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The ab initio calculation of charged defect properties in solids is not straightforward because of the delicate
interplay between the long-range Coulomb interaction and the periodic boundary conditions. We derive the
projector augmented-wave (PAW) energy and Hamiltonian with special care taken on the potentials from the
Coulomb interaction. By explicitly treating the background compensation charge, we find additional terms in
the total energy of the charged cells and in the potential. We show that these background terms are needed
to accurately reproduce all-electron calculations of the formation energy of a charged defect. In particular, the
previous PAW expressions were spuriously sensitive to the pseudization conditions and this artifact is removed
by the background term. This PAW derivation also provides insights into the norm-conserving pseudopotential
framework. We propose then an alternative definition for the total energy of charged cells and for the Kohn-Sham
potential within this framework that better approximates the all-electron results.
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I. INTRODUCTION

In order to calculate the properties of charged defects in
semiconductors, of polarons in insulators, or of isolated ions,
it is often required to consider charged systems in ab initio
calculations. The combined use of charged simulation cells
and of periodic boundary conditions leads to intricacies that
require a lot of care [1–4]. First, a truly charged periodic system
would have an infinite energy. This problem is circumvented
by adding a compensating background charge to restore the
global charge neutrality. Second, even with a compensating
background, the electrostatic potential is still not uniquely
defined. Indeed, the electrostatic potential induced by a lattice
of point charges is a conditionally convergent series. This
complicated mathematical behavior unfortunately leads to
many delicate consequences in solid-state physics. One famous
example is the dependence of the Madelung constant upon the
shape of the truncation of the Coulomb series [1]. Another
occurrence of this phenomenon is the well-known dependence
of the work function upon the surface type [5].

In practical ab initio implementations, the subtleties related
to the definition of the electrostatic potential are hidden
deeply, owing to the choice of the Ewald summation technique
together with the convention of zero average potentials
[3,6]. This is of course an arbitrary choice. However, once
this convention has been chosen, it has to be consistently
propagated in the different electrostatic terms of the Hamilto-
nian: the ion-ion repulsion, the electron-ion attraction, and
the electron-electron repulsion. For the all-electron (AE)
methods that consider straightforwardly the physical nucleus
attraction potential Z/r (in atomic units), this is not much
of a problem. The situation is more complicated for the
plane-wave methods using pseudopotentials. The valence

electrons do not experience the bare ionic potential, but rather
a smooth pseudopotential that induces an extra term in the
total energy, namely, the difference between the average bare
potential and the average pseudopotential [1,7]. This is the
origin of the so-called “Zα” term, first derived by Ihm and
co-workers [8].

The situation becomes even more complex when turn-
ing to the projector augmented-wave (PAW) method. The
PAW method, introduced by Blöchl [9], is an improvement
over the pseudopotential approach. Owing to the PAW
transformation, the pseudo-wave functions are mapping the
true AE wave functions. The PAW bears many similarities
with pseudopotentials, as demonstrated a few years later by
Kresse and Joubert [10]. Most noticeably for our discussion,
the pseudo-wave functions experience a pseudopotential,
which requires a subtle treatment of the compensating
background.

In this paper, we demonstrate that the current PAW total
energy and Hamiltonian do not incorporate the compensating
background contribution in a consistent manner. Extra terms
have to be added to the potential of any system and to the
energy of charged systems. It may appear counterintuitive that
the origin of the potentials may have an effect on the physical
properties. However, we show that the formation energy of a
charged defect is indeed affected by an inconsistent treatment
of the background. Although potential alignment techniques
have been devised to circumvent the problem [11–14], a
unanimous agreement in the literature about a unique definition
that would work whatever the nature of the charged defect
is still lacking. Only with these terms properly included
could the PAW results be independent from the details of the
PAW pseudopotential and could they adequately reproduce the
reference AE calculations. As a by-product, we also propose
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a modification of the total energy in the norm-conserving
pseudopotential framework.

The paper is organized as follows: In Sec. II, we review the
peculiarities of the Coulomb interaction in periodic systems.
In Sec. III, we derive the PAW equations with a proper account
of the compensating background density. Section IV provides
the applications: the validation of the additional potential
and energy terms by comparing to AE calculations and an
application to a highly charged defect. Section V is devoted to
the extension to the norm-conserving framework.

We will work in atomic units of length (1 bohr = 1),
energy (1 hartree = 1), and action (� = 1). However, two
conventions for the atomic unit of charge are possible. While
the common choice is to select a negative sign for the electronic
charge, so that e = −1 (e.g., a charged Li vacancy in LiH is
negatively charged), on the contrary, in the PAW literature
an electron is given a positive charge, so that e = +1 [see,
e.g., Ref. [10], shortly after Eq. (9)]. Such a choice does not
affect the quantities in which two charges are multiplied by
each other, namely, all contributions to the energy, as detailed
below. However, it does have an influence on the sign of the
electrostatic potential. Still, the potential felt by the electrons
(e.g., the one present in the Schrödinger equation), obtained by
multiplying the electrostatic potential by the electronic charge,
is free of such a convention problem.

In Sec. IV, dealing with applications, we rely on the usual
convention (e = −1). For the other sections, we avoid the
problem of convention, either because the relevant quantities
are invariant upon a charge sign change, or because we refer to
the potential felt by the electrons (electronic potential) instead
of the electrostatic potential.

II. COULOMB INTERACTIONS IN SOLIDS

To highlight the role of the different Coulomb interactions
in a solid, the total energy E of a unit cell of solid can be
grouped as different contributions to

E = T + ECoul + Exc, (1)

where T is the kinetic energy, ECoul the Coulomb energy,
and Exc the exchange-correlation energy. In the present paper,
we focus on the Coulomb term; the details of the other two
terms will not be discussed any further. With these notations,
the Coulomb energy gathers all the electrostatic interactions
in the solid: the electron-electron interaction (also named
the Hartree energy), the nucleus-nucleus interaction, and the
electron-nucleus interaction [also referred to as the external
potential in the density-functional theory (DFT) language].

A. Coulomb interaction

In the following, an extensive use of Coulomb integrals,
potential, and energy will be necessary. Let us introduce some
useful notations here.

The Coulomb interaction between charge densities n1 and
n2 is defined as

〈n1,n2〉 =
∫∫

dr1dr2n1(r1)
1

|r1 − r2|n2(r2), (2)

where the integrals run over the complete space. The Coulomb
interaction is linear, symmetric, and positive definite. It is then
a scalar product.

The potential created by a charge density n(r) is obtained
from the Poisson equation, which reads

vH [n](r) =
∫

dr′ n(r′)
|r − r′| . (3)

The potential is obviously linear with respect to its
argument n.

The Coulomb self-energy E[n] of charge distribution n

reads

E[n] = 1
2 〈n,n〉. (4)

The factor 1
2 comes from the double counting of the interac-

tions. This is the energy of the entire system. Note that this
Coulomb self-energy could also be obtained from the potential

E[n] = 1

2

∫
drn(r)vH [n](r). (5)

When we turn to periodic system, it is more convenient to
work with the energy per unit cell, E[n]/NR, where NR stands
for the number of unit cells contained in the full solid.

As explained in the Introduction, the ab initio imple-
mentations in periodic solids generally rely on the Ewald
technique [4,6,15], which presents several subtle points due
to the long-ranged Coulomb interaction 1/r .

The Ewald technique proposes to evaluate the potential of
a lattice of point charges with a compensating background:

∑
R

δ′
R(r) =

[∑
R

δ(r − R)

]
− 1

�
. (6)

R stands for the lattice vectors and � for the unit cell volume.
Here and below, we emphasize that a charge distribution is
charge neutral by adding a prime. The direct solution of the
Poisson equation for this charge density is impossible, since
the lattice of point charges would induce a semiconvergent
series, the value of which is undefined.

Using the following short-range/long-range decomposition,

1

r
= erfc(ηr)

r
+ erf(ηr)

r
, (7)

the potential can be split into two contributions. The value
of η does not influence the final result and can be tuned
for numerical convenience. After some algebra, the potential
created by the charge density of Eq. (6) can be written
as the sum of two absolutely converging series up to a
constant A:

vH

[∑
R

δ′
R

]
(r) =

∑
R

erfc(η|r − R|)
|r − R|

+ 4π

�

∑
G �=0

e−G2/4η

G2
eiG·r + A. (8)

The first term in real space arises from the short-range
interaction, whereas the second term arises from the long-
range part and is conveniently evaluated in reciprocal space.
In Eq. (8), there should be an additional dipole term which
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is disregarded in the Ewald sums. In other words, this
corresponds to immersing the solid inside a metallic cavity that
would perfectly compensate the global dipole of the considered
solid. Furthermore, the choice for the value of A is purely
conventional. In general, the average value of vH is set to zero
and consequently A = − π

η2�
.

Within these conventions, the energies and potentials of
neutral and charged solids are completely fixed. We insist that
the choice of A is conventional. However, once the conventions
are settled, the calculated energies and potentials should not
depend on the ab initio calculation technique: In practice,
PAW and AE should produce the same results. Furthermore,
for charged systems it is customary to postprocess the results
with so-called charge corrections [11–14,16,17]. It should be
noted that the correction schemes also use the Ewald technique
with a fixed convention for the value of A. This convention,
however, rarely explicitly stated, is in all practical cases the
zero average convention. It is then important that the same
convention is used for both the electronic structure calculation
and the postprocessing scheme.

B. The physical densities and the background compensated
densities

In a solid, there are two charged particles: the electrons
and the protons. The electrons will be treated quantum
mechanically, whereas the protons will simply act as point
charges. Furthermore, it is also convenient to distinguish the
core electrons from the valence electrons.

In a solid, all the densities are periodic: They are unchanged
by a translation of any lattice vector R. Then, the valence
electron density n integrates to Nv per unit cell,

1

NR

∫
drn(r) = Nv. (9)

All the integrals in this paper run over the whole solid.
The quantities per unit cell are readily obtained by dividing
by NR.

The core electron density nc can be written as a sum over
atomic sites:

nc(r) =
∑
Ra

nRa
c (r) (10)

=
∑
Ra

na
c (r − R − τa), (11)

where τa is the position of atom a in the unit cell. Here and
consistently in the following, the densities with superscript
Ra are referred in the solid coordinates, whereas the densities
with superscript a have the origin in the position of atom
a. The core density is most commonly kept frozen in the
atomic configuration within the PAW framework. The atomic
core densities na

c are then considered as spherical, na
c (r), and

are obtained from the atomic data file in general. The core
density integrates to Nc electrons per unit cell, so that the total
electronic density n + nc integrates to Nv + Nc = N in a unit
cell.

The charge density of the nuclei is a sum of point charges:

qZ(r) =
∑
Ra

qRa
Z (r) (12)

=
∑
Ra

−eZaδ(r − R − τa). (13)

Note that the latter definition is independent of the choice of
sign for e, as discussed at the end of the Introduction. In order
to link with the PAW literature, we introduce

nZ(r) = qZ(r)/e. (14)

nZ integrates to −Z in a unit cell, with

Z =
∑

a

Za. (15)

For convenience, the frozen densities that can be decom-
posed as a sum over atomic sites are often treated together, as
an “ionic density” nZc:

nZc(r) = nZ(r) + nc(r) (16)

=
∑
Ra

na
Zc(|r − R − τa|). (17)

The ionic density integrates to −Zion = Nc − Z.
Finally, the total charge density enT which contains contri-

butions from all charges (electrons and protons) is computed
from

nT = nZ + nc + n = nZc + n. (18)

Some physical properties require one to calculate charged
unit cells. Nonzero charges q are obtained whenever the
number of protons is not balanced by the number of electrons
in the cell:

q = Z − N = Zion − Nv. (19)

However, the potential obtained from such an unbalanced
density would diverge. In practice, a compensating background
is added in order to ensure the global charge neutrality:

n′
T (r) = nT (r) + q

�
. (20)

We remind that we introduced the prime notation for charge
compensated densities that average to zero.

With these definitions, the total Coulomb energy per unit
cell in a solid can be explicitly written

ECoul = 1

2NR
〈n′

T ,n′
T 〉 − 1

2NR

∑
Ra

〈
nRa

Z ,nRa
Z

〉
. (21)

This is the Coulomb self-energy of n′
T with explicit removal

of the nuclei self-interaction. The self-interaction energy of a
point charge is infinite and therefore each term in the previous
equations is infinite. Fortunately, the difference between the
two terms remains finite. Although not mathematically correct,
this way of writing the equations is extremely practical. The
mathematical correctness would be recovered by considering
Gaussian shaped nuclei instead of point nuclei and then
performing the limit to vanishing Gaussian widths. This would
unfortunately make the equations less readable. Equation (21)
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is valid not only for neutral systems, but also for charged
systems owing to the use of the background compensated n′

T .

III. PAW BACKGROUND TERMS

The PAW method allows one to reconstruct AE wave func-
tions, AE densities, and AE expectation values of operators out
of pseudoquantities. The technique has many conceptual and
numerical advantages, but they are obtained at the expense of
introducing intermediate densities and potentials. This makes
the derivation of the equation less straightforward. Indeed, we
show in this section that background terms in the potential and
in the energy have been omitted so far.

A. PAW charge densities

The PAW transformation maps the physical valence den-
sities n using smooth densities ñ [9]. The physical densities
have a full nodal structure in the vicinity of the atoms, whereas
the smooth densities do not. The smooth density deviates from
the physical density only inside spheres centered on atoms.
In order to transform smooth densities into physical densities,
just on-site corrections to the densities are necessary.

Then the physical valence density is written

n(r) = ñ(r) − ñ1(r) + n1(r), (22)

where ñ1(r) is the spurious smooth density in the PAW spheres
and n1(r) is the physical density in the spheres. We follow the
standard notations [10,18,19]: The smooth quantities have a
tilde and the on-site quantities have an exponent 1.

The PAW technique requires also the introduction of the
smooth density ñZc(r) to mimic the ionic core density (core
electrons plus protons) that we introduced in the previous
section, nZc(r). The potential created by ñZc plays the role of a
pseudopotential for the smooth valence density ñ. vH [ñZc] can
be thought of as the local component in the pseudopotential
scheme. It is the sum over atomic contribution

ñZc(r) =
∑
Ra

ñRa
Zc (r) (23)

=
∑
Ra

ña
Zc(|r − R − τa|). (24)

As consequence, the total density nT including the core and
valence electrons and the protons can be recast into three terms
following in the same spirit as for Eq. (22):

nT = ñT − ñ1
T + n1

T , (25)

where

ñT = ñ + n̂ + ñZc, (26)

ñ1
T = ñ1 + n̂ + ñZc, (27)

n1
T = n1 + nZc. (28)

The technical compensation charge n̂ has been further added
and subtracted in the total density. This last density is chosen

so that the moments in the multipole expansion of n1
T − ñ1

T are
zero. This is necessary to eliminate electrostatic interactions
between PAW spheres.

Since nZc and ñZc charge distributions are monopole,
carrying the same charge −Zion, n̂ makes the moments of
n1 − ñ1 − n̂ vanish. Although the smooth density does not
necessarily conserve the number of electrons, the sum ñ + n̂

does.

B. Coulomb energy within PAW

The electrostatic energy per unit cell in the PAW framework
can be written as

ECoul = 1

2NR
〈n′

T ,n′
T 〉 − 1

2NR

∑
Ra

〈
nRa

Zc ,n
Ra
Zc

〉
. (29)

This expression is similar to Eq. (21) except that the core-core
and core-nucleus interactions have been removed, since they
only account for a change of origin in the total energies. We
stress that the expression for the Coulomb self-energy of the
charge distribution departs from the usual expression [10], as
we explicitly introduced the compensating background in the
n′

T densities. This has no consequence for the energy of neutral
systems. However, it has one for charged systems, as we will
show in the following.

The compensating background is homogeneous in the solid.
It is practical then to include it in the smooth density,

n′
T = ñ′

T − ñ1
T + n1

T . (30)

Then, we transform

〈n′
T ,n′

T 〉 = 〈ñ′
T ,ñ′

T 〉 + 2
〈
n1

T − ñ1
T ,ñ′

T

〉
+〈

n1
T − ñ1

T ,n1
T − ñ1

T

〉
. (31)

This follows the usual PAW derivation except for the account
of the compensating background in the smooth density. The
last two terms can be evaluated on-site, since the charge
distribution n1

T − ñ1
T has vanishing moments outside the PAW

spheres. Compared to the standard derivation, only two terms
need to be explicitly derived: 〈ñ′

T ,ñ′
T 〉 and 〈n1

T − ñ1
T ,ñ′

T 〉. The
following focuses on these two modified terms. We refer the
reader to Ref. [10] for the usual terms, which are not detailed
here.

1. The smooth density Coulomb self-energy

In fact, the explicit introduction of the compensating
background in the term 〈ñ′

T ,ñ′
T 〉 does not yield any change

compared to the standard implementations, since the average
values of the Hartree potential and of the ionic pseudopotential
are usually set to zero manually. Let us demonstrate this
equivalence here.

The total smooth density ñ′
T can be recast into two charge-

neutral terms:

ñ′
T =

(
ñ + n̂ − Nv

�

)
+

(
ñZc + Zion

�

)
(32)

= (ñ + n̂)′ + ñ′
Zc. (33)
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When inserted in 〈ñ′
T ,ñ′

T 〉, this decomposition turns to the
familiar sum of Hartree energy, local pseudopotential energy,
and ion-ion repulsion energy:

1

2NR
〈ñ′

T ,ñ′
T 〉 = 1

2NR
〈(ñ + n̂)′,(ñ + n̂)′〉

+ 1

NR
〈(ñ + n̂)′,ñ′

Zc〉 + 1

2NR
〈ñ′

Zc,ñ
′
Zc〉. (34)

Owing to the explicit introduction of the compensating
background charge, we immediately recognize that the Hartree
energy in the previous equation is half the integral of the
background compensated valence electron density (ñ + n̂)′
times the Hartree potential induced by the same charge density
vH [(ñ + n̂)′]. Note that the average value of the Hartree
potential is explicitly set to zero due to the vanishing average
of (ñ + n̂)′ in the argument of vH . The same remarks hold
for the local pseudopotential energy (the second term on the
right-hand side of the previous equation), which arises from
the zero-averaged pseudopotential vH [ñ′

Zc]. We have then
identified the Hartree energy and local pseudopotential energy
as they are usually calculated in practical codes.

The last term, together with the removal of the self-
interaction [last sum in Eq. (29)], is the pseudo-ion/pseudo-ion
repulsion with the convention of a vanishing average potential.
It reduces to the usual point-charge/point-charge repulsion,
usually named EEwald, plus the so-called Zα term [8]

EZα = Zion

�

∑
a

αa, (35)

where the integral αa ,

αa =
∫

dr
{
vH

[
ña

Zc

]
(r) + Za

ion

|r|
}
, (36)

measures the deviation in average potential between the
pseudodensity vH [ñZc] and a point charge −Zionδ(r)

In the Appendix, we provide the full derivation of these
two terms, since several expressions exist in the literature. The
energy EZα is sometimes written with a factor Zion [8,20]
or with a factor Nv [1,7]. As long as neutral systems are
considered, the choice does not matter. However, for charged
systems Nv �= Zion, the total energy depends on the particular
expression implemented. The Appendix demonstrates that the
consistent expression should employ the factor Zion.

2. The background terms in the Coulomb energy

In Eq. (31), there is another occurrence of background
charge density from the term 〈n1

T − ñ1
T ,ñ′

T 〉. We show in the
following that this term adds extra terms in the total energy of
a charged system.

In the usual derivation of the PAW energies, the density
ñT is replaced by its on-site projection ñ1

T , since the integral
in 〈n1

T − ñ1
T ,ñT 〉 does not have any contribution from outside

the sphere, due to the vanishing moments of n1
T − ñ1

T . This
transformation is approximate but believed to be very accurate
[9,10]. It would be exact in the completeness limit of the
projectors inside the PAW sphere.

When the background is also included, the transformation
reads

ñ′
T ≈ ñ1

T + q

�
. (37)

Whereas the term 〈n1
T − ñ1

T ,ñ1
T 〉 is treated in the existing

PAW derivations and will not be discussed further here, the
background term

EPAW bg = 1

NR

〈
n1

T − ñ1
T ,

q

�

〉
(38)

has not been explored so far.
This correcting term can be split for numerical convenience

into

E
(1)
PAW bg = 1

NR

〈
nZc − ñZc,

q

�

〉
, (39)

E
(2)
PAW bg = 1

NR

〈
n1 − ñ1 − n̂,

q

�

〉
. (40)

These expressions can be decomposed on the PAW spheres,
due to the vanishing moments of the left-hand side arguments
of the Coulomb integrals. The first term bears striking
similarities to the Zα term in the pseudo-ion/pseudo-ion part:

E
(1)
PAW bg = q

�

∑
a

βa, (41)

where the integral

βa =
∫

dr
{
vH

[
na

Zc

]
(r) − vH

[
ña

Zc

]
(r)

}
(42)

can be precalculated from the PAW atomic data. The meaning
of βa is clear: It measures the difference between the physical
potential due to nucleus and the core electrons vH [na

Zc] and
the pseudopotential vH [ña

Zc].
Figure 1 shows the potential used for the calculation of

βa for silicon and carbon. These two elements have the same
number of valence electrons, however, the value of βa depends
much on the cutoff radius and on the pseudization scheme.
In these examples, within these pseudization conditions,
silicon has βa = −13.1 hartree, whereas carbon has βa =
−4.4 hartree. This shows the wide range of possible values
for βa . Note that for carbon, the core electrons are few
and therefore there is only a very small difference between
the point-charge potential −Za

ion/r and the physical potential
vH [na

Zc]. As a consequence, the integral βa is close the opposite
of integral αa = 4.0 hartree. For silicon, the core electrons
are more widely spread, as can be appreciated in Fig. 1, and
therefore the deviation of βa from the opposite of αa = 7.5
hartree is noticeable.

Let us turn now to the second background term E
(2)
PAW bg.

This term is slightly more complicated, since it explicitly
depends on the valence density. It cannot be precalculated.
However, it can be expanded on coefficients that can be
precalculated and stored.
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FIG. 1. (Color online) Spherical potentials involved in the integrals αa and βa exemplified for silicon in the left-hand panel and carbon in
the right-hand panel. The point-charge potential is the dotted black line, the physical nucleus plus core electron potential vH [nZc] is the dashed
blue line, and the pseudopotential vH [ñZc] is the solid red line. Both pseudopotentials were generated with the Vanderbilt technique [21,22]
using the cutoff radius symbolized with the vertical dotted line.

Indeed, the three densities in Eq. (40) can be expanded on
the projectors inside each PAW sphere as

n1(r) =
∑
Raij

ρa
ijφ

a∗
i (r − R − τa)φa

j (r − R − τa), (43)

ñ1(r) =
∑
Raij

ρa
ij φ̃

a∗
i (r − R − τa)φ̃a

j (r − R − τa), (44)

n̂(r) =
∑
Raij

ρa
ij

∑
LM

Q̂aLM
ij (r − R − τa). (45)

The details of the algebra can be found, for instance, in
Ref. [18]. Index a runs over atomic sites. Index i (and j )
is a composite index for projector number ni , and angular
momenta li and mi . ρa

ij is the density matrix in the basis of the
projectors of site a. φa

i and φ̃a
i are respectively the AE and the

pseudo-wave functions for atom a and projector i. Q̂aLM
ij are

the coefficients of the multipole expansion of the compensation
charge, with L and M being the angular momentum indexes.

Besides the density matrix ρa
ij , all these coefficients can be

precalculated at the beginning of a PAW run. Let us gather these
coefficients under the name γ a

ij , so that the second background
term can be written as

E
(2)
PAW bg = q

�

∑
aij

ρa
ij γ

a
ij . (46)

The γ a
ij are the average of the following potentials inside the

sphere a,

γ a
ij =

∫
drvH

[
φa∗

i φa
j − φ̃a∗

i φ̃a
j −

∑
LM

Q̂aLM
ij

]
(r). (47)

Note that the multipole expansion of the density in the
argument of vH has zero moments, since the charge dis-
tribution n1 − ñ1 + n̂ has a vanishing multipole expansion
by construction of n̂. However, this does not imply that the
induced potential vanishes inside the sphere. It just vanishes
outside the sphere.

All the terms in the argument of vH in Eq. (47) need not
be calculated. Indeed, performing the average in a sphere only
selects the monopole of the potential and, as the Coulomb in-
teraction 1/|r − r′| is diagonal in a multipole expansion, only
the monopole of the charge distribution yields a nonvanishing
contribution. Using the definition of Q̂aLM

ij (see, e.g., Ref. [18])
and after some algebra, the only contribution in the argument
of vH in Eq. (47) that needs to be calculated, Ra

ij , reads

Ra
ij (r)= δli ,lj δmi ,mj

4π

{
φa

ni li
(r)φa

nj lj
(r) − φ̃a

ni li
(r)φ̃a

nj lj
(r)

r2

− g0(r)
∫

dr ′[φa
ni li

(r ′)φa
nj lj

(r ′) − φ̃a
ni li

(r ′)φ̃a
nj lj

(r ′)
]}

,

(48)

with φni li (r) and φ̃ni li (r) the radial AE and pseudo-wave
functions, and g0(r) a shape function for angular momentum
l = 0 [18].
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The final expression of γ a
ij is simply

γ a
ij =

∫
dr4πr2vH

[
Ra

ij

]
(r). (49)

As the first background term, the origin of the second
background term is due to the introduction of a working
quantity that modifies the smooth density compared to the
AE density. This second background term is related to the
existence of the compensation charge n̂. In a norm-conserving
(NC) framework, the density ñ would integrate to Nv and
no working density n̂ would be required. The magnitude of
this second term is not easily appreciated from its analytic
expression. In the following section, we will show in a practical
case that this term, though smaller than the first one, is indeed
not negligible.

The total PAW background energy can be written as

EPAW bg = q

�

∑
a

(
βa +

∑
ij

ρa
ij γ

a
ij

)
, (50)

where the coefficients βa and γ a
ij can all be calculated from the

PAW atomic data at the beginning of a solid-state calculation.
This extra term has to be added to the usual PAW total energy.
It is zero for charge-neutral cells, however, it will modify the
charged cell total energy.

C. Extra contribution to the PAW stress tensor

Since Eq. (50) depends on the volume of the cell �, there
will be an additional term in the diagonal of the stress tensor
of charged cells. The stress tensor needs to be corrected with
the addition of σxx ′

PAW bg (x and x ′ indexes over the Cartesian
axis):

σxx ′
PAW bg = −δxx ′

q

�2

∑
a

(
βa +

∑
ij

ρa
ij γ

a
ij

)
. (51)

D. Extra contribution to the PAW potential

A less obvious consequence of the additional background
energy is its influence on the PAW potential for both charged
and neutral systems. Indeed, the Kohn-Sham potential is
defined as a functional derivative with respect to the (physical)
density [23]. In the PAW framework, this implies to differenti-
ate with respect to the pseudodensity operator [9,10]. The extra
term in the energy gives rise to a contribution to the potential
named vPAW bg.

The energy EPAW bg has an obvious dependence on the
density matrix ρa

ij . However, it also has a dependence with
respect to n through the factor q = Zion − Nv . Indeed, the
number of valence electrons is a functional of the density

Nv =
∫

drn(r) =
∫

dr[ñ(r) + n̂(r)]. (52)

Taking the derivative of Nv with respect to ñ and to ρa
ij

(contained in n̂) introduces the overlap operator Ŝ [10].

Therefore, the new background contribution to the nonlocal
PAW potential is

v̂PAW bg = − Ŝ

�

∑
a

(
βa +

∑
ij

ρa
ij γ

a
ij

)

+ q

�

∑
aij

∣∣p̃a
i

〉
γ a

ij

〈
p̃a

j

∣∣, (53)

where p̃a
i are the PAW projectors.

The striking result is the existence of a correcting term in
the potential even for neutral systems. Even though the energy
correction of the neutral system is zero, its derivative with
respect to the density is nonvanishing.

The changes introduced in the absolute value of
the potential would affect all the eigenvalues with the same
rigid shift. For instance, when referring the position of the
band edges to the position of core states or to the average
position of the electrostatic potential, the difference would
remain unchanged and, consequently, the calculations of band
offsets would remain unaffected [24,25]. However, when the
composition of the solid is changed with the introduction of
defects, the extra terms in the potential have a finite effect, as
we will show in the following section.

IV. PAW APPLICATIONS TO CHARGED SYSTEMS

We have derived additional terms in the PAW energy,
potential, and stress. This section provides practical examples
for the influence of the extra contributions. The additional
terms have been implemented in the PAW code ABINIT [26].

A. Lattice of protons

Our first example is a gedanken experiment that will not
require any numerical calculation. Let us consider a lattice of
protons, let us say, one proton per unit cell to fix the ideas, with
no electrons. Of course, a neutralizing background is required
to keep the total energy finite.

In this simplistic system, all the components of the total
energy related to electrons are zero. In the conventional
derivations of PAW, two terms remain: the Ewald point-
charge/point-charge repulsion energy and the Zα energy.
But one of these is actually spurious. Indeed, the Ewald
repulsion energy is precisely the electrostatic self-energy of
the charge distribution of the point-charge protons with their
compensating background. However, the energy EZα should
not be present, since it adds a contribution that depends on the
local pseudopotential vH [ñZc].

We demonstrate now that adding the background terms
fixes the problem. The coefficients γ a

ij have no effect since the
density matrix ρa

ij vanishes. The physical core plus nucleus
potential vH [nZc] reduces to −Zion/r , as there is no core
electron either. As a consequence, comparing Eqs. (36) and
(42), βa = −αa and thus E

(1)
PAW bg = −EZα .

Owing to the background energy term E
(1)
PAW bg, the spurious

EZα contribution is eliminated from the total energy. The total
energy of the lattice of a proton with no electrons is then
independent of the pseudization details, as we expect.
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B. Charged vacancy in LiH: Benchmark against AE results

In order to check the validity of the PAW derivation and the
magnitude of the additional terms in the energy and potential,
it would be desirable to have a valid reference calculation for
a charged system. We choose here to focus on the charged
lithium vacancy in rocksalt LiH, V −

Li . This particular system
was selected for the small charge of the nuclei, so that AE
calculations within a plane-wave basis set were tractable.

In practice, we employ model pseudopotentials with just a
local component −Za erf(r/rc)/r instead of the full potential
−Za/r . We converge the calculation with respect to both the
radius rc and the plane-wave basis cutoff energy Ecut. Using
this type of pseudopotential is equivalent to considering that
the nuclei are Gaussian charge distributions with a spread rc.
Although the absolute energies are impossible to converge,
the total energy differences and the potentials show a much
smoother behavior with respect to rc and Ecut. This procedure
allows us to extract unambiguous AE data with parameters
rc = 0.0025 bohrs and Ecut = 2000 hartree, which still keeps
the calculation cost low enough even for the eight-atom
supercells.

The formation energy of the lithium vacancy Ef (V −
Li ) is

evaluated through

Ef (V −
Li ) = E(Li3H4

−) − E(Li4H4) + E(Li) − εVBM(LiH),

(54)

where E(Li3H4
−) is the total energy of a supercell, E(Li) is

the total energy of the isolated Li atom, and εVBM(LiH) is
the valence band maximum of bulk LiH. This is the usual
formation energy [27] with q = −1, with the Fermi level set
to the top valence band, and with the chemical potential of
Li fixed to the atom energy. Of course, supercells with only
seven and eight atoms do not give a proper evaluation of the
true formation energy, but our purpose is simply to compare
the ab initio methods. For the same reason, we do not include
any charge correction nor potential alignment [11–14,16,17].
The PAW and the AE quantities should in principle match on
an absolute scale, since the same convention has been retained
for the evaluation of the Coulomb potentials without the need
for a correcting post-treatment.

In practice, the supercell consists of seven or eight unre-
laxed atoms in a cubic supercell with an edge 7.60 bohrs, and
the k-point sampling is a �-centered 4 × 4 × 4 grid, within
the local density approximation (LDA). The isolated lithium
atom is placed in a supercell with the same dimensions, using
a �-only sampling. The corresponding PAW calculations use
an over converged cutoff energy of 30 hartree for the wave
functions and 60 hartree for the dense grid. In Fig. 2, the PAW
total energies and valence band maximum are compared to the
AE results. The first series shows the total energy difference
E(Li3H4

−) − E(Li4H4) + E(Li) with or without inclusion of
the background terms. The second series shows the valence
band maximum of the bulk εVBM(LiH). The last series is the
formation energy, i.e., the difference between the two previous
series. Including the additional background terms has a sizable
effect on the total energies and on the top valence energy.
Even if these changes cancel each other out to some extent,
the final physical quantity Ef is modified by the inclusion of
the background terms. The two additional terms arising from
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FIG. 2. (Color online) Contributions to the formation energy of
a charged lithium vacancy V −

Li , calculated with different PAW terms
(solid red lines), compared to an AE reference (dashed blue lines).
The first PAW calculations do not include βa nor γ a

ij , the second
calculation does include βa but not γ a

ij , and the third calculation
includes both terms. The formation energy is evaluated for the Fermi
level fixed at the valence band maximum.

integrals βa and γ a
ij both have a visible effect. Only when

the two are properly included could the PAW calculations
reproduce the AE results.

As mentioned earlier, the PAW results without the back-
ground terms show a spurious dependence on the pseudization
procedure. We evaluate this effect in Fig. 3 by varying the
cutoff radius r loc

c for the generation of the local pseudopotential
vH [ñZc] using the Vanderbilt procedure [21,22]. The corrected
PAW results including the background terms are much more
stable with respect to a change of pseudopotential than the
uncorrected PAW data. The statement is not only true for the
intermediate components such as the total energy difference or
the top valence band energy [Figs. 3(a) and 3(b)], but also holds
for the physical formation energy Ef (V −

Li ) [Fig. 3(c)].

C. Highly charged interstitial SiC, Si4+
TC: Benchmarking

different codes

The magnitude of the background terms is proportional to
the charge q of the defect. We now turn to a well-documented
[28,29] charged defect of cubic silicon carbide, the silicon
interstitial tetrahedrically coordinated to carbon atoms, Si4+

TC.
In Fig. 4, we compare the Perdew-Burke-Ernzerhof (PBE)

[30] formation energy of Si4+
TC from three different PAW codes:

VASP [31], QUANTUM ESPRESSO [32], and ABINIT [26]. In
ABINIT, we have switched on and off the background correcting
terms for the calculation of the formation energy. Note that for
consistency QUANTUM ESPRESSO and ABINIT use the same PAW
atomic data. This has not been possible for VASP, unfortunately,
so that the VASP curve has been shifted up quite arbitrarily.

Carefully looking at the PAW implementation in the
different codes, VASP and ABINIT without background have
the same convention of setting the average smooth potential to
zero, 〈vH [ñZc]〉 = 0. Indeed, the slope of the corresponding
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FIG. 3. (Color online) Dependence of uncorrected (blue circles) and corrected (red squares) PAW results with respect to the local potential
cutoff radius r loc

c in LiH. (a) represents the total energy difference in Eq. (54), i.e., the three first terms. (b) shows the valence band maximum
of bulk LiH, i.e., the last term in Eq. (54). (c) shows the formation energy of the negatively charged Li vacancy with the Fermi level fixed at
the valence band maximum.
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FIG. 4. (Color online) PAW formation energy Ef deviation for
the silicon interstitial Si4+

TC in cubic SiC as a function of supercell
size within PBE with the Fermi level fixed at the valence band
maximum and in silicon-rich conditions. Results have been obtained
from VASP (squares), QUANTUM ESPRESSO (circles), ABINIT without
the background terms (open diamonds), and ABINIT including the
background terms (solid diamonds). This last curve has been
chosen as a zero, so as to highlight the difference between the
implementations. The absolute formation energy Ef is given in
the inset, where the spurious charge-charge interaction dominates
[16] (convergence as N

−1/3
atom ). The QUANTUM ESPRESSO and ABINIT

calculations use the same PAW atomic data, whereas it was necessary
to shift up the VASP results by 100 meV.

curves matches. The QUANTUM ESPRESSO convention sets
the average smooth potential to 〈vH [ñZc]〉 = ∑

a βa/�. This
produces a different slope. The meaning of this choice will
be discussed in detail in the next section. Finally, the results
from ABINIT with background terms are built to match the AE
formalism using a total electrostatic potential that averages to
zero 〈vH [nZc]〉 = 0.

For the interstitial Si4+
TC, the difference between the conven-

tions implemented in the codes quite significantly impacts the
formation energy. For the 64-atom supercell, the difference can
be as large as 0.25 eV and it is still 0.10 eV for the 216-atom
supercell. Fortunately, the background terms are proportional
to 1/� and their effect should vanish with increasing supercell
sizes.

V. CONSEQUENCES FOR THE PSEUDOPOTENTIAL
METHOD

So far, we have stressed the importance of having a
consistent convention for the potentials in the PAW method.
The derivation for PAW in Sec. III highlights the role of
different potentials: the pseudopotential, written vH [ñZc] in
the PAW language, and the true physical core electron plus
nucleus potential, labeled vH [nZc]. In an AE calculation, the
situation is clear: The average value of the physical potential
vH [nZc] is set to zero. However, within the pseudopotential
framework, different choices can be found in the available
implementations.

For instance, prior to version 7.5, the ABINIT code [26] uses
the Zα energy term [8] and consequently sets the average
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pseudopotential vH [ñZc] to zero [33]. If the total energy
expression uses instead a factor Nv in the Zα term [1,7],
then the potential will be shifted accordingly. The potential is
obtained as a functional derivative with respect to the electronic
density and the number of valence electrons Nv is indeed
a functional of the density. In QUANTUM ESPRESSO [32], for
instance, this choice is made and the pseudopotential vH [ñZc]
averages to

∑
a αa/�. This corresponds to a specific choice

of the constant A introduced by the Ewald convention for the
calculation of the potential vH [ñZc]. It could seem surprising
to choose an inconsistent definition for the constant A.

Indeed, a consistent choice of the constant A that induces
zero average for all the electrostatic potentials naturally leads
to the absolute values as obtained with the Zα energy term, as
derived in Ref. [8]. However, this choice induces a dependence
of the energies and potentials on the pseudization details. It
would be appreciated to devise a scheme which is independent
of the pseudopotential and, even better, which reproduces
as far as possible the absolute AE results. This could be
achieved in practice by introducing the frozen core density,
as we demonstrate in this section. This also gives an a
posteriori justification for the convention using Nv in the Zα

term.

A. Accounting for the physical core density in norm-conserving
pseudopotentials

It is straightforward to adapt the PAW derivation of Sec. III
to the simpler case of NC pseudopotentials. First of all, there
is no equivalent to the integrals γ a

ij in the pseudopotential
framework, since there is no on-site representation of the
charge density. But the integrals βa , which measure the differ-
ence between the physical core electron+nucleus potential and
the pseudopotential, still exist. Therefore, setting the physical
potential to a zero average introduces an extra term in the
total energy. The core electron and nucleus electrostatic energy
reads

EZc
Coul = EEwald + EZα + E

(1)
PAW bg, (55)

where E
(1)
PAW bg has been defined in Eq. (39), and detailed in

Eq. (41). The origin of the usual terms EEwald and of EZα is
recapitulated in the Appendix.

The addition of E
(1)
PAW bg to the total energy does not

modify the total energy of a charge-neutral cell. However,
the potential as obtained from a functional derivative of the
energy with respect to the density is affected, since E

(1)
PAW bg

has a dependence on Nv . The additional contribution to the
potential vNC bg is a constant:

vNC bg = − 1

�

∑
a

βa. (56)

The calculation of the integrals βa is straightforward: It just
requires the knowledge of the physical frozen core electron
density. This piece of information is available during the
pseudopotential generation, but it is unfortunately generally
not stored in the pseudopotential files. It would be direct to
include it also.

Imagine now that the core density is much localized around
the nucleus. In this case, the core+nucleus potential would only
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FIG. 5. (Color online) NC formation energy Ef within LDA of
the unrelaxed doubly charged vacancy in diamond V 2+

C with the
Fermi level fixed at the valence band maximum as a function of the
cutoff radius of the local pseudopotential (l = 2), using βa = 0 (blue
diamonds), βa ≈ −αa (red circles), or explicitly calculating βa (black
squares).

slightly deviate from the point-charge potential Zion/r , as we
observed in the case of carbon in right-hand panel of Fig. 1.
Then the βa integrals would be very similar to αa integrals:

βa ≈ −αa. (57)

In this approximation, the following simplification occurs:

EZα + E
(1)
PAW bg ≈ Nv

�

∑
a

αa. (58)

The present derivation gives an a posteriori justification
for the total energy and potential formulas, which are written
in some textbooks [1,7] and used in some codes, such as
QUANTUM ESPRESSO [32].

B. Charged defect examples

We now test the effect of modifying the total energy and
potential expressions in NC calculations of the formation
energy of charged defects. Within the NC framework, it would
be perfection to hope to obtain the same results as with
reference AE calculations. However, it would be more realistic
to have a weak dependence of the physical properties upon the
pseudopotential details.

We consider in Fig. 5 a doubly charged vacancy V 2+
C in a

64-atom cubic supercell of diamond. For simplicity, the atoms
are not relaxed, the lattice constant is set to 6.75 bohrs, and
the cutoff energy is set to a very large value of 150 hartree.
The carbon pseudopotential that has been generated with the
Troullier-Martins technique [34] with a local component is
l = 2. As the carbon valence electrons have mainly a sp

character, a change in the d component of the pseudopotential
should only indirectly impact the physical properties. It is
interesting to focus on this particular defect which has been
recently shown to be out of reach of the usual correction
schemes due to its delocalized nature [14]. In Fig. 5, we
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FIG. 6. (Color online) NC formation energy Ef deviation within
LDA of the unrelaxed silicon interstitial Si4+

TC in cubic SiC with the
Fermi level fixed at the valence band maximum and in silicon-rich
conditions as a function of supercell size, using βa = 0 (blue
diamonds), βa ≈ −αa (red circles), or explicitly calculating βa (black
squares). This last curve has been chosen as a zero, so as to highlight
the difference between the implementations. The absolute formation
energy Ef shows the same behavior as in Fig. 4.

show the behavior of the formation energy of the charged
vacancy as a function of the pseudopotential cutoff radius r loc

c .
The usual expression, which sets the average pseudopotential
to zero (βa = 0), presents a strong dependence on r loc

c . If
the zero of the potentials is defined with point-charge nuclei
and core electrons (βa ≈ −αa), then the formation energy
is remarkably stable. Furthermore, it deviates only slightly
from the final results, which consistently set the origin of the
potential through the true core electron plus nuclei density
(actual calculation of βa). It could be argued that all these
changes have a small magnitude, however, the dependence on
the details of the local component of the pseudopotential is
clearly pathological.

Furthermore, when the defects involve adding or removing
atoms with a wider core electron density, the effects can be
significantly larger. Turning back to the silicon interstitial
Si4+

TC we used in the previous section, the added silicon atom
has a larger core consisting of ten electrons. Figure 6 shows
the difference in formation energy within LDA for the three
choices of the potential origin. For clarity, the formation
energy with an explicit calculation of βa has been set to zero.
The difference between the three schemes decreases as �−1,
however, for relatively large supercells (64–216 atoms), the
difference can be as large as 0.25–0.80 eV. Except for the
smallest supercell size, the approximation βa ≈ −αa is a very
decent approximation.

From these numerical applications, we conclude that it is
important to include the background term in the total energy
and in the potential. If the exact calculation of integrals βa ,
though simple to perform, is not available, the approximation
βa ≈ −αa also yields reasonable results.

VI. CONCLUSIONS

In this paper, we derived two additional terms in the
PAW energy of charged systems and in the PAW potential
of all systems in order to reconcile AE calculations and PAW
framework. These two terms [see Eq. (50)] arise from the
proper treatment of the compensating background density,
which is required by the use of periodic boundary calculations.

They are of a different nature. The first term measures
the difference between the average smooth pseudopotential
and the true physical nucleus plus the core electron potential.
This contribution is usually the largest. Though smaller, the
second term can also have a visible influence. The second
term measures the difference in potential induced by the
introduction of the compensation density n̂.

The correct inclusion of these two terms has two positive
consequences: It makes the PAW results directly comparable
with AE calculations, and it makes the PAW results less
sensitive to the PAW atomic data. We would like to stress
that the proper treatment of the background terms not only
affects the absolute energy values, but also impacts the physical
quantities that are extracted, such as the formation energy
or the relaxation volume of charged defects. The formation
energy of the charged defects in small supercells or with a
high charge state can be modified by several tenths of eV.
Though these differences could also be reconciled by a
potential alignment correction, a universal definition of the
potential alignment is still missing.

For consistency with AE calculations, the first background
term should also be introduced in the NC framework. This
explains why different plane-wave codes could produce
different physical results with the same pseudopotential data.
The inclusion of the background term in Eq. (55) yields a total
energy expression, which best approximates the AE results.
However, its impact is even larger than experienced in the
PAW framework. For the highly charged defect Si4+

TC in SiC,
the formation energy is still changed by 0.25 eV, even for the
216-atom supercell.
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APPENDIX: PSEUDO-ION/PSEUDO-ION INTERACTION

The expression for the pseudo-ion/pseudo-ion interaction
varies in the literature. This Appendix is meant to fix this
point.

The pseudo-ion/pseudo-ion repulsion energy is defined as

EZc
Coul = 1

2NR
〈ñ′

Zc,ñ
′
Zc〉 − 1

2

∑
a

〈
ña

Zc,ñ
a
Zc

〉
, (A1)

where ñZc and ña
Zc have been defined in Eqs. (23) and (24).

Indeed, it is sometimes written as the Ewald point-
charge/point-charge repulsion EEwald plus the celebrated Zα

term [8,20]. However, from some other sources, the Zα term
is replaced by an Nα term, with Nv replacing the Zion in
Eq. (35) [1,7]. We have stressed in Sec. II that once the Ewald
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convention has been chosen for the electrostatic interactions,
there should only be one expression for the total energy (the
unknown constant is fixed and the global dipole is assumed to
be zero).

Let us demonstrate here that the correct expression is
indeed the Zα with factor Zion. We have to bridge the
difference between the original charge distribution nZc, which
is a sum over atomic site contributions, and the point-charge
distribution used in the Ewald energy. The point-charge
distribution npc, which reads

npc(r) =
∑
Ra

na
pc(r − R − τa) (A2)

=
∑
Ra

−Za
ionδ(r − R − τa), (A3)

has the same multipole expansion as the original distribution
nZc, under the mild assumption that the PAW spheres are
nonoverlapping spheres. However, we have to then introduce
the compensating background both in n′

Zc and n′
pc.

Then transforming the term 〈ñ′
Zc,ñ

′
Zc〉, we write

〈ñ′
Zc,ñ

′
Zc〉 = 〈n′

pc,n
′
pc〉 + 〈ñ′

Zc − n′
pc,ñ

′
Zc + n′

pc〉. (A4)

In the last term, the backgrounds in ñ′
Zc − n′

pc compensate
and therefore the primes can be dropped there. As ñZc and

n′
pc are contained in the sphere and have the same multipole

expansion, only the on-site terms remain:

1

2NR
〈ñZc−npc,ñ

′
Zc+n′

pc〉= 1

2

∑
a

〈
ña

Zc − na
pc,ñ

a
Zc + na

pc

〉

+
∑

a

〈
ña

Zc − na
pc,

Zion

�

〉
, (A5)

where the backgrounds have been written explicitly. The last
term is precisely the Zα energy of Eq. (35).

Inserting the last equation in Eq. (A4), we obtain

1

2NR
〈ñ′

Zc,ñ
′
Zc〉 = 1

2NR
〈n′

pc,n
′
pc〉 − 1

2

∑
a

〈
na

pc,n
a
pc

〉

+ 1

2

∑
a

〈
na

Zc,n
a
Zc

〉 + EZα. (A6)

Reordering the terms in the last equation finally proves the
announced result:

EZc
Coul = EEwald + EZα. (A7)

The result that the factor in energy EZα is not Nv could have
been anticipated, since there is no reason to introduce the
number of electrons in the energy EZc

Coul that only depends on
the pseudopotential quantities.
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