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Abstract

Chemical reactions, charge transfer reactions and magnetic materials are notori-

ously difficult to describe within Kohn-Sham density functional theory, which is strictly

a ground-state technique. However, over the last few decades, an approximate method

known as constrained density functional theory (cDFT) has been developed to model
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low-lying excitations linked to charge transfer or spin fluctuations. Nevertheless, de-

spite becoming very popular due to its versatility, low computational cost and avail-

ability in numerous software applications, none of the previous cDFT implementations

is strictly similar to the corresponding ground-state self-consistent density functional

theory: the target value of constraints (e.g. local magnetization) is not treated equiv-

alently with atomic positions or lattice parameters.

In the present work, by considering a potential-based formulation of the self-consistency

problem, the cDFT is recast in the same framework as Kohn-Sham DFT: a new func-

tional of the potential that includes the constraints is proposed, where the constraints,

the atomic positions or the lattice parameters are treated all alike, while all other

ingredients of the usual potential-based DFT algorithms are unchanged, thanks to

the formulation of the adequate residual. Tests of this approach, for the case of spin

constraints (collinear and non-collinear) and charge constraints are performed. Ex-

pressions for the derivatives with respect to constraints (e.g. the spin torque), for the

atomic forces and for the stress tensor in cDFT are provided. The latter allows one to

study striction effects as a function of angle between spins. We apply this formalism to

body-centered cubic iron, and first reproduce the well-known magnetization amplitude

as a function of the angle between local magnetization. We also study the stress as a

function of such an angle. Then, the local collinear magnetization and the local atomic

charge are varied together. Since the atomic spin magnetizations, local atomic charges,

atomic positions and lattice parameters are treated on an equal footing, this formalism

is an ideal starting point for the generation of model Hamiltonians, machine-learning

potentials, computation of second- or third derivatives of the energy as delivered from

density-functional perturbation theory, or for second-principles approaches.

1. Introduction

The vast majority of first-principles simulations of ground-state properties of molecules,

condensed matter and nanosystems relies on density functional theory (DFT). However,
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one is also interested in excited state properties, while, strictly speaking, density-functional

theory is a theory for the electronic ground state: the fundamental theorems of DFT rely on

a minimization of the energy in the functional space of many-body electronic wavefunctions.

The electronic coupling with the external potential being only determined by its electronic

density, one demonstrates that the exchange-correlation energy is a unique functional of

the ground-state density.1,2 For selected classes of low-lying energy states, the same line of

thought, based on a minimization principle, has also a strong theoretical basis. For example,

taking into account spin magnetization yields spin density functional theory (SDFT). In this

case, the exchange-correlation energy becomes a functional of the ground-state density and

magnetization.3

The space of allowed charge densities or magnetizations might be further constrained,

giving access to other low-lying energy states. For example, the charge in some region of

space, be it around an atom or on some fragment, might be forced to some predefined value to

describe chemical reactions with charge transfer. Similarly, the magnetization vector, or just

its direction, in the neighbourhood of an atom, might be constrained to solve key problems

in solid-state chemistry such as the search for ferromagnetic semiconductors and stable half-

metallic ferromagnets with Curie temperatures higher than room temperature. The angular-

momentum projected occupation might also be considered. Such generalizations4 should be

accompanied with the proper redefinition of the exchange-correlation functional, that should

depend explicitly on the constraint. In this case, the formalism, known as constrained

density functional theory (cDFT) is as theoretically justified as DFT or SDFT. In practice,

though, unlike for DFT or SDFT, the usual functionals are not modified, giving powerful,

but approximate methodologies to explore the low-lying excited states of systems made of

electrons and nuclei.

cDFT has been applied in two major fields of research. Constraining the charge on

some molecular fragments allows one to explore the gradual transfer of an electron from

one fragment to another, and provide parameters for Marcus theory.5 Constraining the spin
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magnetization in the neighbourhood of an atom inside a solid allows one to obtain the energy

of the system as a function of the local magnetization.4 This can be combined with more

usual variables governing the energy in first-principle calculations, like the atomic positions or

cell parameters. Thus cDFT can provide parameters for models of magnetic state of matter,

including Heisenberg model, with the associated description of magnons,4,6,7 or for second-

principles models,8–11 or for constituting training sets for the fitting of machine-learning

interatomic potentials.12–16

The implementations and applications of cDFT over the years have been numerous, and

have been reviewed by Kaduk and Van Voorhis in 2012.5 In 2016, a list of existing implemen-

tations has been collected by Melander and coworkers.17 Then, one further implementation

has been described by Hegde and coworkers.18

Several methods have been proposed to impose the constraints. In the first one,19 an

inner “micro”-self-consistency loop is added to the usual DFT self-consistency loop. In this

inner loop, the potential (or local magnetic field) is varied to impose the constraint. In the

second one,19 a penalty function is added to the energy functional. Also, in the specific case

of the imposition of the direction of the local magnetization, one can build in directly the

constraint in an linearized augmented plane wave (LAPW) formalism,20 but this is a specific

case. None of these techniques consider the atomic magnetization or the fragment charge

on the same footing as the atomic positions or the cell parameters, namely as “external”

parameters to the self-consistency problem, for which the same treatment is applied, and with

respect to which the energy and its derivatives are exactly obtained, without any restriction.

In the present work, we show that a potential-based self-consistency approach is precisely

capable of placing the local magnetization, fragment charge, atomic positions and stresses

on a par. We explain the approach on a simple case in which the charge of one fragment

is constrained, and explain why a similar approach cannot be obtained using a density-

based self-consistency approach, while usually both are equivalent. Then, we generalize the

approach to a combination of constraints, be they fragment charge constraints and/or local

4



magnetization constraints and/or local magnetization directions and/or local magnetization

amplitudes. We derive the expressions for the gradients with respect to the value of the

constraint (e.g. chemical hardness or spin torque), with respect to the atomic positions (i.e.

the forces), and with respect to the strains (i.e. the stress tensor).

The implementation of this approach has been carried out, and we apply it to the iron

body-centered cubic (bcc) phase, with two atoms per conventional unit cell. The technique

allows one to vary independently the two magnetization vectors, by either fixing their value,

or their relative angle, or their amplitude, and monitor different quantities as a function

of such parameters. We first reproduce the magnetization amplitude as a function of the

magnetization angle, available in the literature in both LDA and GGA, and obtain excellent

agreement with previously published results, despite different parameters (e.g. the basis of

functions, or a different PAW atomic dataset). Then, we carry on with the computation of

the stress at fixed volume, as well as optimized volume, as a functional of the magnetization

angle as well. We also compute cross derivatives of the energy of the system, with respect

to both difference of charge on the two atoms, and magnetization of the two atoms, by two

techniques, second-order finite differences of total energies, and first-order finite differences

of analytic hardness and of spin torque, with excellent agreement.

The theory is presented in Sec. 2 that covers (i) some background information about

density- and potential-based DFT self-consistency approaches, (ii) the concepts of potential-

based cDFT in the simple case of one constraint, first in a Lagrange multiplier approach, then

in a new cDFT functional, (iii) the specification of the types of cDFT constraints (iv) the

treatment of multi-constraint cDFT, and (v) the computation of stress in cDFT. Section 3

presents first the computational details, then proceeds with validation tests against published

results, and concludes with the investigation of the stress-magnetization relationship and the

charge transfer-magnetization relationship for bcc iron in the cDFT formalism.
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2. Theory

In this section, we highlight first the conceptual basis of density- or potential-based DFT

self-consistency, at the heart of the vast majority of DFT calculations worldwide. We then

show how the potential-based self-consistent method can be generalized to cDFT, for the

simple case of one constraint applied to the density (imposing the charge of a fragment). The

corresponding chemical hardness is obtained, as well as the expression of first-order deriva-

tives with respect to modification of the external parameters (Hellman-Feynman theorem).

Then these equations are generalized to multiple constraints, possibly defined in overlapping

regions, and applied to both charge and magnetization. The generalized expressions for the

chemical hardness, spin-torque, forces and stresses are then presented.

2.1 The density- and potential-based DFT self-consistency approaches

Consider a set of electrons placed in a potential external to the electron system, vext, sum

of the nuclei potentials (or ionic pseudopotentials) and other external potential applied

to the electron system. The DFT energy Eφi
vext [{φi}] is expressed as a function of occupied

orthonormal Kohn-Sham wavefunctions, {φi}, where i labels occupied states with occupation

number fi (e.g. fi = 2 for doubly occupied orbitals, spin up and spin down) and includes

the kinetic energy, the potential energy of the electrons, and the density-dependent Hartree

and exchange-correlation energy EHxc[ρ]:

Eφi
vext [{φi}] = T [{φi}] +

∫
ρ[{φi}](r)vext(r)dr

+ EHxc[ρ[{φi}]], (1)

with kinetic energy and electronic density given by

T [{φi}] =
∑
i=1

fi〈φi|T̂ |φi〉, (2)
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and

ρ[{φi}](r) =
∑
i=1

fiφ
∗
i (r)φi(r), (3)

where T̂ is the kinetic energy operator.

Self-consistency can be formulated as requiring the wavefunctions to minimize Eφi
vext [{φi}]:

ESC
vext = min

{φi} orthonormal
Eφi
vext [{φi}]. (4)

Indeed, constrained minimization of Eq. (4) through the Lagrange approach yields the well-

known Kohn-Sham equations, and associated self-consistent requirement of density, poten-

tial, Kohn-Sham Hamiltonian and wavefunctions. Explicitly, for any given charge density ρ,

the screened potential is obtained as

v[ρ](r) , vext(r) + vHxc[ρ](r) = vext(r) +
δEHxc

δρ(r)

∣∣∣∣
ρ

. (5)

In a similar way, for any given trial screened potential denoted u, and the associated local

potential operator û, the corresponding Schrodinger equation is solved,

(T̂ + û)|φi,u〉 = εi,u|φi,u〉, (6)

and the resulting wavefunctions, |φi,u〉, inserted in the density expression Eq. (3), delivers

the density as a functional of the potential, noted ρv:

ρv[u] , ρ[{φi,u}]. (7)

The self-consistent density ρ∗ thus fulfills

ρ∗ = ρv[v[ρ∗]]. (8)
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In the latter equations, the density, potential and wavefunctions are functions of the position.

For sake of clarity, their position dependence as in Eq. (3) has not been explicitly mentioned,

as in most of the following equations.

Many iterative techniques have been developed over the years to tackle the self-consistency

problem.21–24 A trial input density at step n, ρin
n , delivers an output density ρout

n ,

ρout
n = K[ρin

n ] , ρv[v[ρin
n ]]. (9)

The discrepancy between the output and input densities,

R[ρin
n ] , ρout

n − ρin
n = K[ρin

n ]− ρin
n , (10)

is usually referred as the density residual. The vast majority of algorithms to solve this

self-consistency problem rely on the knowledge of pairs of trial density and corresponding

residual, to infer the next trial density. The easiest algorithm to implement, simple mixing,

is defined by

ρin
n+1 = ρin

n + λR[ρin
n ], (11)

with λ being a tunable parameter. Most sophisticated algorithms take advantage of the

history (at least the most recent part of it), and possibly include some preconditioning

operator P , even varying at each step,

ρin
n+1 = ρin

n + Pn

n∑
j=1

λjR[ρin
j ], (12)

where the set of parameters and the possible preconditioner are computed on the flight from

the history, and differ for different algorithms.

Instead of such density-based mixing approaches, potential-based mixing approaches can

also be found in the literature .22 In order to distinguish the (non-linear) operators appearing

in this approach from those appearing in the density-based approach, we label them with a
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“v” superscript. In the potential-based approaches, instead of Eqs. (8- 12), one relies on

v∗ = v[ρv[v∗]], (13)

vout
n = Kv[vin

n ] , v[ρv[vin
n ]], (14)

Rv[vin
n ] , vout

n − vin
n = Kv[vin

n ]− vin
n , (15)

vin
n+1 = vin

n + P v
n

n∑
j=1

λjR
v[vin

j ]. (16)

The density- and potential-mixing approaches are dual of each others: in the case of usual

(unconstrained) DFT, for each density-based mixing algorithm, there exists an equivalent

potential-based mixing algorithm in which the pairs of density and corresponding density

residual are replaced by pairs of potential and corresponding potential residual.

This duality does not extent to all characteristics of these two approaches. Indeed, one

can immediately associate to a given screened potential u, taken as trial potential, a set of

wavefunctions {φi,u}, through Eq. (6). On the contrary, there is no such set of wavefunctions

immediately associated with every trial density ρ, even if one generates such wavefunctions

through the screened potential v[ρ] - unless one is at self-consistency.

Focusing on the potential-based approach, the self-consistent electronic energy expression,

Eq. (4) is straighforwardly recast as a minimisation problem in the space of trial screened

potentials, as follows,

ESC
vext = min

u
Ev
vext [u] (17)

with

Ev
vext [u] = T [{φi,u}] +

∫
ρv[u](r)vext(r)dr

+ EHxc[ρ
v[u]].

(18)
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The gradient of this functional of the potential has been computed in Ref.,25

δEv
vext [u]

δu(r)
=

∫
δρv[u](r′)

δu(r)
(Kv[u](r′)− u(r′)) dr′

=

∫
χ0(r, r′)Rv[u](r′)dr′. (19)

where the independent-particle susceptibility χ0(r, r′) is to be evaluated at the screened po-

tential u. This gradient obviously vanishes at the minimum, since Rv[v∗] vanishes. In prac-

tice, multiplication by χ−1
0 , like in Ref.25, delivers a preconditioned gradient, which is nothing

else than the residual Rv[u] , so that χ0(r, r′) does not even have to be computed. Hence, this

approach shows that the usual potential-based self-consistency algorithms, Eq. (16) can be

understood as mixing the preconditioned potential gradients of the electronic energy Eq. (18)

from the current and previous steps. Note that an even better preconditioner can be defined

if the inverse dielectric constant is known, see also Ref.25

As a side note, the present formulation of cDFT shares with the OEP method26–29 the

usage of the screened potential as the fundamental object to be varied in order to optimize a

variational expression. In the OEP case, there is not such constraint as in cDFT, although the

OEP variational expression is formulated not only in terms of density (and magnetization),

but also in terms of orbitals.

2.2 Imposing the charge of one fragment in cDFT through Lagrange

approach

Let us present the concepts of the potential-based self-consistent approach to cDFT for the

simple case of one constraint, namely, constraining the weighted charge of one fragment,

labelled generically as “A”. The weighted charge on fragment A, a functional of ρ, is defined

as follows:

ρA[ρ] ,
∫
wA(r)ρ(r)dr, (20)
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for some weight function wA(r), spanning the region A where the fragment is located, typ-

ically wA(r) = 1 well inside this region and wA(r) = 0 outside, so wA smoothly decreases

to zero when reaching the frontier of A. Mathematically, the constraint of fragment charge

being NA is formulated as

NA = ρA[ρ]. (21)

Such a constraint might be dealt with by adding a penalty function multiplied by a weight,

like in Ref.30,31 In the limit of infinite weight, the constraint is exactly fulfilled. Unlike

asserted in Ref.,31 this formulation is not a Lagrange multiplier approach. Anyhow, this

technique is plagued with numerical instabilities, and definitely does not treat the values of

the constraint similarly to other external parameters like atomic positions or cell parameters.

By contrast, in the Lagrange multiplier method, the energy is augmented by the product

of a Lagrange multiplier Λ with an expression that vanishes when the constraint is fulfilled.

The proper choice of the Lagrange multiplier makes the constraint exactly satisfied. The

cDFT electronic energy, dependent on the Lagrange multiplier, is the augmented functional

E+φi
vext,NA

[{φi},Λ] = Eφi
vext [{φi}]

+ Λ
(
ρA[ρ[{φi}]]−NA

)
,

(22)

for which self-consistency can be formulated similarly to the DFT case, Eq. (4), as

E+
vext,NA

[Λ] = min
{φi} orthonormal

E+φi
vext,NA

[{φi},Λ]. (23)

The minimization procedure delivers wavefunctions and density as a function of Λ (also

vext and NA), and the final choice of Λ is the one that yields fulfilment of the constraint.

Enforcing the value of Λ that satisfies the constraint can be done along the iterative self-

consistent procedure, by using micro-iterations, like proposed by Wu and Van Voorhis .19
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However, again, this does not treat the variable NA on the same footing as other external

variables like the atomic positions or cell parameters. Moreover, the algorithms to be used

differ from the ones for a usual self-consistency loop without micro-iterations, and there is

an overhead associated with such treatment.

The potential-based approach can be adapted as well, in order to include similarly a

Lagrange augmentation. This will prove more fruitful. The augmentation is as follows:

E+v
vext,NA

[u,Λ] = Ev
vext [u] + Λ (ρv

A[u]−NA) , (24)

where ρv
A[u] is a shorthand for ρA[ρv[u]] and where self-consistency is reached at the minimum

over all trial potentials

E+
vext,NA

[Λ] = min
u
E+v
vext,NA

[u,Λ]. (25)

In Eq. (24), the gradient of Ev
vext [u] with respect to the screened potential u is given by

Eq. (19), and a similar approach delivers the gradient of the entire E+v
vext,NA

[u,Λ] with respect

to u:
δE+v

vext,NA
[u,Λ]

δu(r)
=

∫
χ0(r, r′)R+v[u,Λ](r′)dr′, (26)

with

R+v[u,Λ](r′) , Rv[u](r′) + ΛwA(r′). (27)

According to Eqs. (25) and (26), a self-consistent solution is obtained for u = v∗ that satisfies

0 = R+v[v∗,Λ](r′)

= vout[v
∗](r′)− v∗(r′) + ΛwA(r′), (28)

for all r′. Namely, it occurs when the difference between the output and input potentials is a

multiple of the weight function, the prefactor being the Lagrange parameter.

In particular, multiplying this equation by wA(r′) and integrating over r′ allows one to
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obtain the value of Λ that makes the residual vanish:

Λ = −Rv
A[v∗].(WAA)−1, (29)

where

Rv
A[u] =

∫
Rv[u](r′)wA(r′)dr′, (30)

and

WAA =

∫
wA(r′)wA(r′)dr′. (31)

This constitutes a proper mathematical formulation of potential-based cDFT within the

Lagrange multiplier approach. Moreover, in this potential-based approach, the Lagrange

parameter is immediately determined, unlike in the Wu and Van Voorhis approach.19 This is

due to the simple relationship between the potential-based residual and the weight function,

Eq. (28), for which there is no simple equivalent in the wavefunction- or density-based cDFT

formulations.

2.3 A simple potential-based cDFT functional

In order to go one step further, a new cDFT functional, EcDFT, that admits the same self-

consistent solution as Eqs.(23) or (25) is introduced. The Lagrange parameter in Eq. (24) is

replaced by the expression Eq. (29) evaluated at u instead of v∗, giving

EcDFT
vext,NA

[u] = Ev
vext [u]

− Rv
A[u].(WAA)−1 (ρv

A[u]−NA) .

(32)

This new functional places vext (in which the atomic positions and cell parameters en-

ter) and NA on the same footing, namely, as external parameters of the calculation. Still
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EcDFT
vext,NA

[u] is a functional of the screened potential u only, without auxiliary Λ to be deter-

mined. By construction, at the self-consistent v∗ for the given vext and NA, the functional

has the same value as the cDFT functional based on Lagrange parameter, delivering the

self-consistent value of the electronic energy,

ESC
vext,NA

= EcDFT
vext,NA

[v∗].

(33)

In this equation, one has not explicitly mentioned the v∗ dependence on vext and NA. Eq. (33)

is stationary with respect to variations of u around v∗:

EcDFT
vext,NA

[u] = EcDFT
vext,NA

[v∗] +O
(
(u− v∗)2

)
.

(34)

The gradient of this functional with respect to u is:

δEcDFT
vext,NA

[u]

δu(r)
=

∫
χ0(r, r′)R+v[u,ΛA[u]](r′)dr′

+

(∫
εe(r, r

′)wA(r′)dr′
)

×(WAA)−1
(
ρv

A[u]−NA

)
(35)

where

ΛA[u] , −Rv
A[u].(WAA)−1, (36)

and εe(r, r
′) is the electron dielectric response function. The gradient vanishes when u = v∗,

since in this case both R+v[v∗,ΛA[v∗]] and ρv
A[v∗] − NA vanish. This actually proves the

stationary character of EcDFT
vext,NA

[u] at u = v∗.
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Importantly, ΛA[u] is the precise value that makes R+v[u,ΛA[u]](r′) orthogonal to wA:

∫
R+v[u,ΛA[u]](r′) wA(r′) dr′ = 0. (37)

To demonstrate this assertion, insert Eq. (36) in Eq. (27) and integrate. This suggests

treating with a different preconditioning the two parts of the gradient, Eq. (35). The following

expression, obtained by removing χ0 from the first term, and εe from the second, can indeed

be used to define a residual for the cDFT:

RcDFT[u](r′) , R+v[u,ΛA[u]](r′)

+ cwA(r′)
(
ρA[u]−NA

)
. (38)

Since the first and second terms belong to orthogonal subspaces, the residual RcDFT vanishes

for all r′ only if both R+v and (ρv
A[u]−NA) vanish, which amounts to obtain self-consistency,

as, on one hand, Eq. (28) is fulfilled, and, on the other hand, the constraint Eq. (21) is

imposed. In expression Eq. (38), c is a constant, whose value is formally arbitrary, but for

practical purposes should be of order one, as it defines the balance between the convergence

inside the space spanned by wA and the convergence inside the space perpendicular to it.

This formulation of a residual for cDFT opens the door to the adaptation of all algorithms

used for potential-based DFT self-consistency.

Since the new functional EcDFT
vext,NA

[u] is stationary, its behaviour with respect to modifica-

tions of parameters vext and NA fulfills the 2n+1 theorem of perturbation theory,32 allowing

to obtain easily numerous derivatives of the total energy,33–35,35–39 with respect to changes

of the parameters of the calculation: at first order, forces, stresses, but also chemical po-

tential and spin-torque (see later), specifically for cDFT; at second-order interatomic force

constants (yielding vibrational frequencies), Born effective charges, elastic constants, but

also cross derivatives between atomic displacements, local magnetization, fragment charges,

specifically for cDFT.
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In particular, at first order, the derivative with respect to the fragment charge NA, that

is, the chemical potential of fragment A,40 µA , is

µA =
∂EcDFT

vext,NA
[v∗]

∂NA

= Rv
A[v∗].(WAA)−1 = −ΛA[v∗].

(39)

This derivation highlights relations between different quantities appearing in the formalism.

For sake of simplicity, we will often use µA to denote these different quantities.

One recovers also Hellmann-Feynman theorem,41,42 a specific instance of the 2n + 1

theorem. This gives e.g. the force exerted on atom κ in direction α as

Fκα = −
∂EcDFT

vext,NA

∂τκα

∣∣∣∣∣
v∗

(40)

where τκα is the coordinate α of the position of atom κ. When taking the derivative, the

implicit dependence of v∗ on τκα is not to be taken into account, according to the Hellmann-

Feynman theorem.

The dependencies of EcDFT
vext,NA

on τκα occurs through the external potential vext and through

the weight function wA. Since the second term in Eq. (32) does not depend explicitly on

vext, and the first term does not depend on wA, one gets

Fκα = −
∂Ev

vext

∂τκα

∣∣∣∣
v∗

+ µA
∂ρv

A[u]

∂τκα

∣∣∣∣
v∗

= −
∂Ev

vext

∂τκα

∣∣∣∣
v∗

+ µA

∫
ρv[v∗](r)

∂wA(r)

∂τκα
dr.

(41)

The first term is the usual DFT expression for the force, albeit evaluated at v∗, that is

determined under the constraint Eq. 21. The second contribution is easily evaluated once

the density has been self-consistently determined. Forces are thus by-products of the self-

consistent calculation, as usual in normal DFT. Note that while Rv
A and WAA in Eq. (32)
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depend on the atomic position, their contribution to the force vanish, as the second line in

Eq. (32) contains ρv
A[u] − NA, that vanishes at u = v∗. Other derivatives with respect to

parameters for the DFT calculation can be obtained likewise.

2.4 Types of cDFT constraints

The previous approach, presented for the case of the specific constraint of imposing the charge

of a fragment, can be generalized to several simultaneous constraints, and to constraints

more general than the fragment charges. Such possible constraints have been discussed

in Ref.5 and in other references presented in the introduction. While the original DFT

approach considered a functional of the charge density only, later generalizations introduced

functionals of collinear magnetization or even non-collinear magnetization, both equivalently

formulated in term of the spin-density matrix. The spin-density matrix ρss′ [{φi}](r) can be

computed from spinorial wavefunctions {φsi(r)}, with s and s′ subscripts being up (↑) or

down (↓),

ρss′ [{φi}](r) =
∑
i=1

fiφsi(r)φs′i(r). (42)

Constraints might be defined in terms of linear combinations and integrals of the spin-density

matrix elements, e.g.

ρI [ρss′ ] =
∑
ss′

∫
wss

′

I (r)ρss′(r)dr. (43)

The wss
′

I (r) function has to be specified for each possible value of the index I, possibly a

composite index, characterizing the different constraints.

For example, and in view of practical applications later, the magnetization along x around

atom κ, Mxκ, might be imposed by requiring the following constraint:

Mxκ = ρxκ[ρss′ ], (44)
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with the weight function inside Eq. (43) being

wss
′

xκ (r) = wrad

(
|rκ|
)
.(σx)ss′ . (45)

In this expression, rκ , r− τ κ, σx is the 2x2 Pauli matrix for the x direction, and wrad(r) is

a radial weight function (for example, wrad(r) is 1 for r smaller than some cut-off radius rc1,

then decreases smoothly beyond that radius and becomes exactly zero beyond some other

cut-off radius rc2). An alternative formulation, more convenient for numerical evaluation

and computation of forces and stresses uses

wss
′

xκ (r) = wrad2

(
r2
κ

)
.(σx)ss′ , (46)

with the following obvious relation wrad(t1/2) = wrad2(t).

The constrained magnetization along y or z, for the same atom as well as for other atoms

can be defined similarly to Eqs. (44) and (45). All these constraints can be considered

together.

We will also consider constraining only the direction of magnetization, using a linear

formulation as well, like in Ref.20 Let ê be a unit vector along the constraint direction for

the magnetization, the directional constraint can be obtained by requiring together

ρxκ[ρss′ ] = ρeκ[ρss′ ].êx, (47)

ρyκ[ρss′ ] = ρeκ[ρss′ ].êy, (48)

ρzκ[ρss′ ] = ρeκ[ρss′ ].êz, (49)

with

ρeκ[ρss′ ] = ρxκ[ρss′ ] êx + ρyκ[ρss′ ] êy + ρzκ[ρss′ ] êz.

(50)
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The function ρeκ[ρss′ ], as well as its x, y, z counterparts, is linear in ρss′ , and thus also the

constraints Eqs. 47-49. This constraint will be illustrated in the application part.

Finally, even non-linear constraints might be considered. For example, the amplitude of

the magnetization vector for atom κ, ||Mκ||, can be imposed by requiring

M2
κ = (ρxκ[ρss′ ])

2 + (ρyκ[ρss′ ])
2 + (ρzκ[ρss′ ])

2. (51)

This has also been implemented and tested, but will not be illustrated. The Lagrange

multiplier method deals also easily with such non-linear constraint, as well as the potential-

based cDFT formulation.

2.5 Multiple constraints in potential-based cDFT

Now, we generalize most of equations in Sec. 2.2 and Sec. 2.3 to the case of several constraints

and constraint types. The indices I or J run through the whole set of constraints, and replace

the index A that we had used in these sections to explain the concepts in the case of one

fragment.

For the target value of constraint I, we use the notation NI , generically, even if it is

a magnetization-type constraint. Like the density, that becomes the spin-density matrix,

the potential (screened or external) and the residual both become two-by-two spin-matrices.

The notation might become very cumbersome, so that we do not explicitly mention the two

spin variables when not strictly needed, and also we combine the two-spin labelling ss′ into

one label S, placed as superscript. So, we use vSext or even vext instead of vss
′

ext, and, likewise,

uS or u instead of uss
′
, and RS or R instead of Rss′ . By contrast, for this multiple-constraint

generalization, we explicitly treat the indices I or J .

For each constraint, there is a Lagrange multiplier ΛI . The augmented energy Eq. (24)be-

comes

E+v
vext,{NI}[u, {ΛI}] = Ev

vext [u] +
∑
I

ΛI (ρv
I [u]−NI) . (52)
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with

E+
vext,{NI}[{ΛI}] = min

u
E+v
vext,{NI}[u, {ΛI}]. (53)

The generalization of the self-consistent solution defined by Eqs. (27) and (28) is as

follows. For the self-consistent v∗, the condition is

0 = R+vS[v∗, {ΛI}](r′), (54)

for all r′ with definitions

R+vS[u, {ΛI}](r′) , RvS[u](r′) +
∑
I

ΛIw
S
I (r′), (55)

and

RvS[u](r′) , vSout[u](r′)− v∗S(r′). (56)

Eqs. (54) must be true for all values of S and r′.

Multiplying these equations by wSJ (r′) for all values of J , then integrating over r′ and

summing over S allows one to obtain the value of ΛI that makes the residual vanish:

ΛI = −
∑
J

Rv
J [v∗].(W )−1

IJ , (57)

where

Rv
J [u] =

∑
S

∫
RvS[u](r′)wSJ (r′)dr′, (58)

and

WIJ =
∑
S

∫
wSI (r′)wSJ (r′)dr′. (59)

The appearance of the cross-constraint matrix WIJ and its inverse, is key to the formulation
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of a many-constraint potential-based cDFT functional,

EcDFT
vext,{NI}[u] = Ev

vext [u]

−
∑
IJ

Rv
I [u].(W )−1

IJ (ρv
J [u]−NJ) .

(60)

For the self-consistent v∗, one recovers

ESC
vext,{NI} = EcDFT

vext,{NI}[v
∗],

(61)

and EcDFT
vext,{NI}[u] is stationary with respect to variations of u around v∗:

EcDFT
vext,{NI}[u] = EcDFT

vext,{NI}[v
∗] +O

(
(u− v∗)2

)
.

(62)

like in Eq. (34). This is the central result of this work.

Thus EcDFT
vext,{NI}[u] possesses many of the properties enjoyed by usual DFT functionals,

in particular, the possibility to apply the 2n + 1 theorem of perturbation theory, including

Hellmann-Feynman theorem. It is also clear that the constraints (fragment charge, fragment

magnetization and variation thereof) are treated on the same footing than other parameters

of the problem, those that enter in the play through the external potential, like atomic

positions or cell parameters, or applied external fields.

The following residual can be used to perform searches for self-consistency, with usual
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algorithms,

RcDFT,S[u](r′) , R+v,S[u, {ΛI [u]}](r′)

+
∑
IJ

cIw
S
I (r′)(W )−1

IJ

(
ρv
J [u]−NJ

)
.

(63)

Indeed, the first term lives in a subspace orthogonal to the second term.

The derivative of EcDFT
vext,{NI} with respect to the value of the constraint NJ , evaluated at

the self-consistent screened potential v∗, is given by

µJ =
∂EcDFT

vext,{NI}[v
∗]

∂NJ

=
∑
I

Rv
I [v
∗].(W )−1

IJ = −ΛJ [v∗].

(64)

The same notation µJ than for the derivative of the fragment charge is used, although such

derivative might correspond to a rather different physical phenomenon. For example, when

the constraint imposes a magnetization direction, such a derivative is the spin torque, namely

the gradient of the energy with respect to a change of the direction of the spin magnetization,

e.g. the torque that is needed to ensure that the magnetization is strictly constrained to a

given value.

The force Eq. (40) becomes

Fκα = −
∂Ev

vext

∂τκα

∣∣∣∣
v∗
−
∑
J

µJ
∂ρv

J [u]

∂τκα

∣∣∣∣
v∗

= −
∂Ev

vext

∂τκα

∣∣∣∣
v∗
−
∑
JS

µJ

∫
ρv
S[v∗](r)

∂wSJ (r)

∂τκα
dr.

(65)

If the weight functions decompose as in Eq. (46), namely, if they are a product of a rigid

spherical function attached to atom κJ position, times a spin-dependent quantity QS
J , inde-

22



pendent of r and of κ,

wSJ (r) = wrad2

(
r2
κJ

)
QS
J , (66)

then

Fκα = −
∂Ev

vext

∂τκα

∣∣∣∣
v∗

+
∑
JS

2µJQ
S
Jδκ,κJ

×
∫
ρv
S[v∗](r)

∂wrad2(t)

∂t

∣∣∣∣
r2κ

rκαdr. (67)

Note the presence of the δκ,κJ factor: with the weight functions as in Eq. (66), only the rigid

spherical function attached to atom κ will contribute to the force correction. This is not true

in general, since modification of atom κ position might induce modification of the weight

function linked to another atom.

Such weight function Eq. (66) is commonly used for computing the local magnetization.

In the case of a real space evaluation of the integral in Eq. (67), on a grid of points, the

decrease of the cut-off function 1 to 0 should not be too steep, otherwise the numerical

evaluation of the space integral of the derivative in such equation will have large numerical

noise (and error). The derivative of the function wrad2(t) is accompanied by a rκα factor.

An equivalent formula is obtained after considering that the derivative with respect to

τκα is equal to the negative derivative with respect to the position rα, then integrating by

parts,

Fκα = −
∂Ev

vext

∂τκα

∣∣∣∣
v∗

+
∑
JS

2µJQ
S
Jδκ,κJ

×
∫
∂ρv

S[v∗](r)

∂rα
wrad2(r2

κ)dr.

(68)

Evaluation of the density derivative in Fourier space then transform to real space might

yield smaller numerical noise than the previous procedure based on Eq. ( 67), but has not
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been implemented.

Another type of weight function makes sense in the cDFT context: partitioning in regions

around atoms, that paves completely the entire space, so that the charge density is allocated

to one or another atom. For example, Bader,43 Hirshfeld44 or Becke45 partitionings yield

wSIκ(r) = wκ(r)Q
S
I , (69)

where, for each r in the full space,

∑
κ

wκ(r) = 1, (70)

the sum running over all atoms in the space. Also in this case, for an evaluation in real

space, the weight function cannot decrease abruptly from 1 to 0 in order to compute the

forces. Thus, the wκ(r) functions overlap. The present formalism easily deal with such case,

by means of non-zero off-diagonal overlap elements WIJ , see Eq. (59). The implementation

of the Becke partitioning and associated forces has been described in detail in Ref.46

2.6 Stress in cDFT

Although the implementation of forces is common in cDFT, the implementation of stress

has not been reported to our knowledge. The stress tensor, σαβ, where α and β are along

the three cartesian directions, is obtained as the derivative of the energy per unit cell of

volume, that we will note ESC
Ωtot, with respect to the deformation tensor ηαβ, divided by the

cell volume Ω.47,48 In our notations,

σαβ =
1

Ω

∂ESC
Ωtot

∂ηαβ
, (71)

where the deformation tensor is such that the position vector rα becomes rα = rα+
∑

β ηαβrβ.

Similarly Ev
Ωvext

will be the energy per unit cell obtained from vext in the potential-based
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self-consistent approach.

With respect to the previous formalism, treating the periodic case will explicitly assume

that each constraint J is repeated periodically in every primitive cell. In order to have the

cell contribution of constraints to the total energy per primitive cell, the summation over

constraints J will be restricted to one instance of each periodically-repeated constraint.

The cDFT stress then writes

σαβ =
1

Ω

∂Ev
Ωvext

∂ηαβ

∣∣∣∣
v∗

+
∑
J

µJ
1

Ω

∂ρv
J [u]

∂ηαβ

∣∣∣∣
v∗

=
1

Ω

∂Ev
Ωvext

∂ηαβ

∣∣∣∣
v∗

+
∑
JS

µJ

∫
ρv
S[v∗](r)

1

Ω

∂wSJ (r)

∂ηαβ
dr.

(72)

In the case of atom-centered, separable weight functions like Eq. (66), the stress becomes

σαβ =
1

Ω

∂Ev
Ωvext

∂ηαβ

∣∣∣∣
v∗

+
∑
JS

2µJQ
S
J

×
∫
ρv
S[v∗](r)

1

Ω

∂wrad2(t)

∂t

∣∣∣∣
r2κ

rκJαrκJβdr.

(73)

The derivative of the function wrad2(t) is accompanied by a rκα factor and a rκβ factor, while

the contribution of all constraint is summed.

The applications in the next section rely on this formula. An alternative formulation of

the stress, similar to the one for the forces, Eq. (68), is possible, but has not been tested.

3. Results and discussion

In support to the concepts presented in the theory section, we provide validation tests again

known results, as well as demonstration of the usage of the potential-based cDFT functional

to investigate stress-magnetization and charge-magnetization couplings, for the paradigmatic
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case of BCC iron.

3.1 Computational details

The potential-based cDFT approach has been implemented in ABINIT.49,50 Results pre-

sented in this section have been obtained with version 9.6, publicly available, except for

some fixes needed to compute the stress, that will be made publicly available in ABINIT

v9.8. The cDFT electronic energy, Eq. (60), is optimized using Pulay residual minimization

algorithm21 keeping seven past pairs of trial potential and corresponding residuals, Eq. (63),

in the history. Other algorithms are available as well in ABINIT, but are not demonstrated

hereafter. We have observed several cases in which the Pulay residual minimization algo-

rithm does not yield convergence with the present cDFT formalism and its implementation.

This only occurred for non-collinear magnetization calculations within GGA(PBE), and not

for LDA. We do not report these cases in the present work, as they will be the subject of

further work.

The representation of wavefunctions relies on the projector-augmented wave (PAW) for-

malism.48 Two PAW atomic data are tested, the first one using the LDA exchange-correlation

functional, for comparison to the work by Kurz et al.,20 and another one using the GGA-

PBE51 exchange-correlation functional, for all other calculations. The pseudopotential cutoff

radius rc2=1.065Å is used as cutoff radius for the definition of the atomic spins and charges.

The width of the smearing region is 0.026Å, or roughly 2.5% of the atomic radius. The

smearing width is kept small so that comparisons could be made to the Ma and Kurz pa-

pers, where muffin tin potentials are used. Still, the smearing width needs to be large enough,

in order to avoid the numerical instabilities in the pressure calculations, as mentioned in the

theory section. The smeared function, going from 1 to 0 is the inverse of Eq. (B4) of Ref.38

All calculations are performed for a two-atom BCC iron conventional unit cell. For

a given θ angle between magnetization directions on the two atoms, magnetization on

atom 1 is imposed as M (sin(θ/2), 0, cos(θ/2)) while magnetization on atom 2 is imposed
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as M (− sin(θ/2), 0, cos(θ/2)). The parameter M is freely optimized by ABINIT. Among the

existing symmetry operations, a binary symmetry axis, exchanging atom 1 and 2, is present

for such calculations, and is actually critical to reach some of the results presented below. In-

deed, without such symmetry operation, constraining the magnetization angle θ for different

atoms using homogeneous constraints Eqs. (47)–(50) works if such angle is lower than 90°,

but is inherently problematic when a θ angle beyond 90° is aimed at. For example, impos-

ing magnetization on atom 1 to be M1(001) and M2(sin(θ), 0, cos(θ)) induces spontaneous

switching of θ larger than 90° to a value 180° −θ, smaller than 90°.

The self-consistency algorithm easily achieves more than six digit accuracy on the con-

straint, be it a magnetization component, a magnetization direction or amplitude, or a local

charge, so essentially perfectly imposing the constraint.

For comparison with results from previous publications, we use the same lattice param-

eters: 2.789Å for the comparison with Kurz et al.20 and 2.83Å for the comparison with Ma

et al.31 respectively. For all other PBE calculations we use the lattice parameter 2.845Å,

obtained from ABINIT relaxation.

A cutoff energy of 30 Ha is used, with a 16x16x16 grid to sample the Brillouin zone and an

electronic smearing of 0.0005 Ha. This is sufficient to converge the energy, spin magnitude,

pressure and transverse spin force.

It is worth noting that the longitudinal value of the spin force, obtained when the magni-

tude of the spin vector is also constrained, requires a 72x72x72 grid to sample the Brillouin

zone in order to reach convergence. However, this value can be significantly reduced when a

non-zero electronic temperature is used.

3.2 Validation of the self-consistency approach

In order to validate the potential-based cDFT method, we compare results with the imple-

mentations reported by Ma and Dudarev,31 who use the PBE functional as well as Kurz et

al.,20 who use the LDA functional. We calculated the variation in energy and spin magni-
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Figure 1: Comparison of energies (top) and spin magnitude (bottom) as a function of angle
between spin directions. Potential-based cDFT LDA data (blue) are to be compared to those
from Kurz et al.20 in orange, while potential-based PBE data (green) are to be compared to
those of Ma et al.31 in red.

28



tude as the angle between the spin (or local magnetization) vectors was varied from 0 degrees

(ferromagnetic) to 180 degrees (antiferromagnetic) in increments of 10 degrees. The energy

and spin magnitudes are plotted in Figure 1 and constitute a convincing validation of the

potential-based cDFT implementation. We use a cutoff radius of 1.065Å for our definition

of the atomic spin vector, compared to 1Å for Ma and Dudarev, and 1.19Å for Kurz et al.

The slight difference between our value for the radius and that used by Kurz et al., as well as

the different PAW atomic dataset explains the rather small, albeit non negligible difference

with these calculations. Our values for the spin magnitude are consistently slightly lower

than their values. This difference is unsurprisingly small however, since it is the localized d

electrons which contribute to the atomic magnetic moment.

The behaviour of the spin magnetization as a function of spin angle is not very smooth,

albeit continuous, in line with the results obtained in previous studies. This is observed

despite the fact that the numerical accuracy has been pushed to a high level (e.g. one

part per million for the spin magnitude at a given spin angle). In our opinion, this jagged

behaviour is to be linked to the existence of critical points in the electronic density of states,

these being affected by the spin angle, hence affecting the spin magnitude.

3.3 Stress-magnetization coupling

As an example of the strong magnetoelastic coupling in iron, we calculate the pressure for

varying spin angles when the cell is fixed, then relax the lattice parameters and obtain the

variation in the equilibrium lattice parameter. The pressure is minus the trace of the stress

tensor σαβ, see Eq. (73).

In Figure 2 the pressure varies within a range of roughly 8 GPa and 12 GPa for the PBE

and LDA calculations, respectively, as the spin vectors are rotated between the ferromagnetic

and antiferromagnetic configurations. To put this in context, the bulk modulus of iron is

166 GPa.52

The variation in the relaxed values for the lattice parameters shown in Figure 3 mirrors
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Figure 2: The pressure as a function of spin angle between the two atoms in a Fe BCC
conventional cell using the PBE and LDA exchange-correlation functionals. The lattice
parameters are found by relaxing the ferromagnetic cell in each case, giving 2.83Å and
2.76Å for the PBE and LDA functionals respectively.

the pressure changes. The lattice parameter variation is 0.06Å, or roughly 2% of the total

lattice parameter, which again demonstrates how changes in the spin configuration can

induce significant strains. In order to perform this calculation, the stress obtain at fixed

spin angle was relaxed using the cell optimization algorithm in ABINIT. However, it was

also independently checked that for a fixed spin angle the minimum of the total energy as

a function of the lattice parameter does indeed correspond to the stress going to zero. A

jagged behaviour of the pressure and lattice parameter as a function of the spin angle is

observed, similarly to the spin magnetization of the previous subsection.

3.4 Atomic magnetization and charge transfer as independent vari-

ables

As a demonstration of the combined usage of charge and spin constraints, that will be relevant

to address joint charge and spin ordering in materials like rare-earth ferrate systems53 we
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Figure 3: The lattice parameter after structural relaxation of a 2 atom BCC iron unit cell
as the angle between the spin vectors is varied. The LDA calculations past 145◦ started
converging to a zero spin configuration and were not included in the plot.

calculate the Hessian for a 2-atom Fe BCC unit cell where the variables considered are the

two collinear atomic spins and the difference in charge between the atoms. The derivative

of the energy with respect to the charge difference is calculated as:

∂E

∂∆ρ
=

1

2

(
∂E

∂ρ1

− ∂E

∂ρ2

)
, (74)

where ∆ρ = ρ1 − ρ2 is the charge difference and the derivatives with respect to the atomic

charges are available as the Lagrange multipliers for the charge constraint. The data are

presented in Table 1. These second derivatives have been computed by both a second-order

centered finite difference method from the total energies, as well as from finite differences

of analytical first derivatives. Agreement between these computations is at the level of the

number of digits shown in the Table.

All the diagonal entries are positive, which is a prerequisite for the stability of the system

with respect to spontaneous symmetry breaking. The negative value for ∂2E/∂s1∂∆ρ can be

understood intuitively as a consequence of spin polarisation becoming easier as the amount
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Table 1: Elements of the Hessian for the energy of a 2-atom Fe BCC unit cell based on three
variables. The spin magnitudes for atoms 1 and 2 are s1 s2 respectively and ∆ρ is the charge
difference between atom 1 and atom 2.

Hessian Element Value

∂2E/∂s2
1 0.02382 Ha µ−2

B

∂2E/∂s2
2 0.02382 Ha µ−2

B

∂2E/∂∆ρ2 0.21424 Ha e−2

∂2E/∂s1∂s2 0.00572 Ha µ−1
B e−1

∂2E/∂s1∂∆ρ −0.01383 Ha µ−1
B e−1

∂2E/∂s2∂∆ρ 0.01382 Ha µ−1
B e−1

of electron density which can be polarized increases.

To our knowledge, this is the first case in which cDFT has been used with both charge

and spin constraints, while the study and discovery of new multiferroic materials54 and the

analysis of spin and charge orderings53 will benefit from such possibility.

Our formulation of cDFT also allows one to develop magnetic machine learning poten-

tials12–16—potentials whose functional form is extended to depend on magnetization (norm,

but also direction) and/or atomic charge values in addition to atomic relative positions.

More specifically, the “usual” machine-learning potentials define the interatomic interaction

energy as a function of the type Tκ and position τκ of each atom κ. Then the generalized

machine-learning potentials might include the dependence of the energy on the variables

presented in Sec. 2, namely Nκ and/or Mxκ, Myκ, Mzκ. Because the proposed cDFT defines

a strictly conservative force field as a function of such coarse-grained degrees of freedom,

it can be used as the first-principles basis to generate such generalized magnetic machine

learning potentials.

In the same spirit, computing the total energy as a function of absolute atomic displace-

ments with respect to a reference unperturbed state, together with the local magnetization

and/or charge allows for the generalization of second-principles models8–11 beyond the cur-

rent ferroelectric materials, to deal with multiferroic materials, for example as a function of
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temperature. In both the machine learning potential case and the second-principles model

case, the knowledge of the various first-order derivatives, for which we have detailed the

expressions in Sec. 2.5 and 2.6, might prove to be an enabling feature.

4. Conclusion

In this work, we have formulated cDFT with a Lagrangian multiplier approach and using the

potential as fundamental variable, allowing to recast the associated self-consistency problem

in a form suited for application of standard self-consistency algorithms. The potential resid-

ual has two components, one directly related to the constraints, which could be on local

atomic density or magnetization or both, and the other stemming from the usual definition,

that invokes the difference between the input and output potentials, albeit projected on a

subspace perpendicular to the constraint. This allows one to avoid both (i) the use of a

penalty function, which delivers a biased solution to cDFT and (ii) an additional internal

loop, that departs from the usual SCF algorithms.

A simple potential-based cDFT functional, valid for all kinds of constraints placed on

the density or spin-density, in arbitrary regions of space, has been introduced, and shown to

be stationary with respect to trial effective (spin-)potential variations. The powerful 2n+ 1

theorem of perturbation theory can thus be applied in such context, allowing the cDFT

predictive capabilities similar to its DFT counterpart.

We have also provided the analytic cDFT expression for the derivatives with respect

to the constraints (e.g. the local chemical potential or the spin torque), as well as for

the atomic forces and the stress. We have validated the concepts of this approach, by their

implementation in the open-source ABINIT code, then by comparison with published results

for the paradigmatic case of Fe BCC. The investigation of stress-magnetization coupling

and charge-magnetization coupling has been done as well. In such context, the atomic spin

magnetizations, the local atomic charges, the atomic positions and the lattice parameters are
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on an equal footing, which is an ideal starting point for the generation of model Hamiltonians,

for second-principles approaches, and for generating training datasets for machine-learning

interatomic potentials.

The domain of application of our approach is thus large, even more given the develoment

of new fields of research in which the different perturbations of the bulk or nanostructures are

combined, be them electric, magnetic and stress or its gradient, as testified by the interest in

multiferroic materials, flexoelectricity or flexomagnetism, or in materials where charge, spin

and lattice degrees of freedom are coupled to each others. Furthermore, the developing of

machine learning potentials for crystal structure prediction of magnetic materials.
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(38) Janssen, J. L.; Gillet, Y.; Poncé, S.; Martin, A.; Torrent, M.; Gonze, X. Precise effective

masses from density functional perturbation theory. Phys. Rev. B 2016, 93, 205147.

(39) Hamann, D. R.; Wu, X.; Rabe, K. M.; Vanderbilt, D. Metric tensor formulation of

strain in density-functional perturbation theory. Phys. Rev. B 2005, 71, 035117.

(40) Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. Electronegativity: The density

functional viewpoint. J. Chem. Phys. 1978, 68, 3801.

(41) Hellman, H. Einfuhrung in die Quantenchemie; Deuticke, Leipzig, 1937.

(42) Feynman, R. P. Forces in Molecules. Phys. Rev. 1939, 56, 340.

(43) Bader, R. F. W. Atoms in Molecules: A Quantum Theory ; Oxford University Press:

Oxford, New York, 1994.

38



(44) Hirshfeld, F. Bonded-atom fragments for describing molecular charge densities. Theoret.

Chim. Acta 1977, 44, 129.

(45) Becke, A. Multicenter numerical integration scheme for polyatomic molecules. J. Chem.

Phys 1988, 88, 2547.

(46) Holmberg, N.; Laasonen, K. Efficient Constrained Density Functional Theory Imple-

mentation for Simulation of Condensed Phase Electron Transfer Reactions. J. Chem.

Theory Comput. 2017, 13, 587.

(47) Nielsen, O. H.; Martin, R. M. Quantum-mechanical theory of stress and force. Phys.

Rev. B 1985, 32, 3780.
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