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We include the treatment of quadrupolar fields beyond the Fröhlich interaction in the first-principles
electron-phonon vertex in semiconductors. Such quadrupolar fields induce long-range interactions that
have to be taken into account for accurate physical results. We apply our formalism to Si (nonpolar), GaAs,
and GaP (polar) and demonstrate that electron mobilities show large errors if dynamical quadrupoles are
not properly treated.
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The electron-phonon (e-ph) interaction plays a key role in
the description of various physical phenomena (e.g., elec-
tronic transport, phonon-assisted light absorption, phonon-
mediated superconductivity) [1]. In state-of-the-art ab initio
methods, the e-ph coupling is described within density
functional theory (DFT) by expanding the Kohn-Sham (KS)
effective potential [2] in the nuclear displacements, while
vibrational properties are obtained using density-functional
perturbation theory (DFPT) [3,4]. This DFPT-based com-
putational scheme enables the calculation of screened e-ph
matrix elements at a microscopic level with ab initio quality
[1]. However, accurate e-ph related properties require a
description of the coupling on very dense reciprocal-space
wave vector grids across the full Brillouin zone (BZ) thus
making direct ab initio e-ph computations in real materials
costly and sometimes even impracticable.
Despite formal differences in the treatment of the electron

wave function, all approaches proposed so far rely on the
spatial localization of the e-ph coupling to interpolate it with
respect to the phonon wave vector q [5–8]. The fundamental
physical assumption is that a relatively small real-space
supercell can capture the full strength of the coupling. For
metals this is trivial as screening lengths are very short.
However, in semiconductors and insulators, the incomplete
screening of the potential generated by the atomic displace-
ments leads to long-range (LR) interactions. For polar
materials, these interactions show up in the long-wavelength
limit (q → 0) for instance in the LO-TO splitting of the
optical frequencies [9] and the Fröhlich divergence of
the e-ph matrix elements [10]. The analytical treatment of
the LR dipole-dipole interaction to obtain a reliable long-
wavelength dynamical matrix was developed in the early

days of DFPT [3,4]. More recently, the Fröhlich contribution
to the LR e-ph matrix elements was generalized to aniso-
tropic materials [6,11], opening up a first avenue for
computations of e-ph effects in polar materials [1].
In this Letter, we go beyond these seminal contributions,

demonstrate the importance of the next-to-leading order
terms derived by Vogl [12], and explain their physical
origin. In this new approach, the LR contributions are
expressed in terms of the high-frequency dielectric tensor,
Born effective charges (dipole potential), dynamical quad-
rupoles [13,14] (quadrupole potential), and the response to
a homogeneous static electric field (local-field potential,
also quadrupolar) [3,4]. Despite their importance in
describing certain piezoelectric properties [13,15], quad-
rupolar interactions have never been considered in first-
principles e-ph calculations. In nonpolar materials,
dynamical quadrupoles represent the leading contribution
to the LR potential. Even in polar materials, where the
focus has been on the divergent Fröhlich interaction for LO
modes [11], the quadrupolar field dominates the LR
potential for the TO and acoustic modes [12].
We first describe the physical origin and LR nature of the

quadrupolar interaction. We then demonstrate that substan-
tial errors in carrier mobility in well-known polar and
nonpolar semiconductors are introduced if the quadrupolar
interaction is not properly accounted for.We show results for
the classical semiconductors Si, GaAs, and GaP. As quad-
rupolar interactions have not been considered so far, our
analysis indicates that many previous ab initio e-ph calcu-
lations for semiconductors should be critically reconsidered.
The key ingredients in e-ph computations are the coupling

matrix elements gmnνðk;qÞ ¼ hψmkþqjΔqνVjψnkiwith ψnk
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the nk Bloch state and ΔqνV the first-order variation of the
KS potential V due to a phonon mode of wave vector q
and branch index ν [1]. The scattering potential is defined as

ΔqνV ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ωqν

p X
κα

eκα;νðqÞffiffiffiffiffiffiffi
Mκ

p Vκα;qðrÞ ð1Þ

withωqν the phonon frequency and eκα;νðqÞ theαthCartesian
component of the phonon eigenvector for atom κ ofmassMκ

in the unit cell. Vκα;qðrÞ is the potential obtained from DFPT
[16]. Following the approach adopted in the literature [6,11],
Vκα;q is separated into short-range (SR, S) and LR (L)
contributions: Vκα;qðrÞ ¼ VS

κα;qðrÞ þ VL
κα;qðrÞ. The latter,

VL, is supposed to include all the LR components so that
VS is smooth in q space and therefore tractable with Fourier
interpolation. In the interpolation algorithm, VL is first
subtracted from the DFPT potentials, then the Fourier
interpolation is performed on the SR part only. VL evaluated
at the arbitrary q point is finally added back [17]. In polar
materials, the leading contribution to the LR part stems from
the diverging Fröhlich-like potential [6,11]:

VLðFÞ
κα;q ðrÞ ¼ 4π

Ω

X
G≠−q

iðqβ þ GβÞZ�
κα;βe

iðqηþGηÞðrη−τκηÞ

ðqδ þ GδÞϵ∞δδ0 ðqδ0 þ Gδ0 Þ
ð2Þ

with Ω the unit cell volume,G the reciprocal lattice vectors,
Z�
κ the Born effective charge tensor, ϵ∞ the high-frequency

dielectric tensor, and τκ the position of the κth atom in the unit
cell. The summation over repeated indices (β, η, δ, and δ0) is
implied in Eq. (2) and in the following, unless the sum is
explicitly written.
Most investigations so far have focused on the treatment

of Eq. (2). However, as discussed by Vogl [12] and derived
in a DFPT context in our accompanying paper [17], a
careful analysis of the asymptotic behavior of the scattering
potential in the long-wavelength limit reveals the presence
of additional LR terms besides Eq. (2). To the contrary of
the 1=q nature of Eq. (2), these additional terms are finite
for q → 0 but their nonanalytic behavior (angular disconti-
nuities) yields LR scattering potentials and associated e-ph
matrix elements even when the dipole interaction given by
Eq. (2) is properly accounted for. Both dipole and quadru-
pole terms can be included in the LR potential using the
generalized expression [17]:

VL
κα;qðrÞ ¼

4π

Ω

X
G≠−q

iðqβ þ GβÞZ�
κα;β þ ðqβ þGβÞðqγ þGγÞðZ�

κα;βv
HXC;Eγ ðrÞ þ 1

2
Qβγ

καÞ
ðqδ þ GδÞϵ∞δδ0 ðqδ0 þ Gδ0 Þ

eiðqηþGηÞðrη−τκηÞ; ð3Þ

whereQκα is the dynamical quadrupole tensor and vHXC;E is
the change of the Hartree and exchange-correlation poten-
tial with respect to the electric field E in Cartesian
coordinates. In Eq. (3), the term related to Qκα is nonzero
even in nonpolar semiconductors while the contribution
associated with E is present only in systems with nonzero
Born effective charges. A quadrupole can indeed appear
even in nonpolar situations: when mirror and/or inversion
symmetries are broken at a given atomic site, the charge
induced by atomic motion can acquire an inversion-even
and hence quadrupolar contribution. This quadrupolar
effect is even present in elemental crystals with vanishing
dipoles. This effect is illustrated in Fig. 1(a) reporting the
variation of the charge density induced by a single atomic
displacement in a 250-atoms supercell of Si. Such dynami-
cal quadrupoles should not be confused with the static
quadrupolar moment that characterizes certain molecules,
e.g., CO2 [18]. Regardless of its static or dynamic nature, a
localized charge quadrupole results in a LR scattering
potential that extends over many unit cells of the unper-
turbed crystal, see Fig. 1(b). In the region around the
displaced atom, this term is relatively small compared to the
SR part but it becomes the dominant contribution at large
distances. Its anisotropic and macroscopic character in
real space determines the q → 0 behavior of the e-ph
matrix elements in nonpolar materials, and constitutes an

important contribution in polar materials. By contrast, the
vHXC;E contribution is a secondary, indirect effect of the
Fröhlich interaction: a local-field potential modification
due to the charge density change induced by the Fröhlich
dipolar electric field. Thus, it vanishes when Z�

κ vanishes.

(a) (b)

FIG. 1. (a) Electronic charge density variation induced by a
single atomic displacement in Si, along the [100] direction of the
conventional cell (perpendicular to the represented plane).
Negative (positive) variations are shown in red (blue), while
green regions correspond to absolute values smaller than 10% of
the in-plane maximum. (b) Scattering potential induced by the
atomic displacement with the same color map as in (a). SR
dipolelike contributions are absent in this plane [19].
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There is no a priori rigorous justification for ignoring LR
anisotropic contributions to the e-ph scattering generated
by the quadrupolar terms. This is especially critical because
e-ph properties are rather sensitive to the behavior of the
potential in the macroscopic regime. We first gauge the
importance of these effects on the e-ph scattering poten-
tials. The effects on electron mobilities are discussed
afterwards. Our study is based on a new e-ph implementa-
tion in ABINIT detailed in our accompanying paper [17].
The numerical values ofQκα are computed using the recent
implementation of Royo et al. [13], now integrated with the
e-ph part of ABINIT [17,23–25]. Following previous works
[26,27], we treat the electron wave functions exactly and
employ a Fourier-transform-based scheme for the scatter-
ing potentials [26]. This avoids a transformation to local-
ized orbitals, and has the important advantage of being
systematic and automatic.
In Figs. 2(a) and 2(b) we plot the unit-cell averaged

lattice-periodic part of the scattering potential,

V̄κα;q ¼ 1

Ω

Z
Ω
drVκα;qðrÞe−iq·r; ð4Þ

for selected atomic perturbations in Si and GaAs, along a
high-symmetry q path. The exact DFPT results (blue lines)
are compared with those obtained with the models with
(green) or without (red) quadrupole corrections in Eq. (3)
[19]. In Si, the Born effective charges are zero and the
imaginary part of the potential does not diverge for q → 0
[see dashed lines in Fig. 2(a)]. In GaAs, the Fröhlich-like
model in Eq. (2) correctly describes the divergence of the
imaginary part of the potential close to Γ [see red dashed
line in Fig. 2(b)]. In both materials, however, the real part of
the potential (solid lines) presents discontinuities for
q → 0. Note that the Fröhlich term alone completely misses
this nonanalytic behavior. On the contrary, if the quad-
rupolar contributions are included through Eq. (3), the LR
model reproduces these discontinuities as shown by the
solid green lines in Figs. 2(a) and 2(b). Figure 2(c) shows
the real part of the average of the scattering potential in Si
interpolated from a 9 × 9 × 9 q-point grid onto the same q
path as in Fig. 2(a). If the LR quadrupolar terms are not
removed from the input DFPT potentials, Fourier aliasing
introduces unphysical sharp oscillations for small q (see red
line, FI). The correct behavior is obtained only when
quadrupolar contributions are properly treated (see green
line, FIþQ). In the latter case, small oscillations between
the ab initio q points are still visible when a 9 × 9 × 9 q
mesh is used. However, convergence studies [19] reveal
that these wiggles have a limited effect on the final electron
mobility (less than 0.5% difference between the mobility
obtained for a 9 × 9 × 9 and an 18 × 18 × 18 ab initio q
mesh) and they can be converged away.
It is worth stressing that these considerations hold

for any approach employing Fourier-based interpolations.

The discontinuity of the matrix elements at Γ and the
discrepancy between the interpolant and the exact DFPT
results in the region around Γ have already been noticed for
Si and diamond [8]. The resulting error was considered
harmless under the assumption that it is always possible to
improve the accuracy of the Fourier interpolation by
densifying the initial ab initio q mesh [8]. Unfortunately,
this assumption does not hold in the presence of such
LR behavior: using a denser DFPT mesh localizes the
sharp oscillations of the potential in a slightly smaller
region around q ¼ Γ [see red curve in Fig. 2(c)], but their
amplitude is proportional to the discontinuity [19]. In the

(a)

(b)

(c)

FIG. 2. Comparison of the unit-cell averaged exact DFPT
potentials (V̄DFPT, blue lines) with the models of Eqs. (2)
(V̄LðFÞ, red lines) and (3) (V̄L, green lines) in (a) Si and (b) GaAs.
We consider the first reduced component x̂ of the DFPT
potentials for (a) the Si and (b) the Ga atoms located at
(0, 0, 0). In (a), the red lines have been slightly shifted upwards
and downwards for readability. (c) Fourier interpolation of
the potentials shown in (a) with (FIþQ) or without (FI) the
treatment of the quadrupolar interaction, as explained in the text.
The potentials are given in hartree. The path has been sampled
with 278 q points. The gray areas around Γ represent the regions
relevant for intravalley scattering, as dictated by Eq. (5).
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Supplemental Material [19], we show that treating the
quadrupole interaction is also important when using a
Wannier-based interpolation scheme. This has also been
recently confirmed by Jhalani et al. [28].
At this point, we can quantify the error introduced by

these spurious oscillations in the final physical results, and
the importance of the quadrupolar interactions. Because of
intravalley transitions, the region around Γ (where the LR
interactions dominate) is usually one of the most important
for the description of e-ph scattering processes [17,19]. In
Fig. 2, the region around Γ relevant for intravalley scatter-
ing is represented by gray areas. An accurate description in
this region is crucial for reliable calculations of the phonon-
induced electron linewidths,

τ−1nk ¼ 2π
X
m;ν

Z
BZ

dq
ΩBZ

jgmnνðk;qÞj2

× ½ðnqν þ fmkþqÞδðεnk − εmkþq þ ωqνÞ
þ ðnqν þ 1 − fmkþqÞδðεnk − εmkþq − ωqνÞ�; ð5Þ

with ΩBZ the BZ volume, nqν and fmkþq the Bose-Einstein
and Fermi-Dirac occupation functions, and εnk the energy
of the electronic state nk. These linewidths are needed to
compute (phonon-limited) carrier mobilities within the self-
energy relaxation time approximation [1,17,29,30]:

μe;αβ ¼
−1
Ωne

X
n

Z
dk
ΩBZ

vnk;αvnk;βτnk
∂f
∂ε

����
εnk

; ð6Þ

where ne is the electron concentration and vnk;α is the αth
component of the velocity operator [17]. Splitting the sum
over ν in Eq. (5), one can obtain the partial mobility limited
by a single phonon mode. Figure 3 reports the error made

on these single-phonon-mode limited mobilities in Si, GaP,
and GaAs if quadrupole interactions are not properly
treated when interpolating the potentials on the fine q
mesh necessary for convergence [19]. The initial DFPT q
meshes are 9 × 9 × 9 for Si and GaP, and 6 × 6 × 6 for
GaAs. We note that these errors are not significantly
reduced by densifying the initial mesh if quadrupole
interactions are not treated [19]. In Si, the quadrupole
interaction mainly affects one of the optical modes. The
effect on acoustic modes is much smaller, as expected from
the quadrupole acoustic sum rule for nonpolar semicon-
ductors and already stressed by Vogl [12]. In contrast, in
GaP and particularly in GaAs, the acoustic modes are the
most affected. This is also expected since these modes are
dominated by the piezoelectric coupling related to acoustic
modes [12]. When considering the scattering by all phonon
modes, the error on the total mobility is around 10% in Si
and goes up to 32% in GaAs. The larger error in GaAs is
linked to its smaller effective mass and the presence of a
single valley at Γ hence most of the scattering for electrons
close to the band edge is intravalley with small q, see Fig. 2.
This shows the importance of the quadrupole interaction in
understanding the physics of all classes of e-ph scattering.
These errors on mobilities can be even more significant
than many-body effects (within the transport formalism
used in this work). Indeed, according to Poncé et al. GW
corrections of the KS band energies of Si increase the
electron mobility by 5% [30]. Electron-phonon calculations
are usually performed starting from coarse q meshes in
order to limit both the number of DFPT computations and
the cost of the interpolation itself, which quickly increases
with the number of q points in the initial ab initiomesh. It is
thus not surprising that this behavior has been largely
overlooked so far.
We can also gauge the relative importance of the

dynamical quadrupole and the electric-field terms in
Eq. (3). In nonpolar systems, Qκα is the only additional
quadrupolar term in the LR scattering potential. In the polar
systems investigated so far, we observe that Qκα gives a
larger contribution to Eq. (3) than the E term [19]. For
instance, ignoring the E term changes the electron mobility
in GaAs (GaP) by 0.1% (0.01%). In GaAs and GaP, one
could speculate that the E term is negligible for acoustic
modes, where the Fröhlich contribution exactly vanishes.
Additionally, vHXC;EðrÞ oscillates on the scale of the
interatomic distances, and couples more weakly to the
electronic orbitals than a macroscopic potential shift. In
the ionic limit, for example, one can expect vHXC;EðrÞ to be
antisymmetric around each atomic site, with a vanishing
diagonal matrix element for the corresponding symmetric
electronic orbitals. Generalizations of the predominance of
Qκα to other systems should be done with care. For
example, in many crystals without free Wyckoff parameters
(e.g., rocksalt or cubic perovskite) the quadrupole tensor
vanishes identically; thus, in such materials the E term

FIG. 3. Error on the single-phonon-mode limited mobility
when the quadrupole interaction is not correctly treated in Si,
GaP, and GaAs, for acoustic (blue) and optical (green) modes.
The error on the total mobility is given in black.
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remains the only source of nonanalytic behavior in the first-
order potential besides the Fröhlich divergence and could
lead to interesting physics. Note that this term is absent in
the contemporaneous analysis by Jhalani et al. [28].
We also note that Qκα introduces additional dipole-

quadrupole and quadrupole-quadrupole terms at the
dynamical matrix level, which have to be considered for
accurate phonon spectra, especially for small q where
artificial vibrational instabilities may appear [14,31]. These
higher-order terms have also been included in our calcu-
lations. In Si, GaAs, and GaP, they only change the
mobility by ∼1%, which is smaller than the effect of
the quadrupole potential, but still larger than the effect of
the electric-field induced local potential. However, we
cannot exclude that these contributions might be larger
for piezoelectric materials, in which spurious instabilities
may appear in the phonon dispersion [31]. More details
about the effects associated with the electric-field induced
local potential, to the dipole-quadrupole and the quadru-
pole-quadrupole interactions in the dynamical matrix are
discussed in the Supplemental Material [19].
In conclusion, we have included the treatment of quad-

rupolar fields, beyond the Fröhlich interaction, in the first-
principles electron-phonon vertex for semiconductors. By
their LR nature, a proper treatment of the quadrupolar fields
is necessary for the accurate description of e-ph quantities
such as the scattering potential and carrier mobilities.
Without treating quadrupolar interactions, large errors from
10% to 30% can be obtained in evaluating the mobilities of
polar and nonpolar semiconductors such as Si, GaP, or
GaAs. Taking into account very recent results on GaN and
PbTiO3 [28], we expect these additional contributions to be
relevant in a wide variety of materials. For instance, the
quadrupolar response is always present in piezoelectric
materials [13], where the piezoelectric constants are
uniquely defined by the dipole and quadrupole moments
[15]. These LR physical effects lead to important correc-
tions which can be even more significant than quasiparticle
corrections. Since LR macroscopic interactions play a key
role in semiconductor physics, we believe that the quest for
accurate ab initio descriptions of phonon-limited carrier
mobilities and other e-ph related properties should start
from a proper treatment of these physical phenomena.
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Note added—Recently, we became aware of a related work
by another group that reaches similar conclusions about the
importance of the dynamical quadrupole term to obtain an
accurate physical description of e-ph interactions [28].
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