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Abstract In a series of publications, Hardy Gross and co-workers have highlighted the interest of an “exact factoriza-
tion” approach to the interacting electron-nuclei problem, be it time-independent or time-dependent. In this approach
an effective potential governs the dynamics of the nuclei such that the resulting N-body nuclear density is in princi-
ple exact. This contrasts with the more usual adiabatic approach, where the effective potential leads to an approximate
nuclear density. Inspired by discussions with Hardy, we explore the factorization idea for arbitrary many-body Hamil-
tonians, generalizing the electron-nuclei case, with a focus on the static case. While the exact equations do not lead to
any practical advantage, they are illuminating, and may therefore constitute a suitable starting point for approximations.
In particular, we find that unitary transformations that diagonalize the coupling term for one of the sub-systems make
exact factorization appealing. The algorithms by which the equations for the separate subsystems can be solved in the
time-independent case are also explored. We illustrate our discussions using the two-site Holstein model and the quan-
tum Rabi model. Two factorization schemes are possible: one where the boson field feels a potential determined by the
electrons, and the reverse exact factorization, where the electrons feel a potential determined by the bosons; both are
explored in this work. A comparison with a self-energy approach is also presented.

1 Introduction

The quantummany-body problem [1,2,3] is challenging because
of the coupling between all constituents and associated dimen-
sionality curse. Many different approaches have been designed
to deal with this problem.Often, they benefit tremendously from
the possibility to separate a global system into different subsys-
tems. However, most often such a separation cannot be done
exactly, and coupling terms remain, which force some kind of
approximation. All embedding approaches, which are used in a
large variety of situations such as transport through molecules
coupled to leads [4], or the downfolding of electronic bands to a
Hubbard model used in dynamical mean field theory [5], make
use of the possibility to separate degrees of freedom approxi-
mately.

Considering the subsystems on equal footing, products of
functions from the independent basis sets can be considered: the
coupling term is either treated as a perturbation, or the whole
system is expressed in a (truncated) product basis set [6]. Alter-
natively, the system can be separated with a dissymmetric pro-
cedure, based on some physical consideration. In such case, one
system is handled under the condition of the other system being
in some state. An effective treatment for the former system ap-
pears, in which the degrees of freedom of the other system have
been integrated out. For example, when constructing pseudopo-
tentials [7] one separates the strongly bound core electrons from
the loosely bound valence electrons, which are responsible for
chemical bonding. In this approach, usually, the modification

and feedback of the core electrons due to the fact that the va-
lence electrons rearrange when the atoms join to form a cluster
or solid is neglected.

Perhaps the most well-known example of the dissymmetric
splitting route is the Born-Oppenheimer (BO) approximation,
see Ref. [8]: the electronic wavefunction and Hamiltonian de-
pend parametrically on the position of the nuclei, and generate
an effective potential for their dynamics. The BO approxima-
tion can be turned into an expansion, in which the total wave-
function is decomposed exactly in terms of different electronic
states, ground as well as excited, each depending parametrically
on the nuclei positions.

In view of retaining exactness as far as possible, still avoid-
ing perturbation theory or expansion over a basis set, Hunter [9]
had pointed out, for a general system and Hamiltonian, that a
splitting in term of a conditional amplitude (e.g. the electronic
wavefunction in case of the BO splitting) and a marginal am-
plitude (e.g. the nuclei wavefunction in case of the BO split-
ting) yields an exact effective equation for the marginal ampli-
tude, after integrating the conditional amplitude. However, an
equation for the latter was not given. By contrast, focusing on
the time-independent electron-nuclei system, Gidopoulos and
Gross [10,11] pointed out that, in this case, an effective equa-
tion also exists for the conditional amplitude, a result later ex-
tended to the time-dependent case in landmark articles [12,13]
by Abedi, Maitra and Gross. A Berry gauge field appeared in
the separate equations for the subsystems, also generalizing a
result from the adiabatic approach [14].
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These works have established the ‘exact factorization’ ap-
proach on firm grounds, for the treatment of electron-nuclei
non-adiabatic effects, and have been followed by numerous pub-
lications. Let us point out, among others, the reverse exact fac-
torization [15] in which the role of electrons and nuclei are
exchanged, the many-stage generalization of the conditional-
marginal splitting [16], the exact single-electron approach [17,18]
and, perhaps the most important achievement, the introduction
of a (semi-)classical treatment of the nuclei degrees of free-
dom, following Bohm [19], thanks to independent trajectories
(IT) [20,21] or coupled trajectories (CT) [22,23,24].

In the latter semi-classical treatments, electron-nuclei feed-
backs are incorporated, and treated beyond the adiabatic ap-
proximation, if not in an exact way. Although most of the ap-
plications focused until recently on simplified systems, like the
Metiu-Shin model [22], theH+

2 molecule [12,13], or the e⊗E
Jahn-Teller model [25,26], one year ago the photoinduced ring
opening process in oxirane has been studied successfully [24].
In the latter, the focus was on the analysis of decoherence ef-
fects, with clear improvement over other existing algorithms
such as Tully’s ‘fewest-switches surface hopping’ [27] or ‘cor-
rected’ versions of it [28] and, of course, over approaches in
which decoherence effects are ignored, like Ehrenfest dynam-
ics [29]. Another interesting area of application is the strong-
field dynamics of molecules. Indeed, the time-dependent po-
tential energy surface that emerges from the theory provides
a strong interpretive tool, as demonstrated in the analysis of
the charge resonance enhanced ionization [30,31], laser induced
electron-localization [32], and in the justification of the empir-
ical surface hopping method for the laser driven molecular dy-
namics [33]. For completeness, let us also mention the condi-
tional decomposition approach, as introduced by Albareda and
co-workers [34], whose conceptual differences with the exact
factorization approach is highlighted in Ref. [34].

Altogether, the ‘exact factorization’ approach appears hence
to be very promising, and it has attracted much attention re-
cently. Still, much remains to be explored. On one side, it is
interesting to put the idea of an ‘exact’ factorization into a more
general context, beyond the specific electron-nuclei problem:
after all, if no further requirement is specified, the separation of
a probability amplitude into a marginal one and a conditional
one is trivial and not useful per se. On the other side, this is in
any case a mere rewriting of the full many-body problem, and
only if clever approximations are made, one can expect to gain
something on the practical side. The question is then whether
the approach does indeed suggest such clever approximations.

Another interesting question is to compare with what is also
very often done to deal with the coupling problem, namely, a
formulation in terms of a frequency-dependent self-energy or
effective interaction [1,2,3,4], which can represent a missing
region of space, missing bands, missing excitations, and much
more. The frequency-dependence of the self-energy is a cru-
cial ingredient, and when a static self-energy appears in an ap-
proach, this is in general a rough approximation. The factoriza-
tion approach, instead, does not make any additional frequency-
dependence appear. How canwe situate the frequency-dependent
self-energy with respect to the frequency-independent factor-
ization approach? This is a question that Hardy Gross has put

forward a few years ago, and it seems appropriate to include this
discussion in a birthday paper.

The present work is intended to contribute to these various
discussion points. In order to elucidate general features of the
approach, we mainly work with a time-independent hamilto-
nian, but as we will see, this does not hamper the generality of
our discussion, and indeed, we will also touch upon the time-
dependent extension. The general discussions directly linked to
the exact factorization are contained in Sec. 2. In Sec. 3 we il-
lustrate our points by performing exact and approximate calcu-
lations of the electron and boson densities of simple electron-
boson couplingHamiltonians, the two-site Holsteinmodel [35,36],
and the quantum Rabi Hamiltonian or two-level pseudo Jahn-
Teller model [37,38,39,40,41,42,43]. which leads to further dis-
cussions, especially concerning possible approximation schemes.
We do not aim at providing breakthrough in the exact factor-
ization area of research, but to mention some relatively less-
explored paths. Of course different Hamiltonians may suggest
different approximation strategies; however, these examples are
meant to give a feeling for the way one might want to deal with
the various problems that can appear.

2 General formalism

2.1 Wavefunction and density

Let us consider systems for which two components can read-
ily be identified. This might be because we have objects of two
kinds, b and c, that are distinguishable. More generally, for a
two-component system, a complete basis for the full wavefunc-
tion is formed by products of the separate basis elements for the
two components:

|N〉 =
∑
ij

Cij|i〉|j〉, (1)

where the vectors i and j label the sets (i1, i2, ....iNi) and (j1, j2, ....jNj )
of quantum numbers that define a basis element in the space
of the first and second component, respectively. In the case of
fermions, these basis elements can be the Slater determinants
built with single-particle states labeled by iki and jkj . In the
electron-nuclei case expressed in real space, the basis is com-
posed of delta-functions, and ik labels the 3 cartesian coordi-
nates of electron k, whereas j` stands for the 3 cartesian coor-
dinates of nucleus `; in that case, Cij corresponds to the many-
body wavefunction in real space.

We now make an ansatz of factorization of the coefficients
C that reflects the idea of conditional and marginal probabili-
ties:

Cij ≡ πijpj. (2)

This ansatz is trivially exact if we chose p = 1, π = C. How-
ever, in the spirit of the exact factorization here we demand that

∑
j

|pj|2 = 1 and
∑
i

|πij|2 = 1 for all j.

(3)
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The latter sum, valid for all j is often referred to as a partial
normalization condition. Since

∑
ij |Cij|2 = 1, the conditions

Eq. (3) can indeed be fulfilled, e.g. using the choice

pj = eiα(j)
√∑

i

|Cij|2, (4)

where the phase factor α(j) is a real function. |pj|2 is the prob-
ability to find the system with its second component in state j,
irrespective of the value of i, which is a marginal probability.
|πij|2 is the conditional probability to find the first component
of the system in state i, if the second component is in state j.
We will refer to the component pj as being the marginal ampli-
tude of the wavefunction, and the component πij as being the
conditional amplitude of the wavefunction.

Of course, at variance with such choice of p and π, wemight
have exchanged themarginal and conditional amplitudes, switch-
ing the role of i and j. This possibility constitutes a first ‘varia-
tion’ on the exact factorization theme.

There is another obvious degree of freedom, associated with
the separate choices of basis sets for the i and j components. In-
deed, the total wavefunction is left invariant under unitary trans-
formations of the basis functions. One can consider invariance
with respect to the i component,

|N〉 =
∑
ij

Cij|ij〉

=
∑
ij

(
∑
ĩ

U∗
ĩi
Cĩj)(

∑
ĩ′

Uĩi′ |̃i
′j〉) =

∑
ĩj

C̃ĩj |̃ij〉, (5)

or similarly, with respect to the j component.
Another choice, a third ‘variation’ in the exact factorization

theme is to consider the static case or the time-dependent case.
All these are moreover subject to the freedom to choose the

phase of pj and πij , provided the coefficients C are left invari-
ant,

Cij = πijpj = (e−iθjπij)(e
iθjpj) = π̃ijp̃j, (6)

where θ is a real-valued function.
In the case of two kinds of distinguishable particles, we de-

note the creation operator of the first family with c†i , whereas the
creation operator of the second family is b†j . The many-body ba-
sis of the coupled system of N = Nc + Nb particles is the set

|ij〉 = c†i1 ...c
†
iNc

b†j1 .....b
†
jNb
|0〉, (7)

where the is are all different when the c† create fermions, whereas
they can be equal in the case of bosons; the same holds for the
b†. The vacuum |0〉 = |0〉|0〉 is the product of the c- and the
b-vacuum. Therefore the many-body wavefunction reads

|N〉 =
∑
j

pj b
†
j1
.....b†jNb

∑
i

πij c
†
i1
...c†iNc |0〉. (8)

Let us now calculate static correlation functions. We start with
the usual definition of a density matrix for the species c,

nk` ≡ 〈N |c†kc`|N〉. (9)

We now commute the operators such that all b’s are on the left
and all c’s on the right. Since the number of b’s and c’s is con-
served, inserting the identity equals inserting |0〉〈0| between the
two groups of operators. The expectation value of species b in-
tegrates out:

〈0|bjNb .....bj1b
†
j′1
.....b†j′Nb

|0〉 = δj,j′ , (10)

where permutations in the index vectors are allowed. The result
is

nk` =
∑
j

|pj|2
∑
ii′

π∗ijπi′j〈0|ciNc ....ci1c
†
kc`c

†
i′1
...c†i′Nc

|0〉.

(11)
Non-zero contributions are given by ` ∈ i′ ∧ k ∈ i. Moreover,
for ` = i0 and k = i′0 we must have i = i′ for all other (ex-
cluding i0, i′0) elements of the index vectors. This is the usual
expression for the density matrix of species c, except for the
fact that in absence of coupling to the species b the coefficients
π would not depend on j. The dependence on j can be trans-
lated as “what is the density matrix of c when species b is in the
configuration j?”.

Up to here, not much seems to be gained: we need both the
p and the π in order to calculate the density, in other words, we
need the full wavefunction. However, suppose now that we are
interested in the one-body density matrix of species b. It reads

nbk` ≡ 〈N |b
†
kb`|N〉

=
∑
jj′

p∗j pj′
∑
i

π∗ijπij′〈0|bjNb ....bj1b
†
kb`b

†
j′1
...b†j′Nb

|0〉,

(12)

since now we have δii′ . For ` = k, only j′ = j contributes.
Therefore, the normalization condition for the π can be applied.
The final result is

nbk = N
∑

j2,...jN

|pkj2....jN |2, (13)

i.e., the (generalized) density (or, equivalently, two-body or higher
order densities for the species b) for the marginal amplitude can
be calculated from the coefficients p alone. This is of course also
directly obtained from Eq. (4), since by definition pj is, besides
a phase factor, the square root of the Nb-body density matrix.
However, the derivation above is instructive, since it shows why
this simple relation is not true for the off-diagonal elements of
the density matrix, or for any other observable, besides func-
tions of the density. It is very important to stress this fact, since
it delimits the scope of the exact factorization scheme, at least
in its present form.

2.2 Equation for the marginal amplitude

The next step is to consider a time-independent Schrödinger
equation, and to proceed to the separation between the marginal
and conditional amplitudes. We start from

H = cH + bH + cbH, (14)
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where cH acts only on the i set of orthonormal basis functions,
and bH acts only on the j set of orthonormal basis functions.
In the distinguishable particle case introduced in the previous
subsection, cH contains only combinations of operators c, c†,
bH contains only combinations of operators b, b†, and cbH con-
tains the mixed terms. Written in the basis Eq. (7), this leads to
a Schrödinger equation∑

i′j′

H i′j′

ij Aνi′j′ = EνA
ν
ij, (15)

where we can separate the hamiltonian in the three contribu-
tions:

H i′j′

ij = cH i′

i δjj′ + bH
j′

j δii′ + cbH
i′j′

ij . (16)
Following Hunter [9], we act on the Schrödinger equation with∑

i π
∗
ij. This yields∑

i

π∗ij
∑
i′j′

[cH i′

i δj,j′ + bH
j′

j δi,i′ + cbH
i′j′

ij′ ]πi′j′pj′

= E
∑
i

π∗ijπijpj, (17)

where we have dropped the state index ν. Using the normaliza-
tion Eq. (3) we obtain∑

j′

H
j′

j pj′ = Epj, (18)

where the overline indicates π-weighted contraction with re-
spect to the i and i′ indices,

H
j′

j ≡
∑
i

π∗ij
∑
i′

[
cH i′

i δjj′ + bH
j′

j δii′ + cbH
i′j′

ij

]
πi′j′ . (19)

We have hence found, with Eq. (18), an effective Schrödinger
equation for the component j alone, where i is completely inte-
grated out. It contains three terms, the first of which is diagonal
in j,

cεj ≡
∑
ii′

π∗ij
cH i′

i πi′j, (20)

while the two others terms couple the j states,

bH
j′

j ≡ bH
j′

j

∑
i

π∗ijπij′ , (21)

and
cbH

j′

j ≡
∑
ii′

π∗ij
cbH

i′j′

ij πi′j′ . (22)

The diagonal elements of both bH and cbH , that are in-
variant with respect to phase changes (see Appendix A), can
be combined with cεj to define an overall diagonal term

εj ≡ cεj + bH̄j
j + cbH̄j

j . (23)

The final effective Schrödinger equation for the marginal
amplitude pj writes

εjpj +
∑
j′ 6=j

(bH
j′

j + cbH
j′

j )pj′ = Epj. (24)

This equation is phase-contravariant, thanks to the combined
use of Eqs. (131), (132) and (133), while the diagonal term
and eigenenergy are phase-invariant.

An important class of hamiltonians is given by the casewhere
the cb-coupling is potential-like, namely cbH i′j′

ij = cbHijδii′δjj′ .
In that case, the coupling between the two systems merely adds
the potential energy surface εj with respect to the π-weighted
bH:

εjpj +
∑
j′ 6=j

bH
j′

j pj′ = Epj. (25)

Actually, this also holds if cbH is diagonal only in j, but not in
i. This will be further elaborated in Sec. 2.6.

2.3 Equation for the conditional amplitude

Beyond the work of Hunter [9], who wrote the equation corre-
sponding to Eq. (18), two routes are possible in order to obtain
an equation for π. The simplest one comes from the division of
Eq. (15) by pj, ∑

i′j′

( 1

pj
H i′j′

ij pj′
)
πi′j′ = Eπij, (26)

which might not be always possible, however. We will denote
generically by the letter ‘h’, matrix elements of H or its com-
ponents pre-divided by pj and post-multiplied by pj′ , giving∑

i′j′

hi
′j′

ij πi′j′ = Eπij. (27)

Such an equation is however as complex as the original one,
Eq. (15), as the conditional amplitudes π are as numerous and
as tightly coupled as the original C. The Hamiltonian h is even
not hermitian anymore. Still, now, different approaches and ade-
quate approximations could be considered separately for Eqs. (24)
and (27), allowing new strategies. However, it is not obvious
how to handle the coupled Eqs. (24) and (27) for p and π, with
the same total energy E appearing as eigenvalue, especially
when different approximations are done on the two equations.

This latter problem can be solved easily. Indeed, E can be
eliminated from Eq. (27) by using Eq. 18 divided by pj, then
Eq. (23), giving∑

i′j′

(
hi

′j′

ij − h̄jδii′δjj′
)
πi′j′ = εjπij. (28)

Generically, h̄ will denote H̄ matrix elements pre-divided by
pj, post-multiplied by pj′ , and summed over j′ except j:

hj ≡
1

pj

∑
j′ 6=j

H
j′

j pj′ . (29)

Note that hj is phase-invariant.
Before detailing the corresponding equations in terms of

cH , cH , and cbH , let us explain the second route. We consider
the well-known stationarity property for the expectation value
ofH with respect to constrained variations of the wavefunctions
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Cij. FollowingGidopoulos andGross [10,11], when the decom-
position Eq. (2) is considered, j-specific Lagrange parameters
λj appear, each of these corresponding to the j-associated nor-
malization constraint for πij, Eq. (3), as well as a global La-
grange parameter Λ associated with the marginal amplitudes,

EL[πij, pj, λj, Λ] =
( ∑

ij

∑
i′j′

π∗ijp
∗
jH

i′j′

ij πi′j′pj′

−
∑
j

λj
(∑

i

|πij|2 − 1
)

− Λ
(∑

j

|pj|2 − 1
))
, (30)

whereEL denotes the Hamiltonian expectation functional, aug-
mented by the Lagrange terms.When πij and λj are solutions of
Eq. (15) and fulfill the adequate normalization conditions, then

δEL[πij, pj, λj, Λ] = 0. (31)

Variation of Eq. (30) with respect to p∗j and π∗ij yields

(∇Lp )j =
∂EL

∂p∗j
=
∑
j′

H
j′

j pj′ − Λpj (32)

(∇Lπj)i =
∂EL

∂π∗ij
=
(
p∗j
∑
i′j′

H i′j′

ij pj′
)
πi′j′ − λjπij. (33)

Requiring Eq. (32) to vanish, following Eq. (31), yields Eq. (18).
Requiring Eq. (33) to vanish, then dividing it by |pj|2 -which
might not always be possible-, yields an equation for πij∑

i′j′

hi
′j′

ij πi′j′ = λ′jπij, (34)

withλ′j = λj/|pj|2. Apparently, this equation differs fromEq. (27).
However, pre-multiplication by π∗ij and elimination of λj′ yields
the same Eq. (28), that can be written more explicitly in terms
of its components,∑

i′

cH i′

i πi′j +
(∑

j′

bh
j′

j πij′ − bhjπij

)
+
(∑

i′j′

cbh
i′j′

ij πi′j′ − cbhjπij

)
= εjπij. (35)

Globally, Eq. (35) is phase-covariant. Since the outcome of the
two routes is the same, one might wonder why to bother about
the variational approach. Actually, the latter provides an insight
on how to actually solve the coupled marginal and conditional
equations, as we shall see later.

Eq. 35 can be further simplified by considering specificities
of the Hamiltonian, like the above-mentioned diagonal charac-
ter of the cbH component of the Hamiltonian, or the smallness
of the nuclei kinetic energy, due to the large nuclei-electron
mass ratio. Before detailing such simplifications, let us analyze
some global properties of the coupled equations Eqs. (24) and
(35), and discuss what might have been gained at this global
level.

2.4 Coupling of the marginal and conditional equations

In the general case, there is a feedback from the marginal equa-
tion to the conditional equation, and vice-versa, as the matrix
elements found in one equation have been built from the knowl-
edge of the wavefunction from the other equation. Of course,
there are specific cases where the separation is perfect, see an
example in Sec. 3.6, or where the specificities of the Hamilto-
nian allows one, as a reasonable approximation, to discard the
coupling, or to treat it as a perturbation on the basis of the sep-
arated entities.

Let us focus, however, on the exact factorization feedback
process, and the algorithm by which one can address the joint
handling of Eq. (24) and Eq. (35), each of these being possi-
bly approximated, albeit not suppressing the feedback loop. In
the exact factorization spirit, one might consider solving them
sequentially, by an iterative process. Updating them in parallel
should be considered as well. These two possibilities constitute
new variations of the theme.

As a starting point of a sequential iterative approach, one
might consider an ansatz for the pj, to be used to build thematrix
elements of Eq. (35). However, none of them can be zero as
already outlined. Even if none of them vanishes, perhaps having
some of them small might be problematic, as some h elements
might become unphysically large to start an iterative procedure.

The alternative route is more appealing. It consists in con-
sidering an ansatz for πij, that fulfills the partial normaliza-
tion conditions Eq. (3), building the matrix elements needed
in Eq. (24), solving it, and then coming back to Eq. (35).

Still, the division by pj needed to obtain the matrix elements
in Eq. (35) might not be eliminated. Considering first a discrete
j-set, some of the pj of the final solution might be exactly zero,
either accidentally or due to some symmetry properties of the
Hamiltonian. In the latter case, the set of vanishing pj might
possibly be determined a priori, and actually discarded from the
admitted set of j, because all correspondingCij vanish. We will
encounter such a case in Sec. 3.7. If the vanishing is acciden-
tal, we remark anyhow that Cij = 0 as well, which means the
sum in Eq. 26 also vanishes. All the corresponding πij are un-
determined, but do not diverge due to their normalization. This
might possibly yield convergence problems, or difficulties with
approximations that would not preserve the indeterminacy. It is
a potential problem, to be treated on a case-by-case basis. The
problem is even more acute in the case of a continuous j-set, as
the marginal amplitudes cannot change sign without vanishing
(in the real case). At the sign change, the off-diagonal elements
diverge. This problem goes away if pj never vanishes.

If one now supposes that the set of pj does not vanish, nei-
ther at initialization nor during or at convergence, one will face
the challenge to solve Eq. (35), at fixed values of pj: a set of
coupled equations, each j-equation being possibly considered
as stand-alone, with the two terms in parentheses giving the in-
fluence of j′ on the j quantities. Onemight consider thus solving
one j-equation under the condition of fixing the π for all j′ 6= j.
The set of π-equations could be either addressed sequentially
or in parallel. Numerical experimentations, to be described in
Sec. 3.8, have alerted us on the inherent instability of such a
fixed j′ approach to the j-equation.
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Indeed, with the appearance of bhj
′

j and bchi
′j′

ij , the equa-
tion (35), which is to be solved for each j separately is not any
longer a usual Schrödinger equation. Fixing the j′ terms in the
left-hand side gives an equation of the type

Ax+ y = εx (36)

under constraint x†x = 1, whose peculiar mathematical struc-
ture is analyzed in Appendix B. As explained in Sec. 2.7, its
time-dependent generalization has the mathematical structure
of a time-dependent Schrödinger equation with an inhomoge-
neous term. Remainingwith the time-independent Eq. (36), Ap-
pendix B shows that the effect of a change of y can be amplified
largely, in the case ε is close to one of the eigenvalues of A.
Thus, addressing such j-coupled equations in an iterative fash-
ion (be it sequential or parallel), in which the solution of one
equation at one specific step will be fed into the other equations
for the next step, without specific treatment (e.g. without damp-
ing) might naturally lead to difficulties in convergence (see e.g.
Ref. [44]).

Instead of solving for πij with fixed j′ conditions, one can
update all the π jointly, under the guidance of the variational
principle Eq. (31). Such procedure is inherently more stable. In
addition, a variational principle gives not only equations to be
fulfilled at the minimum, but also gradients to be followed when
one is not yet at convergence, thus providing an iterative flow,
similar to the time-dependent case of Sec. 2.7. Among the op-
timization algorithms that have been designed to address such
non-linear optimization problems, the preconditioned conjugate-
gradient algorithm enjoys stability, unconditional convergence,
optimality in case of purely quadratic problems, with affordable
overhead linked to accurate line minimization for non-linear
problems, see Refs. [45] and chapter 10 of [46]. We will use
such algorithm in Sec. 3.8. In view of this application, we derive
now the so-called preconditioned gradientsGL of the Lagrange
functional EL Eq. (30), generalizing the results of Refs. [47]
and [48]. Preconditioning is the application of a transformation
of the search space, that has the goal to reduce the condition
number of the problem, i.e. to make the search direction from
the starting state closer to the direction of the minimum[48,44].

Concerning the marginal amplitudes, we define P⊥p, the
projector on the subspace orthogonal to p,(

P⊥p

)j′
j

= δjj′ − pjp∗j′ . (37)

We define also the preconditionerK−1
p

, where theK
p
operator

is an approximation of P⊥pH P⊥p. Since the dimensionality
of the search space can be huge, such operator should be nu-
merically easy to invert, which is usually obtained by taking a
diagonal or quasi-diagonal approximation. In Sec. 3.8 we will
use the diagonal approximation. The preconditioned gradient
for p, orthogonalized with respect to p, writes

Gp = P⊥pK
−1
p
∇Lp . (38)

In the present notations, ∇Lp = P⊥pHp. Line minimization
is performed in the one-dimensional space obtained by mixing

the initial state with this preconditioned gradient direction, fol-
lowed by normalization of the trial new p states. Note that the
normalization is preserved at first order thanks to Eq. 37.

Similarly, we introduce P⊥πj, the projector on the subspace
orthogonal to πj inside the i-space,(

P⊥πj

)i′
i

= δii′ − πijπ∗i′j, (39)

as well as a j-diagonal preconditioner K−1
πj

, where K
πj
is an

approximation of P⊥πjh
j

j
P⊥πj that is easy to invert. We will

use the diagonal elements of hj
j
in Sec. 3.8, with an additional

global shift to guarantee the strict positive definiteness of this
matrix, thus avoiding a potential problemwithmatrix inversion.
The preconditioned gradient for πij writes

Gπj = P⊥πjK
−1
πj
∇Lπj. (40)

Note that contributions from πij′ are needed to compute∇Lπj.
Having defined the preconditioned gradients, they can be

used in different flows. A first possibility is to find the station-
ary points of Eq. (30) by simultaneous line optimization over
all pj and πij, concurrently, using e.g. the steepest descent al-
gorithm or the conjugate gradient algorithm [47,48]. Another
possibility, that we will follow in Sec. 3.8, is to optimize all pj
at fixed πij, then optimize all πij at fixed pj, and then iterate.

As a final remark on the coupling between marginal and
conditional equations, note that the diagonal term εj appearing
in Eq. (23) is not uniquely defined, as a redefinition

εj → ε′j = εj +∆j (41)

is possible, by which quantities that are multiple of the unit op-
erator in the i space and diagonal in the j space are transfered
between Eqs. (24) and (35).

2.5 Did we gain something ?

Despite its phase-dependence, Eq. (18) (or Eq. (24) that governs
the marginal amplitude, is appealing, since the complexity of
the original problem, with the two components i and j, has been
reduced entirely to a problem for the component j only, provided
one can compute the matrix elements bHj′

j and cbHj′

j .
By contrast, Eq. (35) is as complicated as the original Eq. (15),

because, in the general case, the cb term, that contains cbhi
′j′

ij ,
couples all pairs of πij, linking i and i′ as well as j and j′. The
b term, that contains bhj

′

j is potentially less harmful, since it
does not couple pairs of πij with differing i components. Still,
no direct reduction of the workload is achieved, even if a clever
numerical approach is used.

Of course, we cannot expect to have a breakthrough bymerely
rewriting the many-body problem in an exact way. We can only
expect to have a better starting point for approximations, by
highlighting some important physics. One of the points that
might be important is the following.
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The scope of the exact factorization approach is to calculate
one- (or many-) body densities of a given species. For two inter-
acting species placed in the empty space, translational invari-
ance renders the one-body density for one species absolutely
meaningless: the probability to find a particle in empty space is
the same everywhere. What is instead meaningful is the prob-
ability to find a particle in a position once the position of the
other particles are fixed, or the density of a given species sup-
posing a certain density of the other species, if the two species
interact. For example, when calculating the electron density of a
crystal usually the positions of the nuclei are decided. This cor-
responds to a legitimate symmetry breaking, but such a trick is
not always possible. This shows that the good question is not
“what is the density of the electrons”, but rather “what is the
density of electrons, given that we have a certain distribution of
nuclei?” Such a question is answered when one calculates an at
least two-body correlation function. As we have seen, the exact
factorization approach is another way to express this “condi-
tional probability” picture very naturally. This means in partic-
ular that one might find appropriate iteration schemes that in-
clude symmetry breaking “on the fly”, and therefore allow one
to use approximations that treat correlation on a lower level.

2.6 Semi-diagonal coupling

An exact rewriting of the general many-body problem without
further simplifications or at least interpretation that might sug-
gest approximations is not of any practical use. Often a given
interpretation is particularly meaningful in some special cases.
For this reason, in this subsection we will focus on cb Hamil-
tonians that have a particular property, which we term ‘semi-
diagonal coupling’, and use the freedom tomake a unitary trans-
formations in the space of one component, as expressed in Eq. (5).
Eqs. (24) and (35) simplify to a large extent, and decouple partly.

Indeed, suppose that the bcHamiltonian is such that one can
choose a basis set for j that diagonalizes cbH i′j′

ij in the j-space,
irrespective of i and i′, i.e. cbH i′

i (j). Then, Eq. (35) reduces to∑
i′

(
cH i′

i + cbH
i′

i (j) + δii′
bH

j

j

)
πi′j

+
(∑

j′ 6=j

bh
j′

j πij′
)

= εjπij (42)

with
εj = cεj + bH̄j

j + cbH̄j
j + bhj, (43)

where we have used the freedom Eq. (41) to make Eq. (42) as
simple as possible.

In Eq. (42), if the non-diagonal bhj
′

j term could be ignored,
one could find for each value of j, the energy εj by diagonaliza-
tion with respect to component i only.

The equation for themarginal amplitude simplifies evenmore,
since there is no off-diagonal cbH contribution:

εjpj +
∑
j′ 6=j

(bH
j′

j )pj′ = Epj. (44)

The semi-diagonal property of the cb coupling induces a simpli-
fication of both equations. Note that the term j′ = j is discarded
from the sum in Eq. (44), as bHj

j = bhj.
In Eq. (44), the quantity εj is a diagonal operator for the

marginal amplitude. Moreover, it is phase-invariant. It might be
considered as the natural local potential of the system. However
a potential operator is defined with respect to a complementary
kinetic operator, while the second term in the left-hand side is,
at this stage, defined as being the off-diagonal part stemming
from the bH operator, irrespective of whether or not it is a nat-
ural kinetic operator. Actually, any discretization of a kinetic
operator in real space has a diagonal contribution, so this iden-
tification of εj as a local potential has to be understood in a very
general way.

A further refinement (or ‘variation’) of this semi-diagonal
scheme is obtained by separating operators contributing to bH
in two sets, which are either diagonal in j (b-diagonal, or bd),
or non-diagonal in j (b-non-diagonal, or bn). This goes hand in
hand with the freedom Eq. (41). We write

bH
j′

j = bdH(j)δjj′ + bnH
j′

j . (45)

The equation for the conditional amplitude is then∑
i′

(
cH i′

i + cbH
i′

i (j) + δii′
bdH(j)

)
πi′j

+
(∑

j′

bnh
j′

j πij′
)

= εjπij. (46)

in which εj has been redefined by taking into account Eq. (45).
A further gain is also present if the bHamiltonian has a par-

ticular form, like a derivative operator, and/or if it couples the
j states only to a limited extent, and/or if it is weak with re-
spect to the effect of the j-diagonal part of Eq. (42). Note that
the Coulomb potential in real space is a particular case, where
cbH i′j′

ij = δii′δjj′ .

2.7 Time-dependent generalization

In Ref. [12] and subsequent publications, the exact factorization
has been generalized to the time-dependent case. Indeed, the
emphasis has often been put on the time-evolution capability of
this formalism.

In the general approach that we outline, Eqs. (35) and (24)
transform to the following equations in the time-dependent case
:∑

i′

(
cH i′

i (t)πi′j(t) − εj(t)πij(t)
)

+
( ∑

j′

bh
j′

j (t)πij′(t)− bhj(t)πij(t)
)

+
( ∑

i′j′

cbh
i′j′

ij (t)πi′j′(t)− cbhj(t)πij(t)
)

= i
∂πij
∂t

, (47)
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where we have defined the time-dependent generalization of
Eq.(43)

εj(t) = cεj(t) + bH
j

j(t) + cbH
j

j(t) + tεj(t), (48)

with
tεj(t) =

∑
i

π∗ij(−i
∂πij
∂t

), (49)

and

εj(t)pj(t) +
∑
j′ 6=j

(bH
j′

j (t) + cbH
j′

j (t))pj′(t) = i
∂pj
∂t

. (50)

For sake of clarity, henceforth, we will not continue to write
explicitly the time-dependence of the H matrix elements, but
will keep it for the other items.

Following the same line of thought as for the time-independent
case, the equations simplify for a semi-diagonal coupling. The
equation for the conditional amplitude then becomes∑

i′

(
cH i′

i + cbH
i′

i (j) + δii′(
bH

j

j − εj(t))
)
πi′j(t)

+

(∑
j′ 6=j

bh
j′

j (t)πij′(t)

)
= i

∂πij
∂t

, (51)

with

εj(t) = cεj(t) + cbH̄(j, t) + bH̄j
j (t) + bhj(t) + tεj(t), (52)

while the equation for the marginal amplitude is also simplified,

εj(t)pj(t) +
∑
j′

(
bH

j′

j (t)− δjj′bhj(t)
)
pj′(t) = i

∂pj
∂t

. (53)

Like in the time-independent case, the diagonal/non-diagonal
splitting of bH can be used.

The time-dependent equation for pj has the mathematical
structure of a usual time-dependent Schrödinger equation. At
variance, considering one j at a time, the equation for πij is a
time-dependent Schrödinger equation with an additional source
term. Anyhow, solving either equations resorts to ordinary time-
dependent numerical techniques.

In both cases, conservation of the norm or the partial norm
is obvious, as one deduces <

∑
i π
∗
ij
∂πij

∂t = 0 from Eq. (51) and
Eq. (52) and <

∑
j p
∗
j
∂pj
∂t = 0 from Eq. (53).

2.8 Treatment of the electron-nuclei system in real space

We now establish the final link with the works on the exact
factorization from Hardy and co-workers, by considering the
electron-nuclei interaction in real space. This link is interesting
because the electron-nuclei case is at present intensively inves-
tigated, and placing it in the present general framework shows
what particular properties of the hamiltonian play a role in the
electron-nuclei case.

We use now the same notations as in Ref. [12]: electronic
real space coordinates r correspond to i indices, nuclear real
space coordinatesR correspond to j indices, the electron wave-
function ΦR(r, t) in Ref. [12] corresponds to the conditional
amplitude πij(t), and the nuclear wavefunction χ(R, t) corre-
sponds to the marginal amplitude pj(t).

In this context, the coupling Hamiltonian Ve−n(r,R) is di-
agonal in both r and R, which allows one to take, at will, the
electronic wavefunction [12] or the nuclei wavefunction [15] as
the conditional amplitude, and the other as the marginal ampli-
tude. Focusing on the first case, the link between our Eqs. (51-
53) and Eqs.(6-7) of Ref. [12] can be established by a redefini-
tion of εj and by invoking the following equality, relative to the
derivative with respect to the nucleus position:

〈 φR(t)| − ∂2α|φR(t)〉r χ(R, t) =

(−i∂α +Aα(R, t))2 χ(R, t) +

χ(R, t) 〈φR(t)|
(
− i∂α −Aα(R, t)

)2|φR(t)〉r,
(54)

where
Aα(R, t) = 〈φR(t)| − i∂α|φR(t)〉r , (55)

and α is a composite index to denote the nucleus that is dis-
placed and the cartesian direction of the displacement.

Explicitly, allowing to mix the different notations, the sec-
ond term of the left-hand side of Eq. (53) becomes∑

j′

bnH
j′

j (t)pj′(t) =
∑
ij′

π∗ij(t)
bnH

j′

j (t)πij′(t)pj′(t)

= 〈φR(t)|T̂n(R)|φR(t)〉r χ(R, t)

=
∑
ν

1

Mν

(
− i∇ν + Aν(R, t)

)2
χ(R, t)

+∆(R, t)χ(R, t) (56)

where

∆(R, t) = 〈φR(t)|
∑
ν

1

Mν

(
− i∇ν −Aν(R, t)

)2|φR(t)〉r.

(57)
The scalar potential term, Eq.(9) of Ref. [12] is thus

ε(R, t) = εj(t) +∆(R, t). (58)

With this definition, Eqs. (51) becomes Eq. (6) of Ref. [12], and
Eq. (53) becomes Eq. (7) of Ref. [12].

Taking into account that the bH Hamiltonian is a laplacian,
which is short-ranged in real space, there is a simple feedback
from Eq. (18) to Eq. (42), through the gradient of pR, that is pj
in real space.

Note that the vector potential is defined through a simple
derivative in Eq. (55). This means that it cannot be identified
with a given piece of the hamiltonian. Its existence is intimately
linked to the fact that application of the laplacian to a product of
functions also yields a mixed term, where both functions are de-
rived only once. Therefore, one may define such a contribution
in every hamiltonian in real space that contains a kinetic energy
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operator. Instead, for a more general Hamiltonian, in which the
application of the bH operator to a product of functions does not
yield separate products of terms, there is a priori no equivalent
to Eqs.(54-55). Moreover, the usefulness of such a definition in
a general basis is not evident.

2.9 Generality and specificities of the exact factorization
strategy

Secs. 2.1 to 2.8 have explored, in a general sense, the outcomes
of the exact factorization of a wavefunction in a marginal ampli-
tude and a conditional amplitude (Sec.2.1), be it for the time-
independent case or for the time-dependent case (Sec.2.7). It
might perhaps be interesting for arbitrary Hamiltonians, in the
case separate approximations can bemade for themarginal com-
ponent and for the conditional component, and one is inter-
ested in the marginal component density (Sec.2.5). The issue
of the feedback loop between the marginal and conditional am-
plitudes has also been examined (Sec.2.4). If the Hamiltonian
is semi-diagonal the governing equations simplify, see Sec.2.6,
and even more if the operator governing the marginal ampli-
tude dynamics has a specific form, like the laplacian (Sec.2.8).
In the next section we will apply this understanding to a sim-
ple electron-boson coupling model, and illustrate selected vari-
ations on the theme of exact factorization.

3 Application to an electron-boson coupling model

3.1 One-site model

We consider first a one-site electron-boson coupling hamilto-
nian:

H = ω0b
†b+ g̃c†c(b† + b). (59)

Here c is a fermion annihilation operator and b a boson annihi-
lation operator. For zero electron we have simply the energy of
the bosons. For one electron, the electron-boson eigenstate |q〉
is a linear combination [49,50],

|q〉 =
∑
m

αmq |1,m〉, (60)

where |1,m〉 are states of one electron and m bosons. The co-
efficientsαmq are known analytically: the eigenfunctions are dis-
placed solutions of the harmonic oscillator, that can be expressed
readily in the basis of the undisplaced harmonic oscillator eigen-
functions [49,50].

The corresponding eigenenergies are

eq = − g̃
2

ω0
+ ω0q, (61)

where q is an integer, running from 0 to∞, that counts the num-
ber of bosons in the displaced basis.

In the basis of undisplaced eigenfunctions the hamiltonian
reads:

Hm′

m = δm,m′ω0m+ g̃[
√
m′ + 1δm,m′+1 +

√
m′δm,m′−1].

(62)
In the exact factorization context, this one-sitemodel is how-

ever a dummy case: there is no dependence of the coefficientαmq
on an electron index, which corresponds to π = 1.

3.2 Two-site Holstein model

To have something interesting, we must enlarge the space of
states for the electron(s). To this end we put one electron on
the two-site Holstein model [35,36], with different site energies,
whose Hamiltonian reads

H =

2∑
i=1

εic
†
i ci + ω0

2∑
i=1

b†i bi − t(c
†
1c2 + c†2c1)

+ g

2∑
i=1

(b†i + bi)c
†
i ci, (63)

where c(†)i and b(†)i are the annihilation (creation) operators of
electrons of energy εi and non-dispersing (Einstein) bosons of
energy ω0, respectively, g is the on-site electron-boson cou-
pling strength, and t represents the hopping kinetic energy of
electrons between the two sites. Such Hamiltonian, a paradig-
matic example of electron-boson coupling, has been studied for
decades, as it naturally arises in different contexts from simpli-
fications of the full-complexity Hamiltonians [37,39,41,42].

In the present context of exact factorization, the two-site
Holstein model will prove to be very rich. It showcases differ-
ent exact factorizations approaches. In the symmetric case, one
even gets a perfect factorization, in which a one-site model is
separated from a quantum Rabi model that is then treated with
an exact factorization approach.

3.3 Two-site model, the naive approach

As basis functions for this problemwemight chose states |i;mn〉,
where the first argument indicates on which site the electron
sits, whereas the second pair of numbers indicates the number
of bosons on site 1 and 2, respectively.

The matrix elements of the hamiltonian in this basis are

Hi′;m′n′

i;mn = cHi′

i δmm′δnn′ + bHm′n′

mn δii′ + cbHi′;m′n′

i;mn , (64)

with
cHi′

i = εiδii′ − t(δi′,2δi,1 + δi′,1δi,2) (65)
bHm′n′

mn = ω0δmm′δnn′(m+ n) (66)
cbHi′;m′n′

i;mn = gδi,i′ [δi,1δnn′(δm,m′+1

√
m+ δm,m′−1

√
m+ 1)

+ δi,2δmm′(δn,n′+1

√
n+ δn,n′−1

√
n+ 1)]. (67)

With respect to the general formalism in the previous section,
here i corresponds to the vector i of above, and the couple (m,n)
corresponds to j.

In the first “naive" attempt to use the exact factorization ap-
proach, we consider the electron system to be determined condi-
tionally by the boson system, similarly to the usual exact factor-
ization approach of the electron-nuclei system. Thus we express
the coefficients Cimn as

Cimn ≡ πimnpmn, (68)

with∑
mn

|pmn|2 = 1 and
∑
i

|πimn|2 = 1 for allmn.

(69)
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The time-independent equation for p is∑
m′n′

H
m′n′

mn pm′n′ = Epmn, (70)

where

H
m′n′

mn = cεmnδmm′δnn′ + bH
m′n′

mn + cbH
m′n′

mn , (71)

with

cεmn = ε1π
∗
1mnπ1mn + ε2π

∗
2mnπ2mn

−t
[
π∗1mnπ2mn + π∗2mnπ1mn

]
, (72)

bH
m′n′

mn = ω0δmm′δnn′(m+ n), (73)
cbH

m′n′

mn =

gδnn′
[
δm,m′+1

√
m+ δm,m′−1

√
m+ 1

]
π∗1mnπ1m′n′

+gδmm′
[
δn,n′+1

√
n+ δn,n′−1

√
n+ 1

]
π∗2mnπ2m′n′ .

(74)

The effective potential corresponding to Eq. (23) is thus

εmn = cεmn + ω0(m+ n),

(75)

without contribution from cbH . Supposing the πimn values to
be given, the reduction of the electron-boson problem to a bo-
son problem with an effective potential, and effective interac-
tion Eq. (74) is indeed achieved.

However, the equation for π is not simplified, as it includes
off-diagonal matrix elements with respect to the (m,n) basis

cbhi
′;m′n′

i;mn =
pm′n′

pmn
cbHi′;m′n′

i;mn , (76)

where cbHi′;m′n′

i;mn is defined in Eq. (67). The time-dependent
case is, of course, as complicated. We miss the semi-diagonal
property. The two cases where it appears are presented in the
next subsections.

3.4 Two-site model, exact factorization in
position/momentum space

The Einstein oscillator sub-Hamiltonians can be expressed in
the position/momentum space instead of using creation and an-
nihilation operators. Defining

Qi =
1

2
(b†i + bi) and Pi =

i

2
(b†i − bi) = −i ∂

∂Qi
, (77)

the two-site Holstein Hamiltonian becomes

H =

2∑
i=1

εic
†
i ci +

ω0

2

2∑
i=1

(P 2
i +Q2

i − 1)− t(c†1c2 + c†2c1)

+ g

2∑
i=1

Qic
†
i ci. (78)

The total, conditional and marginal amplitudes write now

Ci(Q1, Q2) ≡ πi(Q1, Q2)p(Q1, Q2). (79)

The Hamiltonian Eq.(78) is semi-diagonal with respect to the
(Q1, Q2) coordinates that characterize the marginal amplitude
p(Q1, Q2). Apart from the choice of units, this situation is the
same as for the usual real-space approach for electrons and nu-
clei, outlined in subsection 2.8, with the kinetic operator for the
marginal amplitudes being ω0

2

∑2
i=1 P

2
i . A vector potential

Aj(Q1, Q2) =

2∑
i=1

π∗i (Q1, Q2)(−i ∂

∂Qj
)πi(Q1, Q2) (80)

is introduced naturally. There is no penalty in having a dis-
cretized Hamiltonian for the conditional amplitude. The treat-
ments and approximations introduced in the electron-nuclei case [20,21,51,23,22,24]
can be followed. The treatment of the e⊗E Jahn-Tellermodel [25,26]
is similar to this position/momentum treatment of the two-site
Holstein model.

3.5 Two-site model, reverse exact factorization

If one is interestedmainly in the electron density, the form of the
cb coupling term Eq. (67) is already the desired semi-diagonal
one, since it is diagonal in the i, i′ indices. Now the boson com-
ponent is associated with the conditional amplitude, as empha-
sized in Eqs. (42-44). In this case, the exact factorization starts
from

Cimn ≡ πimnpi. (81)

with∑
i

|pi|2 = 1 and
∑
mn

|πimn|2 = 1 for all i. (82)

In the case of the electron-nuclei system, Suzuki et al [15] pro-
posed this alternative possibility that they called ‘reverse exact
factorization’.

The equations for the marginal amplitude (the electrons) are
rather simple:

ε1p1 + cH
2

1p2 = Ep1 (83)

ε2p2 + cH
1

2p1 = Ep2 (84)

with

cH
2

1 = cH
1

2 = −t
∑
mn

[
π∗1mnπ2mn + π∗2mnπ1mn

]
. (85)

Now, as expected, the equations governing π1mn and π2mn
are also reasonably simple. The first one is(

ε1 + ω0(m+ n)
)
π1mn − t

p2
p1

(π2mn− π1mn )

+g
∑
m′

[δm,m′+1

√
m+ δm,m′−1

√
m+ 1] π1m′n

= ε1 π1mn . (86)
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The equation for π2mn is similar, with 1 replaced by 2, and the
sum running over n′ instead of m′, with replacement of m by
n andm′ by n′ within the summation.

Without p2p1π2mn this equation would have no coupling be-
tween 1 and 2, while the dependence on n would be trivial. Its
eigenfunctions would be those of the one-site electron-boson
coupling Hamiltonian, Eq. (62), which are analytically known.

Working now at fixed p2
p1
, we might expand π1mn and π2mn

in terms of such eigenfunctions αmq , which is an operation anal-
ogous to the Lang-Firsov transform [49],

π1mn =
∑
q

c1qnα
m
q

π2mn =
∑
q

c2qnα
m
q , (87)

then pre-multiply Eq. (86) by αmq′ and sum over m to get

c1qn =
t(p2/p1)c2qn

εq + ω0n+ ε1 − ε1 + t(p2/p1)
. (88)

Here, εq is to be determined, under the constraint
∑
qn |c1qn|2 =

1. A similar equation and associated constraint exists for c2qn.
In the reverse factorization case, the equations for p, π1 and

π2, reveal clearly the special structure that has been discussed in
Sec. 2.6, and as a consequence, the p appear in the equation for
the conditional amplitude only in the kinetic term (proportional
to t), as one can see from Eq. (86). The mathematical structure
of the problem for each component of π is the one exemplified
by Eq. (36), analyzed in Appendix B, also including the case of
the coupling between such equations. Although complete de-
coupling can be obtained at zero t, when t is small, care should
be taken to address equations for π1 and π2 in a joint approach,
otherwise the procedure will not converge.

We will actually not address the solution of the joint condi-
tional π1-π2 and marginal p equations for the reverse factoriza-
tion treatment of the general two-site Holstein model, but will
now consider specificities of the symmetric site case, for which
we will provide a numerical analysis, including the interplay
between the conditional and marginal amplitude equations.

3.6 Symmetric two-site Holstein model in the basis of
natural orbitals, a perfect exact factorization

Since our approach is completely general, so is the definition
of “the density”: actually, we have defined it as the diagonal of
the density matrix of the marginal amplitude, independently of
the space. This implies that if we work in the basis of natural
orbitals, where the density matrix is diagonal, our “density” at
coordinate j corresponds to the occupation number of the nat-
ural orbital j.

We suppose ε1 = ε2 = 0 in the Holstein two-site model,
where the electronwavefunction is considered to be themarginal
amplitude. Due to symmetry reasons, the electronic natural or-
bitals are then the bonding (symmetric) and antibonding (an-
tisymmetric) ones. We also choose a similar symmetrized or
antisymmetrized basis for the bosonic degrees of freedom. The

corresponding creation and annihilation operators are

c
(†)
± =

1√
2

(
c
(†)
1 ± c

(†)
2

)
; (89a)

a
(†)
± =

1√
2

(
a
(†)
1 ± a

(†)
2

)
, (89b)

where the subscripts + and −, respectively, represent bonding
and anti-bonding orbitals, respectively.

The basis functions for the whole system are denoted by
|j, `,m〉, where j indicates whether the electron is in the bond-
ing (j = 1) or anti-bonding (j = 2) orbital, ` denotes the
number of bonding bosons and m the number of anti-bonding
bosons. The ground state wavefunction is developed on this ba-
sis, with coefficients C(j, `,m). 1

In this basis, the Holstein Hamiltonian factorizes exactly as

H = Ha+ +Ha− (90)
with

Ha+ = ω0a
†
+a+ + g̃(c†+c+ + c†−c−)(a†+ + a+) ; (91a)

Ha− = −t(c†+c+ − c
†
−c−) + ω0a

†
−a−

+ g̃(c+c
†
− + c−c

†
+)(a†− + a−) , (91b)

where we have defined

g̃ = g(
√

2)−1 (92)

.
In Eq. (91b) the Ha± are separated according to the boson

operators a±. The two operators commute, and therefore

E = Ea+ + Ea− ; (93a)
C(j, `,m) = Ca+(`)Ca−(j,m) : (93b)

the ground state energy is the sum of the two ground state ener-
gies, and the wavefunction is the product wavefunction. In par-
ticular, a density n(x) is simply the product of densities:

n(x) =

′∑
j`m

|Ca+(`)|2|Ca−(j,m)|2, (94)

where x is a subset of the coordinates (j`m) and
∑′
j`m denotes

the fact that the remaining coordinates are integrated out. For
example, n(j) is the electronic density in the bonding or anti-
bonding orbital. Note thatCa+ depends only on `, whereasCa−
is independent of `.

This is an exact factorization, and it is perfect, in the sense
that the two problems can be solved completely independently.

The calculation of the ground state of Ha+ is trivial, be-
cause the coupling term vanishes for one electron, and the low-
est energy is obtained for zero boson occupation, withCa+(`) =
δ`,0. This means that the interesting densities are

nel(j) ≡
∑
m

|Ca−(j,m)|2, (95)

1 Note that what follows also holds for excited states, which would
carry an extra label ν. One would simply have to order states according
to the sum of two energies that are introduced below.
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Figure 1. The densities nbos(m) for the case of m = 0 and
m = 1. Here we set ω0 = 1.0.
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Figure 2. The densities nel(j) for the case of bonding j = 1
and antibonding orbital j = 2. Here we set ω0 = 1.0.

and
nbos(m) ≡

∑
j

|Ca−(j,m)|2. (96)

This requires the calculation of the ground state of Ha−,
which is the interesting part here. This Hamiltonian is also the
one of the quantum Rabi model, that, like the initial (possibly
unsymmetric) Holstein model, has a long history, and is also of-
ten referred to as the Hamiltonian of the two-level pseudo Jahn-
Teller effect, see e.g. Refs. [37,38,40,41,43].

3.7 The quantum Rabi Hamiltonian

We now focus on an exact factorization treatment of Ha−, the
quantum Rabi Hamiltonian. For simplicity, we will omit the su-
perscript, Ca−(j,m)→ C(j,m), and similarly, Ha− → H .

H is first expressed in the basis |j,m〉, where the notation
is defined as for |j, `,m〉 above:

Hj′m′

jm = δjj′δmm′(−t(δj,1 − δj,2) +mω0)

+g̃ (δj′,1δj,2 + δj,1δj′,2)(δm,m′+1

√
m+ δm,m′−1

√
m′).

(97)

At this point, we have two choices. The first one is a straightfor-
ward application of the exact factorization procedure. Thus, we
have

C(j,m) = pmπjm (98)
for the exact factorization, where the aim is to calculate the den-
sity of bosons, and

C(j,m) = pjπjm (99)

for the exact reverse factorization, where the aim is to calculate
the density of electrons.

Let us start with the boson density,nbos(m) =
∑
j |C(j,m)|2.

The first two components (m = 0 andm = 1) are shown in Fig.
1 for a fixed value of ω0 = 1.0, as a function of the coupling
constant g and the hopping t. For vanishing coupling all the
density is found in the m = 0 component. With increasing g
weight is shifted to the m = 1 component, which has a maxi-
mum between g = 1 and g = 3 for the values of t shown here.
For even stronger coupling both the m = 1 and m = 0 com-
ponents decrease, because higher components gain in weight.
With increasing t, this behavior is shifted to higher values of g,
since it becomes more difficult to couple the levels.

For the factorization, we define

pm ≡
√∑

j

|C(j,m)|2eα(m) (100)

and
πjm ≡ C(j,m)/pm (101)

and obtain the effective Schrödinger equation for pm,

H̄m′

m pm′ = Epm (102)

with

H̄m′

m =
∑
jj′

π∗jmH
j′m′

jm πj′m′

= δmm′
(
t(|π2m|2 − |π1m|2) +mω0(|π2m|2 + |π1m|2)

)
+ g̃(π∗2mπ1m′ + π∗1mπ2m′)×
× (δm,m′+1

√
m+ δm,m′−1

√
m′).

(103)

The effective hamiltonian for the πjm relies on the computa-
tion of 1

pm
Hj′m′

jm pm′ . It would be tempting to start from the non-
interacting result obtained with g̃ = 0, which is pm = δm,0, as
can be seen from Fig. 1, or πjm = δj,1. However, because of
the division by pm this is immediately problematic.

If we are heading for nelj =
∑
m |C(j,m)|2, we will opt

for the reverse factorization. The exact result is shown in Fig.
2.There are only two possible components corresponding to the
bonding (j = 1) and antibonding (j = 2) orbitals. As expected,
the bonding orbital is fully occupied for g = 0, and with in-
creasing g, weight is shifted to the antibonding orbital. As in
the case of the boson occupations, this interaction effect occurs
later when t is larger.

For the factorization, we define

pj ≡
√∑

m

|C(j,m)|2eα(j) (104)
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and
πmj ≡ C(j,m)/pj (105)

and obtain the effective Schrödinger equation for pj ,

H̄j′

j pj′ = Epj (106)

with

H̄j′

j =
∑
mm′

π∗mjH
m′j′

mj πm′j′

= δjj′

(
t s(j) +

∑
m

m|πmj |2ω0

)
+ g̃(δj′,1δj,2 + δj,1δj′,2)×

×
∑
m

(
√
mπ∗mjπm−1,j′ +

√
m+ 1π∗mjπm+1,j′),

(107)

where s(j) = −1 for j = 1 and s(j) = 1 for j = 2.
The effective hamiltonian for theπmj also relies on 1

pj
Hj′m′

jm pj′ .
Again, it would be tempting to start from the non-interacting re-
sult obtainedwith g̃ = 0, which is here pj = δj,1 orπmj = δm,0
(note the perfect inversion of the role of the two parameters with
respect to the exact factorization above). However, now because
of the division by pj this is again problematic.

3.8 Iterative exact factorization treatment of the ground
state of the quantum Rabi model

The hamiltonian (97) shows that states with odd j (bonding) and
evenm couple only to states with even j (antibonding) and odd
m, and similarly for states with even-j (anti-bonding) and even
m states that couple only to states with odd-j (anti-bonding)
and oddm states [37]. Thus, one can focus on one of these sub-
spaces only (which constitutes one more exact perfect factoriza-
tion), actually the ‘bonding+even-m plus antibonding+odd-m ’
subspace, as the ground state of the system belongs to it [40].
Thanks to this insight, the initialization problem that we faced
in the previous subsection disappears. For sake of clarity, we
will not modify our notations to indicate that, for fixed j, the
summation overm runs only on one subset of these indices, as
this can stay implicit without confusion.

Eq. (106) is a two by two matrix equation for the marginal
amplitudes. Its conditional amplitude dependence comes from

bH
1

1 =
∑
m

m|πm1|2ω0,

bH
2

2 =
∑
m

m|πm2|2ω0,

cbH
2

1 = g̃
∑
m

(
√
mπ∗m1πm−1,2 +

√
m+ 1π∗m1πm+1,2),

cbH
1

2 = g̃
∑
m

(
√
mπ∗m2πm−1,1 +

√
m+ 1π∗m2πm+1,1).

(108)

Figure 3. Bonding orbital density nel for t = 0.5, as a function
of g (with ω0 = 1) at different steps of the exact factorization it-
erative procedure. Reference exact result, continuous black line;
initialization of the exact factorization (step 0), dotted red line;
first, second and third step of the exact factorization, dashed red,
continuous red and continuous blue lines. Step 3 and reference
can hardly be distinguished.

Note that bH is j-diagonal, while cbH has no j-diagonal com-
ponent. Like bH , cH is j-diagonal,

cH
j′

j = δjj′t s(j). (109)

Following the discussion in Sec. 2.4, we will illustrate the
determination of themarginal probability, using an iterative pro-
cedure. Working now in the proper subspace, we start the iter-
ative process with π01 = 1 and π12 = 1, with all other con-
ditional amplitudes being zero. This trivially fulfills the par-
tial normalization conditions. Solving the two by two marginal
equation is trivial, which delivers initial (step=0) values for the
marginal amplitudes. The corresponding bonding and anti-bonding
densities are computed fromEq. (95), and represented in Figs. 3-
5, as a function of the g parameter (see its relationship with g̃,
Eq.92) , for three fixed values of t, namely t = 0.5, 2.0 and 5.0,
in the case ω0 = 1. The exact result, from Fig. 2, is also repre-
sented (i.e. cuts in the left part of Fig. 2 with t = 0.5, t = 2.0
and t = 5.0).

This simple initialization delivers bonding orbital occupa-
tions in excellent agreement with the reference results in the
rangewhere the contribution from boson numbers two and higher
is small, namely up to g ≈ 0.6 for t = 0.5, up to g ≈ 1 for
t = 2.0, and up to g ≈ 2 for t = 5.0. For larger values of g, the
bonding occupation departs significantly from the reference.

We then proceed with the iterative process. During the first
step, the occupation of bosons is optimized at fixed values of pi,
using the preconditioned conjugate gradient algorithm [47,48],
with precondition gradients defined by Eq. 40, and a diagonal
preconditioner. An arbitrary number of bosons is then included,
be it in the even-boson channel or in the odd-boson channel (in
practice, we fixed the maximum number of bosons to 25, which
guarantees 6 significant digits on the energy). The bonding oc-
cupation number is then recomputed, using updated H matrix
elements. This delivers the results dashed-red ‘step 1’ results



14 Xavier Gonze et al.: Variations on the ‘exact factorization’ theme

Figure 4. Bonding orbital density nel for t = 2.0, as a function
of g (with ω0 = 1) at different steps of the exact factorization
iterative procedure. Labeling is the same as in Fig. 3. Step 3 and
reference differ slightly for g in the 2.0-3.0 range.

Figure 5. Bonding orbital density nel for t = 5.0, as a function
of g (with ω0 = 1) at different steps of the exact factorization
iterative procedure. Labeling is the same as in Fig. 3. Step 3 and
reference differ somehow for g in the 3.0-4.0 range.

in Figs. 3-5, with a significantly improved prediction. The sub-
sequent second iteration delivers results within a few percent
agreement, while the third iteration is nearly indistinguishable
from the reference in the t = 0.5 and t = 2.0, but still differs
visually in the t = 5.0 case.

Of course, this quantum Rabi model is particularly simple,
and any usual matrix treatment delivers easily the reference re-
sults. The emphasis was laid here simply on the illustration of
a flow in which the two subsystems are treated separately using
exact factorization.

3.9 Quantum Rabi model, exact factorization coupled with
perturbation theory

Since without further approximations the equation for π is as
hard to solve as the full Schrödinger equation, it is clear that an
approximation has to be done. As an example, we will in the

following discuss a perturbative approach, where the coupling
is treated perturbatively in the equation for the π, but not for the
p.

In principle, to do so one would start from the equation for
πmj and solve it to a given order in the interaction. However,
this equation is not an ordinary Schrödinger equation; in partic-
ular, the normalization condition applies for each j separately.
Therefore it is dangerous to straightforwardly apply the usual
expressions of perturbation theory. Instead, we start from the
original hamiltonian Eq. (97), for which we can do ordinary
perturbation theory in g̃. The zero order eigenvalues and the
coefficients of the eigenfunctions are (ν labels different states
and ν = 0 corresponds to the ground state):

E(0)
ν = ts(jν) +mνω0 , (110)

C(0)
ν (j,m) = δj,jν δm,mν . (111)

For the ground state, the results areE(0) = −t andC(0)(j,m) =
δj,1δm,0. The corresponding p’s are calculated from their def-
inition, leading to p(0)j=1 = 1 and p(0)j=2 = 0. Using these zero
order elements and again the definition of p, we obtain for the
first order ground state coefficients

C(1)(j,m) = − g̃
ω0+2tδj,2δm,1 , (112)

p
(1)
j = g̃

ω0+2tδj,2 . (113)

From this, one would expect to obtain a first-order expres-
sion for the πmj , but

πmj ≈
C(0)(j,m) + C(1)(j,m)

p(0) + p(1)
(114)

leads to

πmj = δj,1δm,0 + δj,2δm,1
−g̃/(2t+ ω0)

g̃/(2t+ ω0)

= δj,1δm,0 − δj,2δm,1 : (115)

the first-order dependence on g̃ cancels, and a zero-order re-
sult is obtained. This illustrates again the fact that one has to be
careful when dealing with perturbation theory here.

Our starting πmj hence defined from perturbation theory is,
besides an (arbitrary) phase, the same as the starting point of the
exact iteration in the previous subsection. Therefore it leads to
the same effective hamiltonian for the pj , which is

H̄j′

j = δjj′(ts(j) + δj,2ω0)− g̃(δj′,1δj,2 + δj′,2δj,1). (116)

It yields the ground state energy

E =
ω0

2
−
√

(
ω0

2
+ t)2 + g̃2, (117)

which is consistent with the ordinary perturbation result E ≈
−t− g̃2/(2t+ ω0). The coefficients are

p21 =
1

2
(1 +

1√
1 + x2

) ≈ 1− g̃2

(2t+ ω0)2

p22 = 1− p21 ≈
g̃2

(2t+ ω0)2
,

with x2 ≡ 4g̃2

(ω0 + 2t)2
: (118)
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Figure 6. The bonding occupations calculated from perturba-
tion theory. The red curve is p21 in equation (118) and the ma-
genta curve is p21 in order O(g2). The black and red curves are
the same as the black and dotted red line in figure 3. Interest-
ingly, the O(g2) result outperforms the one of (118) for weak
coupling.

the full expressions (first expression on the right hand side) are
the same as the outcome of the “step 0” in the previous subsec-
tion. They are shown again in Fig.s 6 to 8, together with their
expansion to first order in g̃. The latter quickly diverges from
the exact result for strong coupling, while it yields decent re-
sults for weak to moderate coupling, even better than the full
expressions. The comparison of various perturbative results is
interesting here since, contrary to Subsec. 3.7, the expressions
are not merely used as input for further iteration of the exact
problem: the aim is rather to discuss them from the point of view
of a possible approximation scheme, defined as: “Determine π
to a given order in perturbation theory” (here, order zero), and
“solve the resulting equation for p exactly or approximately”.
Even in case of an exact solution of the approximate H̄ , this re-
duces the work with respect to the exact solution of the initial
problem, contrary to the full iterative approach in the previous
subsection. The interesting question to be discussed here is how
the final result compares with what one could obtain with a sim-
ilar effort by approximating directly the initial problem.

Here, the workload has been to first obtain the π in first order
perturbation theory on the initial problem. The direct outcome
of this perturbative step, as one can see from (113), equals the
O(g̃2)-expansion of the p2 that is obtained in the factorization
method. The latter adds higher orders through the diagonaliza-
tion of H̄ . For p1, there is no first-order correction from the ini-
tial perturbation calculation; a correction would only appear in
second order perturbation theory, such restoring the correct nor-
malization of the p2. The factorization result is therefore much
superior. This might be linked to the fact that the p are directly
square roots of the densities, instead of wavefunctions, which
combine different orders to yield the density at a given order.
The price to pay is the diagonalization of H̄; when, as it is the
case here, this hamiltonian is much smaller than the initial one,
the factorization approach is an efficient choice.
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Figure 7. The bonding occupations calculated from the pertur-
bation theory. The red curve is p21 in equation (118) and the
magenta curve is p21 in order O(g2). The black and red curves
are the same as the black and dotted red line in figure 4.
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Figure 8. The bonding occupations calculated from the pertur-
bation theory. The red curve is p21 in equation (118) and the
magenta curve is p21 in order O(g2). The black and red curves
are the same as the black and dotted red line in figure 5.

3.10 Factorization or frequency-dependent effective
hamiltonian?

As explained at the beginning of Subsec. 3.7, the knowledge of
m for the ground state determines whether it corresponds to the
bonding or anti-bonding state. In the following, we work with
C(j,m) → c(m), understanding that c(m) with m = even is
C(1,m) and c(m) with m = odd is C(2,m). The effective
hamiltonian Hm′

m resulting from Eq. 97 is

Hm′

m = δmm′(mω0 + t s(m))

+ g̃(δm′+1,m

√
m+ δm′,m+1

√
m′), (119)

where

s(m) = 1 for m odd, and − 1 for m even. (120)

How are now the densities calculated? The boson density is
simply nbos(m) = |c(m)|2: all knowledge about the electron-
boson coupling has already been used, and nothing more can be
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done. The electron density, instead, isnel(j = 1) =
∑
meven |c(m)|2

and nel(j = 2) =
∑
modd |c(m)|2. This creates a very interest-

ing situation: now, instead of summing over one of the coordi-
nates, we sum over a part of the range of the only one coordinate
that is left. In other words, out of the vector c(m) we only want
to know certain elements, according to whether we are inter-
ested in the bonding or the anti-bonding electron density.

To work this out, let us divide the hamiltonian Hm′

m into
four blocks, with indices 1 form,m′even and 2 form,m′odd.
These blocks read:

Hm′

m =

= δmm′(mω0 − t) m,m′ even

= δmm′(mω0 + t) m,m′ odd

= g̃(δm′+1,m

√
m+ δm′,m+1

√
m′) m even, m′ odd

or m odd, m′ even. (121)

Now one can use the following idea: Suppose we have a
(2n× 2n) eigenvalue problem(

H̃1
1 H̃

2
1

H̃1
2 H̃

2
2

)(
φ1
φ2

)
= ω

(
φ1
φ2

)
, (122)

where H̃`
k aren×nmatrices. Solving forφ2 = (H̃2

2−ω)−1H̃1
2φ1

and substituting into the equation for φ1 one gets

[H̃1
1 − H̃2

1 (H̃2
2 − ω)−1H̃1

2 ]φ1 = ωφ1, (123)

provided that (H̃2
2 − ω) is invertible. The latter is an (n × n)

eigenvalue problem for a frequency-dependent matrix H̃(ω) =

H̃1
1 − H̃2

1 (H̃2
2 − ω)−1H̃1

2 . The eigenvalues obtained from Eq.
(123) are the same as those of Eq. (122). Note that the num-
ber of eigenvalues corresponds to the one of the original matrix
and is hence twice the dimension of the (n× n) matrix, which
is possible due to the frequency dependence. Of course, part
of the information concerning the eigenvectors of the original
problem are lost, but this is not necessarily a problem when one
is only interested in partial information.

In general the frequency dependent contribution in the new
matrix, which plays the role of a self-energy, is not known. It
contains all matrix elements of the original hamiltonian besides
H̃1

1 , but since they are partially summed over, one may hope to
find suitable approximations.

With the separation Eq. (121) we can directly apply this idea
to our problem: this leads to two frequency-dependent effective
hamiltonians, one to calculate even components, and another
one to calculate odd components, and therefore the correspond-
ing electron densities. For illustration, we concentrate on the
even component. The self-energy reads

Σmm′(ω) ≡ [−H̃2
1 (H̃2

2 − ω)−1H̃1
2 ]mm′

= −g̃2 δnn′

(nω0 + t− ω)
×

× (δn+1,m

√
m+ δn,m+1

√
n)×

× (δm′+1,n′
√
n′ + δm′,n′+1

√
m′),

(124)

where the repeated indices n, n′ are summed over. This yields

Σmm′(ω) = −g̃2[
mδm′,m

(m− 1)ω0 + t− ω

+
(m+ 1) δmm′

(m+ 1)ω0 + t− ω
+

+
δm′+1,m−1

√
m
√
m′ + 1

(m′ + 1)ω0 + t− ω
+

+
δm′−1,m+1

√
m+ 1

√
m′

(m+ 1)ω0 + t− ω
]. (125)

This expression is of first order in g̃2. The self-energy for
the odd component would be obtained by replacing everywhere
t→ −t.

To obtain the desired density, we calculate the Green’s func-
tionGeven

mm′(ω) =
(
G−10 (ω)−Σeven(ω)

)−1
mm′ whereG0,mm′(ω) ≡

δmm′
ω−mω0+t−iη , and calculate the bonding density from theweights
of the poles in the result. For simplicity and illustration, we use
only the m = m′ = 0 case of the Dyson equation, which is of
course an approximation. Then we have

G0(ω) = 1
ω+t−iη ; (126)

Σ(ω) = g̃2

ω−t−ω0−iη . (127)

G(ω) = (G0(ω)−1 −Σ(ω))−1 , (128)
= z1

ω−ε1−iη + z2
ω−ε2−iη . (129)

The self-energy clearly exhibits the physics of the coupling: it
has a pole at the bare anti-bonding energy augmented by one
boson. Indeed, it can be written as a convolution of the anti-
bonding component of the non-interacting G0 and the boson
propagator, and it is therefore identical to the anti-bonding con-
tribution to the self-energy in the GW approximation in the
case where the boson stems from electronic excitations, or the
Dyson-Migdal approximation in the cased of phonons.

From this self-energy we obtain for the poles and spectral
weight of the Greens’ function G:

ε1 = ω0

2 −
√

(ω0

2 + t)2 + g̃2 ;

ε2 = ω0

2 +
√

(ω0

2 + t)2 + g̃2 ;

z1 = 1
2 (1 + 1√

1+ 4g̃2

(ω0+2t)2

) ;

z2 = 1− z1 . (130)

Whereas G0 has only one pole, the resulting spectral func-
tion, shown in Fig. 9, has two structures, one corresponding to
the ground state energy, and one corresponding to an excited
state that stems from the block taken into account by the self-
energy. For small coupling, the ground state pole has the correct
first order expansion ω = −t− g̃2

ω0+2t . Its weight, which gives
the m = 0 component of the ground state boson density, is
given by z1 in (130). For vanishing coupling the bonding orbital
is fully occupied and there is no boson. The coupling leads to
excitation of bosons (evenm and to a partial occupation of the
anti-bonding orbital (odd m), and the effect is enhanced when
the hopping t and the boson frequency ω0 are small.
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Figure 9. The spectral function from G00. The intensity of the
structure at lower energy indicates the occupation of the bond-
ing orbital.

By examining the expressions one finds that interestingly,
the weights z1 and z2 are the same as the first results for p21 and
p22 in Eq. (118), i.e. the weights obtained from the factorization
approach combined with initial perturbation theory. Also the
workload is comparable: setting up the self-energy is equivalent
to the initial perturbative step, followed by the diagonalization
of a 2 × 2 matrix. The situation might however be specific to
the present problem, and a more general analysis is needed to
draw guidelines for the choice of methods.

Concerning the principles of the factorization versus the
self-energy approach, it should be noted that the latter does not
require the transformation of the problem to make the coordi-
nate j disappear, as we have done here, but one could have ap-
plied it also to calculate the even boson number density at an
earlier stage, when keeping still j. The important distinction be-
tween the factorization and the frequency-dependent formula-
tion is the following:

The factorization is pertinent when one wants to integrate
out one or more coordinates in the solution (in the wavefunc-
tion squared, to be precise). The frequency-dependent approach
is pertinent when one asks for the wavefunction calculated at
certain values of one or more coordinates only, whereas other
values are not of interest.

4 Conclusion and perspectives

In conclusion, in this work we have tried to work out some fun-
damental features of the exact factorization approach on one
side, and to elucidate and illustrate its functioning in practice,
with the help of a model, on the other side. In order to do so we
have essentially discussed the time-independent case, but most
of our discussion is straightforwardly carried over to the time-
dependent problem.

The exact factorization is an in principle exact rewriting of
themany-body problem, for arbitrary hamiltonians. The electron-
nuclei system, onwhich thework of HardyGross and coworkers
puts its accent, belongs to a particular class of hamiltonians for
which the effect of one species can be expressed as an additional
local potential appearing in an effective Schrödinger equation

for an effective wavefunction of the other species. This effec-
tive wavefunction can be used to calculate the N-body density,
but not necessarily other observables. Other hamiltonians will
also allow one to use the effective wavefunction to calculate the
N-body density of one species, but the other species may give
a contribution to the effective hamiltonian that differs from a
local potential. In any case, various possible particular types of
hamiltonians suggest different ways to transform and approxi-
mate the equations. In the present work we have discussed these
general points and briefly made the link to the specific electron-
nuclei problem. In order to illustrate several points, we have
used electron-boson coupling models, where results are com-
pact and relatively easy to analyze.

From a pragmatic point of view, one may argue that any
rewriting of the many-body problem is useful only if it sug-
gests powerful approximations. Does the exact factorization ap-
proach introduce new openings in this sense? Since approxima-
tions are always to some extent system-specific, it is by defini-
tion not possible to give a completely general answer. However,
the model study in our work shows some interesting features.
On one side, both by performing the iteration of the coupled
equations exactly and by partially applying perturbation theory,
it appears that care is needed when dealing with the equations,
for example, because of the particular normalization of the con-
ditional amplitude. On the other side, it has been interesting to
compare the approximate results with straightforward perturba-
tion theory on one hand, and with a self-energy approach on the
other hand. At least in the model studied here, the exact factor-
ization scheme seems to be more efficient than straightforward
perturbation theory, performed with a similar effort. We could
not draw such a conclusion concerning the alternative of us-
ing a self-energy. However, we also explained that the factor-
ization and the self-energy approach do not pose the question
of interest in the same way: the factorization approach targets
observables where a part of the variables of the wavefunction
are integrated out, whereas the self-energy approach is intuitive
when one asks for the value of a function in a part of the domain
of its variables. This explains why the self-energy introduces
a frequency-dependence, while the factorization doesn’t. The
particularities of the model studied here made this comparison
more straightforward than what it might be in general.

Altogether, by trying to separate the electron-nuclei-specific
features from fundamental characteristics of a factorization ap-
proach, we found that several interesting routes could be taken
to explore the ideas in the framework of other particular prob-
lems. A general powerful approximation strategy for the fac-
torization approach is probably still missing, but there is some
evidence that the approach has the potential for such progress.
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A Phase covariance and contravariance

In this short appendix, we mention the consequences of the
phase invariance of the decomposition Eq. (2). Indeed, the solu-
tion of the Schrödinger equation Eq. (15) is left invariant upon
the replacements

πij → π̃ij = eiθjπij and pj → p̃j = e−iθjpj, (131)

which corresponds to a different choice of phases α(j). The be-
havior of πj will be referred to as phase-covariance, and the one
of pj will be referred to as phase-contravariance. The b and bc
terms transform as

bH
j′

j → bH̃
j′

j = ei(θj−θj′ )bH
j′

j , (132)

cbH
j′

j → cbH̃
j′

j = ei(θj−θj′ )cbH
j′

j . (133)

As the final computed quantities are invariant with the phase
choice, one is guided naturally to treat differently quantities that
are phase invariant (like the diagonal of the b and bc terms) and
those that have phase-dependence, which yields the definition
Eq.(23). In Sec.2.8, the specific form of the bH Hamiltonian, a
Laplacian, allows one to handle the phase transformations in a
very elegant way, as emphasized in Refs.[10,12].

B Mathematical structure of the conditional
amplitude effective equation

B.1 Preliminary analysis

Mathematically, the equation for the conditional amplitude πij
in the time-independent case, see Eq. (35) or (42) does not cor-
respond to a usual eigenvalue problem. The presence of the πi′j′
or πij′ term, with the normalization condition

∑
i |πij|2 = 1,

that made us invoke the Lagrange multiplier approach, turns it
to an equation of the type

Ax+ y = εx (134)

under constraint x†x = 1. Unlike in a Schrödinger equation, an
inhomogeneous term y is present.

Such equation can be solved by expanding x and y in terms
of the eigenvectors of A, that form a complete basis. Indeed
supposing

A =
∑
σ

vσaσv
†
σ, (135)

with
δσσ′ = v†σvσ′ , (136)

one can find the expansion coefficients of y,

y =
∑
σ

yσvσ, (137)

then build x as
x =

∑
σ

yσ
aσ − ε

vσ, (138)

where ε is determined by the constraint x†x = 1, namely∑
σ

y†σyσ
(aσ − ε)2

= 1 (139)

We can characterize the set of allowed ε as follows. In the
case the inhomogeneous term is suppressed in Eq. (134), every
eigenvalue aσ belongs to this set. Then, supposing at least yσ
is non-vanishing, the function in the left-hand side of Eq. (134)
is always positive, and made of separate positive contributions,
each diverging positively at their corresponding aσ . In each in-
terval separating two consecutive aσ and aσ′ , the function first
decreases monotonically, reaches a positive minimum, then in-
creases monotonically. Its second derivative is always positive.
Thus, between two such consecutive eigenvalues, there are two,
one or zero solution of Eq. 139. For small values of yσ , each
initial solution ε = aσ will double, with one solution slightly
below aσ and one solution above aσ . With increasing scaling of
yσ , the left-hand side function will become higher than 1 in dif-
ferent intervals between eigenvalues aσ , and only the solution
with ε much lower than all aσ , or much larger than all aσ will
survive. There is always one unique solution below the lowest
aσ , and one unique solution above the highest aσ .

B.2 Stability analysis

Despite this proof of the existence of one low and one high solu-
tion, the stability of the solutions of this equation with respect
to variations of y might be problematic, including when y is
small. This might seem counter-intuitive, as we are then close
to a usual eigenvalue problem without inhomogeneous term.

Indeed, suppose the set of inhomogeneous yσ is perturbed
by δyσ . Then, at first order, one deduces from Eq. 138:

δxσ =
δyσ

aσ − (ε+ δε)
, (140)

with
δε =

∑
σ

−1

2
(aσ − ε)

(
δy†σyσ + y†σδyσ

)
. (141)

As discussed previously, when y is small, ε is close to one of the
aσ . Hence, the possibly small variation of the corresponding
δyσ will be amplified by the inverse of (aσ − ε) in Eq. 140,
which might be very big.

Moreover, such an analysis reveals the difficulty to treat a
coupled system of equations such as

A1x+ y = ε1x

A2y + x = ε2y (142)

with x†x = 1 and y†y = 1, by separately treating them se-
quentially, one after the other: the consecutive feedbacks might
amplify and lead to divergence.
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