
beyond the second-order perturbation theory of Allen,
Heine and Cardona.
Recalling the theory of the harmonic crystal, we write

the total energy in a frozen-phonon configuration as

E[z] = E0 +
∑

ν

ω2
ν

2
z2ν , (13)

where E0 is the equilibrium fixed-ions energy, zν is a par-
ticular phonon coordinate and z denotes the ensemble of
all of these coordinates. Taking the lattice dynamics into
account, the phonon eigenstates are those of the decou-
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TABLE I. Zero-point renormalization (in eV) evaluated from the real part of the self-energy using a static expression (stat),
a dynamical expression (dyn), at the bare eigenvalue (ε0), at the renormalized eigenvalue (ε), or from the displacement of
the main quasiparticle peak from the bare eigenvalue (∆A(ε)). The unitless renormalization factor Z is used to linearize the
self-energy near the bare eigenvalue. See Apprendix A for the values of the η parameter used.

Σstat(ε0) Σdyn(ε0) Z ZΣdyn(ε0) Σdyn(ε) ∆A(ε)

C VB 0.134 0.126 0.931 0.118 0.118 0.118

CB -0.238 -0.240 1.007 -0.242 -0.240 -0.247

Gap -0.372 -0.366 -0.359 -0.358 -0.365

BN VB 0.198 0.173 0.823 0.143 0.147 0.147

CB -0.190 -0.196 1.020 -0.200 -0.197 -0.208

Gap -0.388 -0.370 -0.343 -0.344 -0.355

MgO VB 0.197 0.198 0.734 0.145 0.145 0.147

CB -0.153 -0.143 0.870 -0.125 -0.127 -0.127

Gap -0.350 -0.341 -0.270 -0.272 -0.274

LiF VB 0.398 0.446 0.596 0.266 0.254 0.256

CB -0.279 -0.273 0.746 -0.204 -0.211 -0.211

Gap -0.677 -0.718 -0.469 -0.464 -0.467
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FIG. 2. Spectral functions summed over the bands at each k-point of the Brillouin zone (arbitrary units). The green lines are
the DFT band structure, in eV. When a quasiparticle peak is visible in the spectral function, the renormalization is infered
from the difference of the position of that peak with the bare band structure. In the regions of flat bands, the band structure
is being completely diffused. A satellite peak is seen below the last valence band of LiF and MgO.
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TABLE II. Quasiparticle broadening (in eV) evaluated from
the imaginary part of the self-energy using a static expression
(stat), a dynamical expression (dyn), at the bare eigenvalue
(ε0), at the renormalized eigenvalue (ε), or from the width of
the main quasiparticle peak at half of its maximum (γ). See
Apprendix A for the values of the η parameter used.

|ImΣstat(ε0)| |ImΣdyn(ε0)| |ImΣdyn(ε)| γ

C CB 0.178 0.164 0.140 0.138

BN CB 0.246 0.226 0.200 0.196

FIG. 3. Some of the high-order electron-phonon coupling dia-
grams which contribute to the self-energy. Each vertex with n
phonon branches is associated with a nth-order derivative of
the one-particle Hamiltonian. The independent-phonon ap-
proximation presented in the text retains only the diagrams
formed with multiple interactions involving the same phonon
mode.

pled harmonic oscillators:

χn(z) =
∏

ν

χnν (zν), (14)

where n denotes the ensemble of all the phonon occupa-
tion numbers. The total energy in this state is

E[n] = E0 +
∑

ν

ων

[

nν + 1
2

]

. (15)

The expression for a particular eigenvalue at finite tem-
perature is given by the derivative of F = E − TS, the
Helmholtz free energy with respect to an electronic oc-
cupation number fλ, which reduces to43

ελ(T ) =
∂F

∂fλ
= ε0λ +

∑

ν

∂ων

∂fλ

[

nν(T ) +
1
2

]

. (16)

This expression should be compared with the electron-
phonon self-energy in the adiabatic approximation
(Eq. (5) and (12).) The individual phonon contributions
to the self-energy are proportional to ∂ων/∂fλ, which
we call the electron-phonon coupling energies (EPCE).
Using Brook’s theorem43, the EPCEs are given by the
second-order derivatives of an eigenvalue with respect to
a phonon coordinate:

∂ων

∂fλ
=
∂ελ
∂nν

=
1

2ων

∂2

∂z2ν
ελ
[

zν
]

∣

∣

∣

zν=0
, (17)

where ελ
[

zν
]

is an electronic energy computed with all
atoms displaced by a length zν along the phonon dis-
placement vector Uν

κj . This expression does not rely
on the rigid-ion approximation, but requires a super-
cell calculation to account for the phonon wavevector.
Within the validity of the rigid-ion approximation, it
should reproduce the results of the static DFPT scheme.
Both of these frameworks are developed within the har-
monic approximation, since the total energy and the elec-
tronic eigenvalues are expanded up to second order in the
phonon perturbations. Equivalently, the harmonic ap-
proximation can be defined as the assumption that the
electronic eigenvalues vary quadratically with a phonon
coordinate zν .
In order to relax the harmonic approximation on the

electronic energies, we cast the free energy F = kBT lnZ
in terms of the canonical partition function Z = Tr e−βH ,
which is a trace over both the electronic and the atomic
degrees of freedom. Resolving the trace over the electron
coordinates, the expression for a temperature-dependent
eigenvalue reads

ελ(T ) =

∫

dz
e−βE[z]

ZI

ελ[z], (18)

where ZI =
∫

dz e−βE[z] is the partition function of
the atoms only, and ελ[z] is the eigenvalue computed
in some frozen-phonon configuration. This formulation
is reminiscent of the path-integral molecular dynamics
approach45,46, with the difference that a configuration
is specified in terms of phonon coordinates rather than
atomic positions in real space. It retains the adiabatic
approximation, since the atomic motion does not induce
electronic transitions, but leaves the electrons in their
evolving states.
We now use the crystal phonon structure and perform

the harmonic approximation on the total energy only,
writing

ελ(T ) =
∑

n

e−βE[n]

ZI

∫

dz
∣

∣χn(z)
∣

∣

2
ελ[z]. (19)

We are assuming here that the set of phonon wavefunc-
tions χnν (zν) and frequencies ων computed from second-
order perturbation theory are good eigenfunctions of the
system. That is to say that the total energy is quadratic
along the computed phonon modes even if the eigenval-
ues are not. Equation (19) now includes all high-order
diagrams that may contribute to the self-energy, such as
those depicted in Fig. 3.
Finally, we perform the independent phonon approxi-

mation and write

ελ(T ) = ε0λ +
∑

ν

∑

nν

snν

∫

dzν
∣

∣χnν (zν)
∣

∣

2
(

ελ[zν ]− ε0λ

)

,

(20)

where snν = e−βωνnν/
∑

n′

ν

e−βωνn
′

ν . In doing so we

disregard the cross-terms contributions between different
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phonons modes. This ansatz restricts the high-order di-
agrams to those containing a single phonon mode, which
may interact multiple times with the electrons. These
additional diagrams come from the anharmonicity of the
eigenvalues appearing in the integrant of Eq. (20), as il-
lustrated in Fig. 4. One can verify that if the eigenvalues
vary quadratically with the phonon displacements, then
Eq. (16) is recovered. Otherwise, Eq. (20) defines ef-
fective EPCEs for each phonon mode which include the
anharmonic effects.

Results and discussion

We compute the EPCEs by frozen-phonon calcula-
tions, using the phonon displacement vectors obtained
from DFPT. For the harmonic approximation, Eq. (17)
is evaluated with atomic displacements of about 10−3Å,
while the anharmonic effects are included by evaluating
Eq. (20) with 20 displacements up to ∼ 0.3Å, which cor-
responds to about 4 units of a typical phonon average
displacement 1/

√
ων .

The EPCEs are shown in Fig. 5 through the Brillouin
zone of diamond. The spiky structure of the EPCEs of
the first conduction band at Γ results from this state
not being at the bottom of the band. Consequently,
when a phonon wavevector connects the state at Γ to an
other state with close energy, a divergence occurs in the
EPCEs. A divergence also occurs for phonon wavevec-
tors near Γ, for both the VB and CB states, but these
divergences integrate to a finite value when the density of
phonon modes is taken into account. The EPCEs com-
puted with the frozen-phonon method in the harmonic
approximation are in close agreement with the DFPT re-
sults, indicating that the rigid-ion approximation holds.
However, when the full dependence of the eigenvalues on
the phonon displacements are taken into account, the an-
harmonicity of the eigenvalues tend to reduce the EPCEs,
with respect to the harmonic approximation.
This is exemplified on Fig. 4 with the mode Ω4 (the

fourth mode with wavevectors Ω = (L + X)/2). In the
harmonic approximation, it contributes −869 meV to the
CB EPCE at this q-point. The eigenvalue however de-
parts from quadraticity with the phonon displacement,
reducing the coupling energy to −383 meV. On the other
hand, the total energy follows closely the quatratic curve,
indicating that this displacement is a genuine phonon
mode. This tendency is observed near all divergent points
of the Brillouin zone and near the zone center. The
second-order perturbative theory is thus insufficient to
treat the effect of those strongly coupling modes on the
electronic states.
Table III reports the ZPR computed on a 4× 4× 4 q-

point grid with the various static schemes. Again, the
total ZPR obtained with the harmonic frozen-phonon
method and with DFPT are in good agreement. The
discrepancies can be attributed to the rigid-ion approxi-
mation. When anharmonic effects are included, the total

TABLE III. Zero-point renormalization of the band gap (in
eV) within the adiabatic approximation, obtained whith the
static DFPT, with the frozen-phonon method in the harmonic
approximation (FPH), and with the frozen-phonon method
including anharmonic effects (FPA).

Static DFPT FPH FPA

C VB 0.115 0.119 0.107

CB -0.320 -0.321 -0.214

Gap -0.436 -0.439 -0.320

BN VB 0.120 0.133 0.108

CB -0.193 -0.198 -0.154

Gap -0.313 -0.331 -0.262

MgO VB 0.110 0.118 0.070

CB -0.081 -0.078 -0.084

Gap -0.191 -0.196 -0.154

LiF VB 0.445 0.431 0.168

CB -0.130 -0.122 -0.113

Gap -0.575 -0.553 -0.281

renormalization of the electronic energies are typically re-
duced compared to the harmonic approximation. For the
indirect band gap materials, the renormalization of the
CB state is largely affected by the anharmonic effects,
since they receive an important contribution from those
strongly coupling modes at the Brillouin zone boundaries
which are being attenuated. The states at the band edges
are being affected to various extends. The valence band
of LiF, which is especially flat, shows a strong anhar-
monicity in the ZPR coming from the modes near Γ,
reducing the ZPR by about 60%. In contrast, the con-
duction band of MgO, which is very dispersive, is only
slightly affected by these effects.

Our results are obtained on a coarse q-point grid,
limited by the scaling of the frozen-phonon method.
Whether the same conclusions apply to a converged q-
point grid depends on the relative importance of strongly
coupling modes, since they are responsible for anhar-
monic effects. For the states lying at the top or at
the bottom of their respective band, the ZPR increases
monotonically with the number of q-points on a regu-
lar grid. This is because the region of strongly coupling
phonon modes near Γ gains in importance. Thus, the
anharmonic effects for these state are expected to grow
as a finer q-point sampling is achieved. For the state that
are not at the extrema of their band, the convergence of
the ZPR with q-points sampling is non-monotonic. In
these cases, we cannot make quantitative predictions for
the anharmonic effects on a converged q-point sampling.
Nevertheless, the presence of strongly coupling modes
near the Brillouin zone boundaries suggests an impor-
tant anharmonic contribution to the ZPR.
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FIG. 4. Dependence of the CB eigenvalue (green, circles) and
the total energy (blue, squares) on a phonon displacement for
the mode Ω4 of diamond. The circles and squares are the
actual frozen-phonon calculations, the solid lines correspond
to the harmonic approximation, and the filled curve is the
phonon wavefunction.

III. CONCLUSION

The dynamical DFPT scheme allowed us to compute
the frequency-dependent electron-phonon coupling self-
energy. Our calculations yield a renormalization factor
ranging from 0.6 to 1.0. This renormalization factor is
important to obtain correct quasiparticle energies, but
has been laregly overlooked in the literature.
The spectral function reveals distinctive features of the

quasiparticle band structure. In the indirect band gap
materials (diamond and BN), the conduction bands un-
dergo intra-band scattering processes, which broaden the
spectral function at Γ. In the direct band gap materials
with flat valence bands (LiF and MgO), these processes
even generate satellite peaks below the valence bands.
The broadening can be obtained from the imaginary

part of the self-energy, but one has to use a dynamical
theory to do so. Not only are the phonon frequencies
necessary to impose energy conservation in the scattering
process, but the imaginary part of the self-energy must
be evaluated at the renormalized eigenvalues, in order to
compute properly the quasiparticle broadening.
Finally, we explored anharmonic effects using frozen-

phonon calculations. The anharmonicity in the eigen-
values dependence on the atomic displacements occurs
even if the phonon modes are correctly described by the
second-order perturbation theory. This effect tend to de-
crease the contribution of the strongly coupling phonon
modes, reducing the ZPR of certain states by as much as
60% with respect to the static AHC theory.
Our results indicate that high-order electron-phonon

coupling terms bring an important contribution to the
self-energy and the ZPR. Our methodology however in-
cludes a partial summation of the high-order terms and
treats the perturbations statically. A theory that would
include all high-order terms in a dynamical way cannot
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FIG. 5. Upper: The band structure of diamond, in eV. The
dashed lines show the energies of the VB and CB states. Mid-
dle and lower: Electron-phonon coupling energies (EPCE),
in eV for the CB state (middle) and the VB state (lower),
computed with various methods. The blue line is the DFPT
calculation, the yellow discs are the frozen-phonon method
in the harmonic approximation, and the green triangles are
the frozen-phonon method including anharmonic effects. A
divergence is observed in the EPCEs of the CB state when
a phonon wavevector couples this state to an other one with
close energy, while the EPCE of both VB and CB states show
a broad diverging peak at the center of the Brillouin zone.

be tested at present, but could be eventually addressed
with quantum Monte-Carlo approaches.
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FRQNT and the RQMP for the financial support, and
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Appendix A: Imaginary parameter and convergence

properties

In order to compute the ZPR, one has to sample the
phonon wavevectors in the Brillouin zone, either through
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FIG. 6. Upper: Convergence of the self-energy at the renor-
malized eigenvalue for the CB state of diamond, as a func-
tion of q-points spacing, with various imaginary parameters.
Lower: Frequency dependance of the self-energy for the CB
state of diamond, with various imaginary parameters. The
solid lines are obtained on a 32 × 32 × 32 q-point grid, and
the dashed lines are obtained on a 24× 24× 24 q-point grid,
corresponding to the two left-most points on the upper pannel
graph.

a regular mesh, or with a random set of q-points. At the
same time, one has to select a value for the parameter η
giving an imaginary part to the self-energy. The choice

of this parameter should in facts be adressed in conjunc-
tion with the q-points sampling. When the static DFPT
method is used, the numerical value assigned to η is usu-
ally on the order of typical phonon frequencies (∼ 0.1 eV)
to account for their omission. Otherwise, if a too small
value of η is used, it is not even clear that the self-energy
will converge to a finite value47. In a dynamical scheme,
one should in principle aim for a vanishing value for η.
While it is expected that the self-energy elements should
converge to a finite value as η → 0, tuning the value of
η conveniently eases the convergence with the number of
q-points, as shown in Fig. 6.
Moreover, using a too small value of η can compromise

the frequency dependence of the self-energy, as shown on
Fig. 6 for the CB state of diamond. Even for the most
converged q-point grid, the self-energy computed with
η = 0.1 eV shows rapid variations with ω. These vari-
ations are even larger for a smaller q-point grid, and in
these cases, the solution of ω = Σ(ω+ε0) could certainly
not be estimated by linearizing the self-energy near the
bare eigenenergy. The self-energy becomes a perfectly
smooth function of ω when η = 0.4 eV.
We use the following criterion to determine the value

of η. Consider the contribution of two neighboring q-
points q and q′ to the self-energy of the electronic state
kn. The contribution of a particular electron band n
and phonon branch m will have terms proportional to
[

(ω−ε0k+qn±ωqm+ iη)−1+(ω−ε0k+q′n±ωq′m+ iη)−1
]

,
assuming that the matrix elements in the numerator of
the self-energy does not change between q and q′. If
the value of η is vanishingly small, the spectral func-
tion will exhibit distinct peaks at ω = ε0k+qn ± ωqm

and ω = ε0k+q′n ± ωq′m, which will be an artifact of
the q-points sampling. The separation of those peaks
comes mainly from the dispersion of the electronic ener-
gies, which is more important than that of the phonon
frequencies. Simple analysis shows that these peaks can
be made undistinguishable by setting η =

√
3∆ε/2 where

∆ε = ε0k+qn − ε0k+q′n. Hence, for a given q-point mesh,
we compute the largest ∆ε between neighboring q-points,
within the bands being corrected, and use it to deduce η.
The values of η obtained for our most converged q-point
grid are: 0.2 eV for the VB state of diamond, 0.4 eV for
the CB states of diamond and BN, and 0.1 eV for all the
other VB and CB states. We verified that the broaden-
ing of the CB states of diamond and BN was insensitive
to the choice of this parameter.
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Letters 93, 237004 (2004).

http://dx.doi.org/10.1103/PhysRevB.81.241201
http://dx.doi.org/10.1103/PhysRevB.81.241201
http://dx.doi.org/10.1103/PhysRevB.81.241201
http://dx.doi.org/10.1103/PhysRevLett.108.167402
http://dx.doi.org/10.1103/PhysRevLett.108.167402
http://dx.doi.org/10.1103/PhysRevLett.108.167402
http://dx.doi.org/10.1103/PhysRevB.83.205208
http://dx.doi.org/10.1103/PhysRevB.83.205208
http://dx.doi.org/10.1103/PhysRevB.83.205208
http://dx.doi.org/10.1016/j.stam.2006.03.009
http://dx.doi.org/10.1016/j.stam.2006.03.009
http://dx.doi.org/10.1016/j.stam.2006.03.009
http://dx.doi.org/10.1103/PhysRevLett.98.047005
http://dx.doi.org/10.1103/PhysRevLett.98.047005
http://dx.doi.org/10.1103/PhysRevLett.98.047005
http://dx.doi.org/10.1103/PhysRevLett.93.237003
http://dx.doi.org/10.1103/PhysRevLett.93.237003
http://dx.doi.org/10.1103/PhysRevLett.93.237003
http://dx.doi.org/10.1103/PhysRevLett.93.237004
http://dx.doi.org/10.1103/PhysRevLett.93.237004
http://dx.doi.org/10.1103/PhysRevLett.93.237004


10

8 M. Cardona and M. L. W. Thewalt, Reviews of Modern
Physics 77, 1173 (2005).

9 O. D. Restrepo, K. Varga, and S. T. Pantelides, Applied
Physics Letters 94, 212103 (2009).

10 V. G. Tyuterev, S. V. Obukhov, N. Vast, and J. Sjakste,
Physical Review B 84, 035201 (2011).

11 R. Bhattacharya, R. Mondal, P. Khatua, A. Rudra,
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