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The ab initio prediction of Raman intensities for bulk solids usually relies on the hypothesis that the frequency
of the incident laser light is much smaller than the band gap. However, when the photon frequency is a sizable
fraction of the energy gap, or higher, resonance effects appear. In the case of silicon, when excitonic effects
are neglected, the response of the solid to light increases by nearly three orders of magnitude in the range of
frequencies between the static limit and the gap. When excitonic effects are taken into account, an additional
tenfold increase in the intensity is observed. We include these effects using a finite-difference scheme applied on
the dielectric function obtained by solving the Bethe-Salpeter equation. Our results for the Raman susceptibility
of silicon show stronger agreement with experimental data compared with previous theoretical studies. For
the sampling of the Brillouin zone, a double-grid technique is proposed, resulting in a significant reduction in
computational effort.
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I. INTRODUCTION

Raman spectroscopy is widely used to characterize materi-
als by means of their vibrational fingerprint. The dependence
of the Raman intensity on the frequency of the incident
light is well known. It is, for example, used to amplify the
Raman response, resulting in the appearance of a resonance
phenomenon when the frequency of the exciting light is close
to the electronic transitions.1 Unlike for molecules2,3 and for
graphene,4,5 the first-principles prediction of the frequency
dependence of the Raman intensity of crystalline systems has
received little attention.1

The Raman intensity is related to the derivative of the
macroscopic dielectric function with respect to collective
atomic displacements. Different first-principles formalisms
have been proposed for the computation of such a dielectric
function. These formalisms often trade computational speed
for predictive power, or vice versa. In the present study, a
method that provides an accurate description of the dielectric
properties of material was chosen in order to establish the
importance of different physical effects, and in particular,
excitonic effects.

Within the static limit (vanishing light frequency), the
dielectric response can be computed with density-functional
theory (DFT)6–8 followed by density-functional perturbation
theory (DFPT).9–11 Although DFT is plagued by the well-
known band-gap problem,8 its prediction of the static dielectric
tensor is reasonably accurate (to within 5–10%) except
when the gap is very small.12 Subsequent computation of
the derivative of the dielectric tensor with respect to an
atomic displacement can be performed by using either finite
differences13 or the 2n + 1 theorem of perturbation theory.14,15

Such a methodology has been applied in numerous studies.16,17

As an example, more than 200 Raman spectra are provided in
the WURM database.18,19

When the excitation frequency is comparable to the gap,
DFT becomes unreliable for the prediction of the dielectric
response. Not only does the proximity of the resonance
increase the need to rely on an accurate band gap, but excitonic

effects also drastically modify the optical properties of most
semiconductors.20 The band-gap correction is usually treated
within the GW approximation of many-body perturbation
theory (MBPT), while the Bethe-Salpeter equation (BSE) is
the method of choice to introduce excitonic effects.21,22 To
the best of our knowledge, the BSE has not yet been used
to compute Raman intensities of solids. The purpose of the
present work is to compute the Raman intensities using a
finite-difference approach that combines multiple BSE results
performed for different atomic displacements.

Excitonic effects can also be addressed within the frame-
work of time-dependent density functional theory.22–25 This
approach, which is computationally cheaper, also allows one
to include excitonic effects, with an accuracy that depends
on the choice of the exchange-correlation kernel. Recent
studies shows interesting agreement with experiment for the
macroscopic dielectric function (see, e.g., Ref. 26). This route
is not pursued in the present study. Instead we rely on the
best theoretical approach available today to compute the
frequency-dependent Raman intensities, and we examine its
predictive power in comparison with experimental data.

We chose to study silicon, for which the experimen-
tal frequency-dependent enhancement factor is particularly
strong. The available data cover the frequency range between
1.8 and 3.8 eV,27 and the experimental value of the direct gap
is at 3.4 eV. Due to the high symmetry of silicon, there is
only one Raman-active phonon mode, whose eigenvector is
determined by symmetry.

In Sec. II of this article, the theoretical basis needed for the
computation of the resonant Raman intensities is described,
taking into consideration the main equations of the MBPT
in the GW and BSE frameworks. Section III describes the
numerical procedure. In Sec. IV, the problem associated
with the slow convergence of results with respect to the
sampling of the Brillouin zone is analyzed. Section V presents
the theoretical results, including excitonic effects. Finally, in
Sec. VI, theoretical and experimental results for the silicon
Raman intensity are compared.
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II. THE COMPUTATION OF RESONANT RAMAN
INTENSITIES FOR SOLIDS

The scattering efficiency (time average of the power
radiated into a unit solid angle) of the phonon of frequency
ωm for a photon of frequency ωi is defined as15

I = (ωi − ωm)4|eo · αm · ei |2 nm + 1

2ωm

, (1)

with eo and ei the outgoing and ingoing polarization of the
light, and nm the phonon occupation factor:

nm = 1

eωm/kT − 1
. (2)

The complete field-theoretic expression for the Raman sus-
ceptibility αm(ω) is presented in Ref. 20. It includes six
terms, in which the frequencies ωm and ωi are combined in
different denominators, giving resonant as well as antiresonant
contributions. In the following calculations, we will use
the quasistatic approximation, which neglects the dynamical
effects due to the phonons. Mathematically, this approximation
is well-justified28 when

ωm � |ωi − ωgap + iη|, (3)

with ωgap the frequency corresponding to the direct band gap
and η the lifetime broadening of the gap.

In this framework, the Raman susceptibility αm(ω) for the
phonon m is defined as

αm
ij (ω) =

√
�0

∑
τβ

∂χij (ω)

∂Rτβ

um
τβ (4)

with �0 the unit-cell volume, χij the macroscopic dielectric
susceptibility, and um

τβ the eigendisplacement of phonon mode
m of atom τ in direction β. In the present work, we neglect
higher-order derivatives with respect to atomic displacements.
The eigendisplacements are normalized as∑

τ,β

Mτu
m
τβun

τβ = δmn, (5)

with Mτ the mass of atom τ .29 For more details about the
derivation of Eq. (1), we refer the reader to Refs. 15 and 28.

We define the Raman polarizability a as

a =
√

μ�0α (6)

with μ the reduced mass (in the case of silicon, μ = MSi/2).
When the incoming frequency ωi is close to the energy of

the direct gap, there is a resonant process and the amplitude of
χ (ωi) and αm(ωi) can change by several orders of magnitude.
The computation of the macroscopic dielectric susceptibility
χ (ωi) follows the standard procedure used in ab initio MBPT.
Two steps are needed: the computation of the quasiparticle
energies, followed by the computation of the dielectric
response of the material. The quasiparticle amplitudes ψ

QP
i

and the quasiparticle energies ε
QP
i are computed by solving

the following equation:(
−1

2
∇2 + Vext(r) + VH(r)

)
ψ

QP
i (r)

+
∫

dr′
(
r,r′; ω = ε

QP
i

)
ψ

QP
i (r′) = ε

QP
i ψ

QP
i (r), (7)

with Vext(r) the electrostatic potential of the ions and VH(r) the
Hartree potential originating from the electronic density n(r).
In Eq. (7), (r,r′; ω) is the self-energy, which, in the so-called
GW approximation, is given by

(r,r′; ω) = i

2π

∫
dω′G(r,r′,ω + ω′)W (r,r′,ω′), (8)

where G is the Green’s function and W is the screened
Coulomb interaction.22

In the second part of the calculation, we include excitonic
effects by working within the BSE framework.22 In this
framework, we introduce H , a two-particle Hamiltonian
that describes the interaction between electrons and holes.
In the transition space formed by products of two Kohn-
Sham orbitals, the BSE Hamiltonian has the following block
structure:

H =

⎛
⎜⎝

∣∣v′c′k′ 〉 ∣∣c′v′k′ 〉
|vck 〉 R C

|cvk 〉 −C∗ −R∗

⎞
⎟⎠, (9)

where v, c, and k denotes the valence-band index, the
conduction-band index, and the wave vector.

The resonant subblock R is Hermitian, and the coupling
term C is symmetric. Due to the coupling subblocks that con-
nect resonant and antiresonant transitions, the Bethe-Salpeter
Hamiltonian is not Hermitian. This complicates the solution
of the problem. In crystalline systems, however, the matrix
elements of C are usually much smaller than the matrix
elements of R. For this reason, the matrix elements of
C are usually neglected when solving the Bethe-Salpeter
problem in extended systems—the so called Tamm-Dancoff
approximation (TDA).30 This approximation is used in the
rest of this work.

The matrix elements of the resonant block are given by

R(vck),(v′c′k′) = H
diag
(vck),(v′c′k′) + H

exch,R
(vck),(v′c′k′) + H

Coul,R
(vck),(v′c′k′),

(10)

where

H
diag
(vck),(v′c′k′) = (εck − εvk)δvv′δcc′δkk′ , (11)

H
exch,R
(vck),(v′c′k′)

= 2〈vck|v̄|v′c′k〉
= 2

∫ ∫
ψvk(r)ψ∗

ck(r)v̄(r − r′)ψ∗
v′k′(r′)ψc′k′(r′)dr′dr,

(12)
H

Coul,R
(vck),(v′c′k′)

= −〈vck|W |v′c′k′〉
= −

∫ ∫
ψvk(r)ψ∗

v′k′(r)W (r,r′)ψ∗
ck(r′)ψc′k′(r′)dr′dr,

(13)

with v̄ the modified Coulomb potential, whose Fourier trans-
form does not contain the q = 0 component:

v̄(q) =
{

v(q) if q �= 0,

0 if q = 0,
(14)

094305-2



FIRST-PRINCIPLES STUDY OF EXCITONIC EFFECTS . . . PHYSICAL REVIEW B 88, 094305 (2013)

v(r) is the standard Coulomb potential:

v(r) = 1

|r| , (15)

W (r,r′) is the screened Coulomb potential:

W (r,r′) =
∫

dr′′ε−1(r,r′′)v(r′′ − r′), (16)

and ε−1(r,r′) is the inverse dielectric function. For the
derivation of Eqs. (11)–(16), we refer the reader to Ref. 22.

The dielectric susceptibility χ (ω) and macroscopic dielec-
tric function ε(ω) are then obtained from

ε(ω) = 1 + 4πχ (ω) (17)

= 1 − lim
q→0

v(q)〈P (q)|[(ω + iη) − H ]−1F |P (q)〉,
(18)

where η is a broadening factor, F is taking into account the
occupation numbers,

F =

⎛
⎜⎝

∣∣v′c′k′ 〉 ∣∣c′v′k′ 〉
|vck 〉 1 0

|cvk 〉 0 −1

⎞
⎟⎠, (19)

and

P (q)(n1n2) = 〈n2|eiq·r|n1〉 (20)

are the so-called oscillator matrix elements, where n1 and n2

are a shorthand notation for vck.
The random-phase approximation (RPA) is a simplification

of the BSE approach, in which the exchange31 and Coulomb
terms, Eqs. (12) and (13), are neglected. In the RPA, the
BSE Hamiltonian H is diagonal, and the spectrum is obtained
directly as a simple sum over transitions between valence and
conduction bands, weighted by the proper oscillator matrix
elements. In such an independent-particle approximation, no
excitonic effect is present. The importance of the excitonic
effect on the optical spectrum is well known, with prominent
peaks being created below the band gaps in most wide-gap
insulators or semiconductors, and redistribution of the spectral
weight.

III. NUMERICAL PROCEDURE

Calculations are performed using ABINIT.32,33 The pseu-
dopotential used to simulate the silicon atom is of the Troullier-
Martins type used in the Teter parametrization.

The density functional theory–local density approximation
(DFT-LDA) calculations are performed with a four-times-
shifted 4 × 4 × 4 Monkhorst-Pack grid to sample the Brillouin
zone (BZ),34 and a plane-wave basis set kinetic energy cutoff
of 16 Ha. The theoretical lattice cell for silicon is 10.20 Bohr,
which gives an error of 0.6% with respect to the experimental
results (10.26 Bohr).35 Using this theoretical lattice constant,
the DFT-LDA indirect gap is 0.45 eV, while the direct gap is
2.52 eV.

Quasiparticle corrections are computed within the so-called
one-shot GW or G0W0 approximation.21 We use a cutoff
energy of 8 Ha for the screening and 16 Ha for the self-energy
matrix elements. An extrapolar energy of 3 Ha is used to reduce

the number of bands needed to converge to 100 bands.36 The
computed GW corrections give a direct gap of 3.20 eV. These
results are comparable to other GW results37,38 and in good
agreement with the experimental band gap of 3.4 eV.39 During
the computation of the BSE optical spectrum, the opening of
the gap is simulated by a rigid scissor40 with a value of 0.65 eV
to reproduce the theoretical GW gap unless stated otherwise.

Convergence of the Bethe-Salpeter computations with
respect to the BZ sampling is particularly difficult, and is
discussed in the next section. The cutoff energies are 16 Ha
for the wave functions and 3 Ha for the screening. The included
bands range from the second to the ninth band. A broadening
factor of 0.1 eV is used for the dielectric function.

The quasistatic approximation that is used extensively
in this work is justified in the case of silicon since the
lifetime broadening (≈0.1 eV) is larger than the phonon
frequency ≈0.065 eV.28 In this quasistatic approximation,
two-band as well as three-band contributions to the resonant
Raman intensities are included, the latter coming from the
matrix element changes due to changes in the wave functions
produced by phonon-induced admixture of the two bands
under consideration with a third band.41

To compute derivatives with the displacements, we add
h × √

2/2 to the x position of the atom and −h × √
2/2 to

the x position of the other atom for different values of h. The
derivative is obtained by computing χyz(ω) for h = 0.01 and
0 in the convergence studies and is obtained by computing
χyz(ω) for h = 0.01 and −0.01 for the final result.

We have analyzed the behavior of the G0W0 scissor shift, as
a function of the frozen phonon amplitude. Because the Raman
amplitude corresponds to a first-order derivative with respect
to atomic displacement, see Eq. (4), we only have to consider
the linear response. For nondegenerate eigenstates, due to the
high symmetry of the crystals, such a derivative of the scissor
shift with respect to atomic positions vanishes. For degenerate
eigenenergies, linear variations of eigenenergies are present,
but the mean variation vanishes over the set of degenerate
states. Hence, the modification of the G0W0 corrections with
respect to atomic displacement does not have any effect on
the Raman intensity of silicon within the present formalism.
Of course, this is a very specific situation. For the analysis
of most other materials, the variation of the eigenenergies at
linear order will have to be taken into account.

As implemented in ABINIT, the BSE gives the macroscopic
dielectric function for a given q direction:

ε(ω,q) = qT ε̂q
qT q

, (21)

where ε̂ is the dielectric tensor.
Because of the symmetry of the tensor, the values of ε̂

for each pair of Cartesian coordinates may be obtained by
computing the macroscopic dielectric function for six different
directions q. The directions used in the calculations are (0,1,1),
(1,0,1), (1,1,0), (1,0,0), (0,1,0), and (0,0,1).

The macroscopic dielectric function [Eq. (17)] is computed
using the iterative Haydock technique.42 The algorithm is
terminated when a relative error of 1%, for the real and the
imaginary part of ε, is achieved for each frequency in the
frequency range under investigation.
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IV. SAMPLING OF THE BRILLOUIN ZONE

As mentioned previously, achieving converged results with
respect to the sampling of the Brillouin zone is a very
difficult issue. In particular, we will show in this section
that grids that are appropriate for obtaining a converged
macroscopic dielectric function in the whole frequency range
are not sufficiently dense for derivatives, such as the Raman
intensities, at least in the resonance region.

To accelerate the convergence of BSE spectra, shifted
homogeneous meshes are traditionally used. A symmetry-
breaking shift allows one to sample more nonequivalent points
and therefore leads to a more representative sampling of
the band dispersion: with respect to nonshifted meshes, its
presence lowers the computational load for an equivalent
convergence criterion.

To ease the discussion, we introduce specific notations. The
meshes are characterized by the number of divisions along each
axis of the primitive cell in reciprocal space, namely n1, n2,
and n3. For a crystalline cubic structure, these three numbers
are taken as equal (n1 = n2 = n3 = nk). The total number of
points inside this mesh is therefore Nk = n1n2n3 = n3

k . All the
points of the mesh are shifted by a certain vector characterized
by three real numbers si between −0.5 and 0.5, s = (s1,s2,s3).
This shift is such that the point (s1/n1,s2/n2,s3/n3) belongs
to the shifted mesh. We use the notation (n1 × n2 × n3|s) to
refer to such a mesh.

Figure 1 presents the macroscopic dielectric function (from
the BSE) for different grids with increasing numbers of
wave vectors, while Fig. 2 presents the corresponding Raman
intensity, both with excitonic contributions (BSE) and without
excitonic contributions (RPA). These grids, of size Nk , are
shifted by the vector s = (0.11,0.21,0.31) in reciprocal space
along a nonsymmetric direction.

As seen in Fig. 1, for the computation of the macroscopic
dielectric function, the oscillations present in the (10 × 10 ×
10|s) case are progressively damped when the density of the
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Dielectric response

FIG. 1. (Color online) Convergence of ε(ω) (BSE) with respect
to a traditional homogeneous sampling of the BZ. A shift s in a
nonsymmetric direction is used (see text). The number indicated is nk

and the grid is therefore (nk × nk × nk|s). The imaginary part is given
in blue while the real part is in orange-red. The full line corresponds
to the finest grid that we have used, with nk = 18. Oscillations
appear for energies larger than 3.2 eV, but are damped with
increasing nk .
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FIG. 2. (Color online) Convergence of |α|2 with respect to a
traditional homogeneous sampling of the BZ for (a) BSE and
(b) RPA. A shift in a nonsymmetric direction is used (see text). The
number indicated is nk and the grid is therefore (nk × nk × nk|s). The
convergence is difficult to achieve for energies larger than 3.2 eV.

mesh is increased and a (16 × 16 × 16|s) grid gives converged
results.

However, from Fig. 2, we observe that the convergence is
much more difficult for the square of the Raman susceptibility,
in the region beyond 3.2 eV (which corresponds to the optical
gap). Important features still change going from (16 × 16 ×
16|s) to (18 × 18 × 18|s). Interestingly, such a difficult conver-
gence is present both with and without excitonic contributions,
as exemplified by the upper and lower parts of Fig. 2.

With the method of shifted grids, convergence is not
achievable, given our computational resources, beyond 3.2 eV.
Indeed, the scaling of the method with respect to the sampling
of the BZ is O(N2

k ), with Nk the total number of k points in the
full BZ. With Nk = 183, the convergence is not yet reached.

In contrast, convergence is much better below the gap value.
In the next paragraphs, we first perform an analysis of the
convergence for such frequencies, then turn to the higher-
frequency part of the spectrum, for which we have developed
a double-grid technique.

A. The convergence below the band gap

To have a quantitative understanding of the convergence
in the low-energy part, we use a Taylor expansion and give
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TABLE I. Cauchy coefficients for ε and α within the BSE frame-
work [see Eqs. (22) and (23)]. The grids used are (nk × nk × nk|s).

nk 12 14 16 18

ε0 1.3276 × 10+1 1.3259 × 10+1 1.3256 × 10+1 1.3256 × 10+1

Cε
2 7.7792 × 10−1 7.7571 × 10−1 7.7527 × 10−1 7.7543 × 10−1

Cε
4 5.2340 × 10−2 5.2084 × 10−2 5.2020 × 10−2 5.2030 × 10−2

Cε
6 5.8317 × 10−3 5.7806 × 10−3 5.7638 × 10−3 5.7605 × 10−3

α0 2.5167 × 10−2 2.4464 × 10−2 2.4159 × 10−2 2.4027 × 10−2

Cα
2 4.8710 × 10−3 4.7337 × 10−3 4.6719 × 10−3 4.6460 × 10−3

Cα
4 5.7303 × 10−4 5.5503 × 10−4 5.4689 × 10−4 5.4347 × 10−4

Cα
6 1.2462 × 10−4 1.1894 × 10−4 1.1618 × 10−4 1.1491 × 10−4

coefficients similar to the so-called Cauchy coefficients for the
macroscopic dielectric function.43 Since the function is even
with respect to the frequency, we can expand the absolute value
of the Raman tensor and the real part of the dielectric function
with even powers of the frequency:

α(ω) = α0 + Cα
2 ω2 + Cα

4 ω4 + Cα
6 ω6, (22)

Reε(ω) = ε0 + Cε
2ω

2 + Cε
4ω

4 + Cε
6ω

6. (23)

The coefficients can be obtained by a least-square fitting of the
finite-difference results until 1.5 eV (see Table I).

The results of the fit obtained with this technique are
presented in Fig. 3. The range of validity of this fit goes beyond
2 eV. A fitting above 2 eV leads to oscillatory behavior in the
very low-energy range: the four-term expansion in Eqs. (22)
and (23) is not accurate enough to describe the higher-energy
part.

Cauchy coefficients are already well-converged for the 143

grid (within a few percent for the first and second ones).
However, such a fit does not correctly describe the resonance
close to the gap energy.

B. The convergence above the band gap

As mentioned earlier, we analyze the convergence of the
Raman intensities in both the BSE case [Fig. 2(a)] and in the

0 1 2 3 4
10-2

10-1

100

Energy (eV)

fit-BSE

fit-RPA

BSE

RPA

|α| (atomic units)

FIG. 3. (Color online) Comparison between the absolute value of
the Raman tensor obtained from the BSE and RPA, and their Cauchy
polynomial fits in the low-frequency part of the spectrum. Coefficients
have been obtained by fitting the data up to 1.5 eV for a uniformly
shifted 18 × 18 × 18 k-grid.

RPA approximation [Fig. 2(b)]. Both the RPA and the BSE
present similar difficulties to converge the final results. Hence,
we can conclude that the convergence issue is not primarily
due to the building up of the excitons that arises from the off-
diagonal couplings, but is already present at the independent-
particle level. Why the convergence rate in the case of Raman
susceptibility is smaller than in the macroscopic dielectric
function can be understood as follows. The imaginary part
of the dielectric function, for a given wave-vector grid, is
made of numerous broadened Dirac delta contributions, each
of which corresponds to one transition from a valence band
to a conduction band. For such a spectrum to look smooth,
the broadening should be comparable to the typical spacing
between delta functions. In contrast, the frequency-dependent
Raman intensity is obtained by differentiating the dielectric
function. Hence, the Raman intensity evolution corresponds to
the superposition of a large number of derivatives of broadened
delta functions, whose oscillatory character is much stronger
than the broadened Dirac functions. This is reflected at the
level of the Raman intensity.

Having identified the problem, we design another strategy
for sampling the BZ, which largely reduces the computational
burden and memory requirements. In the same spirit as Ref. 44,
but with a rather different implementation, we introduce a
double-grid technique.

We perform a set of BSE calculations, indexed by the label
i, each with the same number of points in the BZ forming a
“coarse” grid, differing by their shift si :

{k}i = (nk × nk × nk|si). (24)

The shifts si are chosen in order to obtain a homogeneous
sampling of the subspace between the coarse points:

{si} = (ndiv × ndiv × ndiv|h) (25)

with ndiv the number of subdivisions in each direction and h =
(1/2,1/2,1/2). A 2D schematic representation is illustrated in
Fig. 4.

FIG. 4. (Color online) Schematic representation of the sampling
of the BZ by a double-grid technique in two dimensions, with nk = 4
and ndiv = 2 (see text for notations). One BSE computation is done
on each grid (represented by four different colors in this picture).
The final result is obtained by averaging the n2

div = 4 different
computations.
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FIG. 5. (Color online) Convergence of |α|2 with respect to
the sampling of the Brillouin zone obtained with the double-grid
technique. The number indicates nk for the “coarse” sampling of the
Brillouin zone in each direction. A total of 64 points are sampled in
the subspace between the coarse points.

With this technique, the macroscopic dielectric function is
obtained by averaging the different results computed on the
“coarse” grids:

εav(ω) = 1

n3
div

∑
i

ε(ω|{k}i), (26)

where ε(ω|{k}i) is the macroscopic dielectric function ob-
tained for the “coarse” computation with the grid {k}i , Eq. (24).

Figure 5 presents the results obtained with different coarse
mesh samplings (different nk), averaging over 64 calculations
(ndiv = 4 is kept constant). Of course, when nk becomes very
large, the Raman spectrum must tend to the same spectrum
as without this double-grid technique. But the computational
effort is largely reduced. Indeed, the residual fluctuation when
going from nk = 14 to 16 can be seen to be rather small already.
In the RPA case, nk = 16 with ndiv = 4 corresponds exactly
to a [64 × 64 × 64|(1/2,1/2,1/2)] uniform grid, which would
be untractable in the BSE case. It is worth stressing that in
the current method, we can take advantage of symmetries to
reduce the number of “coarse” grid calculations, since some
meshes are equivalent. For example, the number of required
computations with ndiv = 4 falls to 20 for the case in which an
atom is displaced and to 10 for the equilibrium position.

V. ANALYSIS OF THE THEORETICAL RESULTS

In this section, we analyze in more detail the importance
of excitonic effects on the Raman spectrum. A comparison
between BSE and RPA results is reported in Fig. 6. Note how
the excitonic effects amplify the Raman intensity by more than
an order of magnitude in the band-gap region. Much smaller
amplifications are observed for low frequencies.

Since the integral of the imaginary part of the dielectric
susceptibility is related to the plasmon frequency ωp (the so-
called f -sum rule),45,46

∫ ∞

0
ω Im{εij (ω)}dω = 1

2
πω2

pδij , (27)
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FIG. 6. (Color online) Comparison of the frequency evolution of
|α|2 (in atomic units) with Bethe-Salpeter and RPA formalisms. The
inset shows the ratio between the two curves. The ratio goes up to 10
at the level of the direct band gap (3.2 eV).

and since ωp does not depend on atomic positions, the integral
of the imaginary part of the Raman susceptibility vanishes:

∫ ∞

0
ω Im{αij (ω)}dω = 0. (28)

Accordingly, negative and positive regions are present in
Fig. 7. On the basis of Eq. (28), we can see that the difference
between the BSE and RPA results for the Raman intensity is
due to the lowering of the energy and the amplification of the
main peak of the imaginary part of the Raman susceptibility.

In the approximation for which the atomic displacement
induces a global rigid shift of all the conduction bands with
respect to all valence bands, with energy �ε = εck − εvk (or,
alternatively, if one transition dominates), the derivative with
respect to an atomic displacement is related to the derivative
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FIG. 7. (Color online) Comparison of the imaginary part of the
Raman susceptibility and of the derivative of the susceptibility
with respect to frequency for the Bethe-Salpeter equation (BSE)
and for the random-phase approximation (RPA). These compu-
tations are achieved with the double-grid technique for nk = 16
and ndiv = 4.
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with respect to frequency by

∂χ

∂τ

∣∣∣∣
ω

≈ ∂χ

∂�ε

∣∣∣∣
ω

∂�ε

∂τ
= −∂χ

∂ω

∣∣∣∣
ω

∂�ε

∂τ
. (29)

This relation shows that the amplitude of the Raman effect
will follow the variation of the band structure with the atomic
displacement.1

As represented in Fig. 7, this approximation is only valid at
the onset of absorption. In this range of energies, the curves are
qualitatively on top of each other. This shows that the transition
corresponding to the energy gap dominates in this range of
energies. For higher energies, however, this approximation is
not valid since each band can contribute differently from other
bands in the Raman susceptibility.

VI. COMPARISON WITH EXPERIMENTAL DATA

Figure 8 shows the ab initio results for the Raman
susceptibility of silicon, and compares these results with the
experimental data obtained by Compaan and Trodahl,27 who
measured Raman intensity as a function of the frequency in
silicon. In this figure, the theoretical results are obtained with
a scissor value of 0.85 eV that reproduces the experimental
gap at 0 K (3.4 eV) instead of 0.65 eV, which reproduces the
theoretical GW gap (3.2 eV).

In terms of absolute value, the polarizability aBSE =
19.75 Å

2
obtained at 1.1 eV compares reasonably well

with the experimental data of 23 ± 4 Å
2
. The RPA value,

aRPA = 15.87 Å
2
, does not match the experimental value. This

confirms the need to correctly describe excitonic effects even
for energies well below the gap.

We can distinguish three different regions with different
behavior: the low-energy (preresonance) region, from 2 to

2 2.5 3 3.5 4 4.5 5
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100

101

102
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104

Energy (eV)
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RPA
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|α|2 (arb. un.)

FIG. 8. (Color online) Comparison of the theoretical and exper-
imental Raman susceptibility of silicon. The experimental gap is
reproduced by choosing a scissor value of 0.85 eV. A rigid energy
shift of −0.1 eV is applied to results called “BSE (a)” in order to
obtain “BSE (b).” The vertical values are given in arbitrary units in
Ref. 27. Therefore, these data are fitted to the BSE and to the RPA
by means of a multiplicative factor fixed to pass through the first
experimental point.
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FIG. 9. (Color online) Theoretical (BSE) and experimental ab-
sorption spectrum of silicon for 10 K and for 297 K.47

3.2 eV, the band-gap region from 3.2 to 3.5 eV, and the
higher-energy region beyond 3.5 eV.

The Bethe-Salpeter method allows for the reproduction of
the experimental amplification of the Raman susceptibility
with the frequency. Agreement using this method is signif-
icantly better than the agreement obtained by the RPA. In
the band-gap region, however, there is a discrepancy between
the theoretical and the experimental maximal Raman suscep-
tibility. The BSE maximum is nevertheless still closer to the
experimental maximum than the RPA maximum. Moreover, it
is important to note that the BSE theoretical results obtained
in this work are valid only at low temperature, whereas the
experimental data are measured at 300 K. The effect of the
temperature on the absorption spectrum is illustrated in Fig. 9,
where the first absorption peak at 10 K is brought to lower
energies at 297 K, in agreement with the gap narrowing. On
the basis of this observation, we can expect an improvement
in the agreement if temperature effects are included in the
ab initio calculations. As a first approximation, the effect of
temperature on the gap energy can be mimicked by a rigid
shift of the Raman intensity curve toward lower energies,
as shown in Fig. 8 for data called “BSE (b).” With this
correction, the agreement is highly improved in the low-energy
part of the Raman susceptibility. The amplification factor and
postresonance are, however, not significantly improved. We
attribute the disagreement to the different approximations we
have performed so far, in particular within the BSE framework
and the quasistatic approximation.

Our ab initio approach is not able to describe the higher-
energy region as well as the lower-energy region. Without the
temperature correction, the BSE theoretical results underesti-
mate the evolution of intensities in the preresonance region.
The inclusion of temperature leads to a partial improvement in
the overall agreement, except for the postresonance region.
The slope of decrease in the postresonance region is in
agreement with the experimental slope while the intensity
value is underestimated.

The present approach relies on several approximations,
whose roles still need to be analyzed. We have neglected,
among others, the phonon frequency in the “quasistatic”
approach, the quadratic response with respect to atomic
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displacements, the self-consistency with the GW approx-
imation, the non-Hermitian coupling within the BSE, the
frequency dependence of the BSE Hamiltonian, indirect
transitions, and the additional effects due to phonons (the
experimental data have been obtained at room temperature).
The latter effects could be included using a method similar to
the method presented by Marini et al.48 Calculations includ-
ing all these effects would require computational resources
unavailable to us at present.

Despite these effects, in all regions, the BSE results are in
better agreement with experimental data than the RPA results.
This clearly indicates the importance of excitonic effects for
an accurate ab initio description of Raman spectra.

Note also that silicon might possess specific characteristics
that induce the good agreement observed here with the
present method and associated approximations. Such a good
agreement might not be observed for materials with different
characteristics, such as a lower crystalline symmetry, the
presence of stronger spin-orbit coupling, the presence of some
ionicity, the presence of multiple types of atoms, etc.

VII. CONCLUSIONS AND PERSPECTIVES

A technique for the ab initio study of resonant Raman
intensity has been proposed and applied to silicon. The
technique relies on finite differences of the macroscopic
dielectric function evaluated for distorted geometries, and
it includes excitonic effects by solving the Bethe-Salpeter
equation. We found that convergence of the Raman spectrum
with respect to the number of wave vectors used to sample

the Brillouin zone is problematic. To tackle this problem, we
proposed a double-grid averaging process that significantly
improves convergence while keeping computational effort at
a reasonable level.

The Bethe-Salpeter results are in better agreement with
experimental results than those results obtained without
excitonic effects (RPA). For laser energies in the band-gap
region or lower, the agreement is excellent if one takes into
account the small rigid shift that is needed to align the first
peak of the theoretical dielectric absorption, as well as the
experimental shift for the same temperature as the Raman
spectrum. The agreement is still not perfect, however, in the
high-energy region. This may be attributed to many different
effects, which will be examined in future works.
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