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Polarons, that is, charge carriers correlated with lattice deformations, are ubiquitous quasiparticles in semi-
conductors, and play an important role in electrical conductivity. To date most theoretical studies of so-called
large polarons, in which the lattice can be considered as a continuum, have focused on the original Fröhlich
model: a simple (nondegenerate) parabolic isotropic electronic band coupled to one dispersionless longitudinal
optical phonon branch. The Fröhlich model allows one to understand characteristics such as polaron formation
energy, radius, effective mass, and mobility. Real cubic materials, instead, have electronic band extrema that
are often degenerate (e.g., threefold degeneracy of the valence band), or anisotropic (e.g., conduction bands
at X or L), and present several phonon modes. In the present paper, we address such issues. We keep the
continuum hypothesis inherent to the large polaron Fröhlich model, but waive the isotropic and nondegeneracy
hypotheses, and also include multiple phonon branches. For polaron effective masses, working at the lowest order
of perturbation theory, we provide analytical results for the case of anisotropic electronic energy dispersion,
with two distinct effective masses (uniaxial) and numerical simulations for the degenerate three-band case,
typical of III-V and II-VI semiconductor valence bands. We also deal with the strong-coupling limit, using a
variational treatment: we propose trial wave functions for the above-mentioned cases, providing polaron radii
and energies. Then, we evaluate the polaron formation energies, effective masses, and localization lengths using
parameters representative of a dozen II-VI, III-V, and oxide semiconductors, for both electron and hole polarons.
We show that for some cases perturbation theory (the weak-coupling approach) breaks down. In some other
cases, the strong-coupling approach reveals that the large polaron hypothesis is not valid, which is another
distinct breakdown. In the nondegenerate case, we compare the perturbative approach with the Feynman path
integral approach in characterizing polarons in the weak-coupling limit. Thus, based on theoretical results for
cubic materials, the present paper characterizes the validity of the continuum hypothesis for a large set of
20 materials.

DOI: 10.1103/PhysRevB.104.235123

I. INTRODUCTION

Polarons are usually defined as a correlated state combin-
ing a charge carrier and a deformation of the lattice. They are
ubiquitous quasiparticles arising naturally in many insulators
and semiconductors [1]. Although the polaron concept can be
traced back to work by Landau [2] in the 1930s, the polaron
term was introduced later by Pekar [3]. Early models assumed
the localization length of the polaron to be much larger than
the crystal atomic periodicity (large polaron), so that the
charged particle couples with the polarization of the lattice
through a macroscopically screened Coulomb interaction. A
formalism for determining large polaron properties based on
a strong-coupling approach was provided first by Landau and

Pekar [4]. Later, Fröhlich [5] introduced a second-quantized
formulation, and worked out a weak-coupling approach to
large polarons. The Fröhlich model can be studied also by
more sophisticated formalisms, such as Feynman’s path inte-
gral variational approach [6] or diagrammatic quantum Monte
Carlo [7], valid for the whole range of coupling strengths.
Such approaches target polaron formation energy, effective
mass, mobility, and optical characteristics [8]. Alternatively,
the Holstein model has been a successful theoretical tool for
studying small polarons, in which the discrete character of
the lattice is retained, and the electron-phonon interaction is
short-ranged [9,10].

The full complexity of materials is however not captured
by these models. Most real materials have several phonon
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branches and electronic bands, both with arbitrary disper-
sions (albeit quadratic close to the extrema), and general
electron-phonon interaction, though it generically reduces to
the Fröhlich form for small momentum transfer. Such features
can only be addressed by first-principles approaches, that have
seen an impressive development during the last two decades.
Existing first-principles approaches consider polarons either
in the self-trapped adiabatic state [1,11–15], corresponding
to the strong-coupling limit, or from many-body perturbation
theory, corresponding to the weak-coupling limit, e.g., the
Allen-Heine-Cardona (AHC) approach [16–27]. In the first
case, the polaron formation energy is computed from the
associated collective atomic displacement pattern and frozen
electronic density, and the mobility is estimated through the
computation of barriers for transitioning the localized polaron
from one site to another. In the second case, the treatment
of the correlation between electron and phonon delivers a
modification of the band edge eigenenergies, and a modifica-
tion of the band gap often termed zero-point renormalization
(ZPR), and also allows one to compute spectral functions.
Only recently a path towards a unified first-principles theory
of polarons has been sketched [25], and will likely be followed
by further developments.

In Ref. [26] Miglio et al. established the predictive power
of the first-principles approach for the ZPR, in the AHC
methodology, by studying a set of 30 materials, and per-
formed systematic comparison with existing experimental
data. The inclusion of nonadiabatic effects was demonstrated
to be essential to produce a match between experimental and
theoretical ZPR of the band gap. This was made clear by in-
troducing a generalized Fröhlich model (gFr) from which the
ZPR could be deduced without resorting to full first-principles
calculations, as only a few macroscopic quantities, determined
either from experiment or first-principles calculations, were
needed. This generalized Fröhlich model will be at the center
of the present paper.

Indeed, the continuum hypothesis inherent to the Fröh-
lich model can be dissociated from further simplifications
present in the original Fröhlich model. These additional sim-
plifications are (i) only one isotropic LO phonon branch,
(ii) only one isotropic nondegenerate electronic band, and
(iii) an isotropic dielectric tensor to determine the electron-
phonon coupling (EPC). One can waive such restrictions
without addressing the full complexity of the materials,
in particular without introducing full-fledged electronic and
phononic dispersions in the full Brillouin zone. By consid-
ering parabolic bands and dispersionless phonon branches,
still allowing anisotropic behaviors and including nondegen-
eracy and warping effects [28], one captures an important part
of the electron-phonon effect in real materials, so that such
generalized Fröhlich model is sufficiently predictive for the
most ionic materials among those considered, namely, for the
oxides and II-VI materials. Miglio et al. provided the polaron
formation energy within the lowest-order perturbation theory
for the generalized Fröhlich model. For each of the examined
materials, less than a dozen parameters defined the gFr model,
depending on the symmetries and number of atoms per cell.

The original Fröhlich model, that is characterized by one
single adimensional parameter, α, has been studied by many
different theoretical approaches. These studies determined

the ground-state energy as a function of α, but also the
polaron effective mass, mobility, optical properties, local-
ization, or modifications due to magnetic field, be they in
three-dimensional or confined situations [29–31]. The polaron
effective mass, determined in the weak-coupling regime at
the lowest order of perturbation, diverges when α is 6 or
bigger, indicating the breakdown of perturbation theory. The
localization radius, estimated from the strong-coupling limit,
provides a criterion to determine whether the large polaron
picture is correct: if it is comparable to or only slightly bigger
than the distance between equivalent sites, the large polaron
hypothesis breaks down.

So far, there have only been a few attempts to formulate and
study an extended model beyond the above-mentioned sim-
plifying hypotheses. Trebin and Rössler [32] studied polaron
energies and effective masses in the case of triply degener-
ate bands, however without the inclusion of band warping
(they worked with “isotropic” triply degenerate bands), and
ignored the effect of multiple LO phonon branches. Similarly,
Fock, Kramer, and Büttner [33] examined polaron energies
and masses in the nondegenerate case with uniaxial symmetry
for effective mass (and dielectric tensor), but considered only
one LO phonon branch. The case of multiple phonon branches
was tackled by Schlipf, Poncé, and Giustino [34], although
they focused on the nondegenerate case with isotropic effec-
tive masses. Exact formulas were derived in these studies,
while others [35,36] proposed approximate results. To our
knowledge, the strong-coupling limit has not been examined
in any of these cases. Trebin and Rössler [32] also considered
the effect of spin-orbit coupling. It is not considered in the
present paper, and must be the subject of future work. A
supplementary issue that is not considered in the present paper
has been recently tackled by Houtput and Tempere [37] in
deriving anharmonic contributions to the Fröhlich model.

In order to study polarons in more realistic cases, and
pursue the work of Miglio et al., who focused on the polaron
energies only, we compute effective masses in the weak-
coupling limit, and further estimate localization lengths in
the strong-coupling limit. We limit our investigation of the
generalized Fröhlich model to the case of cubic materials,
treated in the harmonic approximation for phonons, and in
the same macroscopic continuum hypothesis as in the usual
Fröhlich model. We establish criteria for the breakdown of
perturbation theory, similar to that for a single isotropic non-
degenerate electronic band, and obtain an estimation of the
different (anisotropic) localization lengths, to be compared
with the interatomic distance.

In Sec. II we summarize the basic theoretical knowledge
of large polarons properties. First, we consider results for the
standard Fröhlich model, in the weak- and strong-coupling
limits, then present the Feynman variational approach, valid
for the whole coupling range. We report the polaron forma-
tion energy from the gFr model, specialized for the cubic
case, for isotropic and anisotropic and for nondegenerate and
degenerate electronic dispersions. In Sec. III we derive the
polaron effective mass for nondegenerate anisotropic as well
as degenerate electronic bands coupled to multiple phonon
modes. In Sec. IV we provide the localization lengths beyond
the basic Fröhlich model, for the same scenarios as for the
polaron effective masses. In Sec. V, we present our results
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(effective masses and localization lengths) for a subset of 21
cubic materials among those originally considered by Miglio
et al. In the discussion Sec. VI, we combine the effective
masses and localization length data, to assess, for each mate-
rial and for both electron and hole polarons, whether there is a
breakdown of perturbation theory and whether the continuum
hypothesis is valid or not. Such breakdowns happen indeed
for several oxide materials. We also compare, for the nonde-
generate uniaxial case, our formation energies and effective
masses with those from the Feynman path integral approach
for the isotropic case with effective masses equal to those of
the uniaxial case, approximately averaged. We conclude in
Sec. VII.

II. THEORETICAL BACKGROUND

A. Polaron energy, effective mass, and localization radius
in the Fröhlich model

The basic Fröhlich model [38] starts from one electronic
band with spherical symmetry (i.e., isotropic), with parabolic
dispersion determined by the effective mass m∗, coupled to
one dispersionless longitudinal optical phonon of frequency
ωLO while ignoring the crystal discrete nature (continuum
limit). The Fröhlich model is thus able to describe a very
reduced set of realistic scenarios, where e.g., compounds are
binary, the band extrema are neither anisotropic nor degener-
ate, and one ignores the contribution to the polaron formation
due to other phonon modes (e.g., acoustic and transverse
optical).

Let us first recall the Fröhlich Hamiltonian describing this
picture (everything will be expressed in atomic units unless
stated otherwise: me = 1, |e| = 1, h̄ = 1):

ĤFr = ĤFr
e + ĤFr

p + ĤFr
EPC, (1)

where

ĤFr
e =

∑
�k

�k2

2m∗ ĉ+
�k ĉ�k , (2)

ĤFr
p =

∑
�q

ωLOâ+
�q â�q , (3)

ĤFr
EPC =

∑
�k,�q

gFr (�q)ĉ+
�k ĉ�k (â�q + â+

−�q ), (4)

where ĉ+
�k (ĉ�k ) is the electron creation (annihilation) operator

and â+
�q (â�q ) is the phonon creation (annihilation) operator.

The electron-phonon coupling is defined as follows:

gFr (�q) = i

q

[
2πωLO

VBvK

(
1

ε∞ − 1

ε0

)]1/2

, (5)

where q is the norm of the phonon wave vector �q and VBvK is
the Born–von Kármán volume. This, in turn, can be rewritten
as

gFr (�q) = i

q

[
2
√

2π

VBvK

ω
3/2
LO√
m∗ α

]1/2

, (6)

with the adimensional parameter α

α = (ε∗)-1(m∗)1/2(2ωLO)–1/2, (7)

where

(ε∗)–1 = (ε∞)–1 − (ε0)–1. (8)

The treatment of the Fröhlich Hamiltonian at the lowest
order of perturbation theory in α (second-order perturbation
theory in the strength of the electron-phonon coupling) gives
the polaron binding energy as a function of the crystalline
momentum:

EP(�k) = k2

2m∗ − α
ωLO

kaLO
arcsin(kaLO), (9)

where we define a characteristic length [39]:

aLO = (2m∗ωLO)1/2. (10)

Expanding the arcsin in a series up to the second-order
term in kaLO one obtains the (isotropic) polaronic dispersion
relation:

EP(�k) = −αωLO + k2

2m∗

(
1 − α

6

)
+ O(k4), (11)

with the zero momentum value also known as the ZPR.
From the previous expression the polaron effective mass

expression in the lowest-order perturbation theory is

m∗
P = m∗

(
1 − α

6

)−1

. (12)

This polaron effective mass expression changes sign for α� 6,
indicating the breakdown of perturbation theory. Even so, it
is important to note that for values of the coupling constant
close to 6 the polaron formation energy in the lowest-order
perturbation theory treatment shows only mild deviations
(≈10–15%) with respect to the diagrammatic Monte Carlo
treatment [7]. Considering that we are dealing with lowest-
order perturbation theory, the breakdown limit can be taken as
a qualitative one, which signals a crossing from the weak- to
a strong-coupling regime in the Fröhlich picture. In this latter
scenario the polaron reaches a self-trapping regime.

So far we have discussed the energetics of the polaron and
effective mass. We now tackle another important characteris-
tic of a polaron, namely, its localization length. In the simplest
case where the electronic band is isotropic, the theory de-
scribing the polaron localization has been developed by Pekar
[3] and Landau and Pekar [4] in the strong-coupling theory
framework, using a variational approach based on a Gaussian
wave-function ansatz. This method is described extensively
by Mahan (see Ref. [40], Sec. 7.1.3). The approach is based
on the variational principle, whereby the energy associated to
a normalized trial wave function φ(�r) combines an electronic
kinetic energy part and a coupled electron-phonon and phonon
part. Explicitly,

EP[φ(�r)] = Eel[φ(�r)] + Eepp[φ(�r)], (13)

where the electronic energy is written

Eel[φ(�r)] =
∫

d�r | �∇φ(�r)|2
2m∗ , (14)

while the electronic density,

ρ(�r) = |φ(�r)|2, (15)
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induces a response of the polarizable medium, obtained math-
ematically by considering its Fourier transform

ρ(�k) = 1

(2π )3/2

∫
d�rρ(�r)ei�k�r (16)

and building the associated electron-phonon and phonon en-
ergy:

Eepp[φ(�r)] = −
∫

d�k 4π

2k2ε∗ ρ∗(�k)ρ(�k). (17)

The electron wave function is frozen, as well as the
deformation of the polarizable medium. Hence, in this strong-
coupling scenario, one works in an adiabatic approximation,
in which the electron and phonon parts are explicitly corre-
lated, albeit frozen. A discussion of the leftover part is also
provided in Ref. [40], showing how the variational approach
was obtained from the full second-quantized Hamiltonian,
to which both weak- and strong-coupling approaches can be
applied, as well as the other methodologies mentioned in the
introduction.

Different simple trial wave functions can be found in the
literature, giving analytical results. The convenient Gaussian
trial wave function [40] is written

φ(�r) =
(

1√
πaP

)3/2

exp

(
− r2

2a2
P

)
, (18)

where aP is the localization radius of the electron, an ad-
justable parameter in the polaron wave function, allowing the
minimization of the polaron formation energy.

The best (in the variational sense) localization length is
then obtained in terms of the electron effective mass m∗ and
the dielectric constant ε∗, defined in Eq. (8):

aP = 3
2

√
2π (m∗)–1ε∗. (19)

This adiabatic localization length is independent from the
phonon frequency, and is roughly 17% larger than the
polaron localization length derived using an exponential
wave-function ansatz [see Sio et al. [25], Eq. (11)]. The po-
laron localization can be expressed in terms of the phonon
energy if one reintroduces the α parameter:

aP = 3
2

√
π (m∗ωLO)−1/2(α)−1. (20)

The localization length is not a hard limit on the polaron
extent, but indicates a characteristic decay length of the self-
trapped electronic wave function.

Along the same lines one can provide the polaron ground-
state energy in the spherical limit within the Gaussian
variational strong-coupling approach:

EP = − 1

6π
m∗(ε∗–1)2. (21)

This Gaussian polaron stabilization energy is roughly 8%
lower than with the exponential ansatz [see Sio et al. [25],
Eq. (12)], suggesting a Gaussian wave-function ansatz seems
to be a superior choice to start with in the variational approach.

Rewriting the previous equation in terms of the coupling
constant α, one arrives at

EP = − 1

3π
ωLOα2 ≈ −ωLO(0.1061α2). (22)

A much more sophisticated attempt at determining the
polaron ground-state energy in the strong-coupling limit has
been provided by Miyake [41], which shows a slightly differ-
ent prefactor of the term quadratic in the coupling constant
α, and adds a constant term, in a perturbation expansion with
small parameter 1/α2:

EP ≈ −ωLO[0.1085α2 + 2.836 + O(1/α2)]. (23)

In the weak-coupling regime the polaron ground-state en-
ergy shows a leading linear dependence on α, while in the
strong-coupling regime a quadratic one. The crossing between
the two different regimes, weak and strong, given by Eqs. (11)
and (22) gives a value of α ≈ 9.5 (leaving aside the constant
shift in the strong-coupling expansion).

B. Polaron energy, effective mass, and radius
in the Feynman approach

The Feynman [6] 1955 path integral approach to the Fröh-
lich model casts the Fröhlich Hamiltonian [Eq. (1)] into a
Lagrangian by passing the electron and phonon creation and
annihilation operators into the corresponding coordinates and
momenta, and performing a Legendre transformation. After
a Gaussian integration over the momenta, one is left with a
configuration path integral that is Gaussian over the phonon
coordinates which can be evaluated directly. This results in an
effective action of an electron coupled by a nonlocal Coulomb
potential to a second fictitious particle:

Z = Tr exp (−βĤFr ) ≈
∫

�r(0)=�r′(β )
D�r(τ ) e−S[�r(τ )], (24)

with

S[�r(τ )] = m∗

2

∫ β

0
dτ

(
d�r(τ )

dτ

)2

− (ωLO)3/2α√
8m∗

×
∫ β

0
dτ

∫ β

0
dσ |�r(τ ) − �r(σ )|−1e−ωLO|τ−σ |. (25)

Here S is the (Fröhlich ) model action, and Z is the partition
function for the electron to begin and end at the same position
over imaginary time ih̄β, with the thermodynamic beta β =
1/kBT . This form of S already assumes that β is large (low
temperature, relative to the phonon energy).

The path integral is difficult to evaluate for the 1/r
Coulomb potential, so Jensen’s inequality, 〈exp f 〉 � exp 〈 f 〉,
is used to approximate the model action S by an analytically
path-integrable quadratic action (the trial action), S0, that has
a time-retarded potential and a (tunable) exponential factor
similar to S:

S0[�r(τ )] = m∗

2

∫ β

0
dτ

(
d�r(τ )

dτ

)2

+C

2

∫ β

0
dτ

∫ β

0
dσ [�r(τ ) − �r(σ )]2e−w|τ−σ |. (26)

This results in the Feynman-Jensen inequality that gives a
solvable upper bound to the model free energy,

F � FS0 + 1

β
〈S − S0〉S0 , (27)
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where FS0 is the free energy of the trial system and 〈S − S0〉S0

is the expectation value of the difference in the two actions,
taken with respect to the trial system:

〈S − S0〉S0 =
∫
D�r(τ )(S − S0)e−S0[�r]∫

D�r(τ )e−S0[�r]
. (28)

The ground-state energy E is estimated by taking the
limit β → ∞ (temperature goes to zero). In this limit the
trace in Eq. (24) can be estimated by the ground state,
Tr exp(−βĤ )|β→∞ ≈ exp(−βE ). The Feynman-Jensen in-
equality for the ground-state energy is thus

E � 3ωLO

4v
(v − w)2 − αωLO√

π

v

w

∫ ∞

0
dτ

e−τ

√
τD(τ )

,

D(τ ) = 1 + v(1 − w2/v2)(1 − e−vτ )

τw2
, (29)

where v2 ≡ w2 + 4C/w. The process is variational with two
free parameters: v (the frequency of the harmonic oscillator
composed of the electron and the fictitious particle) and w

(the exponential rate of decay of the coupling in time).
For extremal values of the coupling α, w smoothly ap-

proaches limits of 1 and 3. In the weak-coupling (small alpha)
limit the energy minimum occurs when v is near w. Therefore,
Feynman set v = (1 + ε)w where ε is small and expanded the
energy expression [right-hand side of Eq. (29)] with respect
to ε. Feynman then minimized the energy first with respect
to ε and then with respect to w and found that in the weak-
coupling limit the energy is least when

w

ωLO
= 3,

v

ωLO
= 3

[
1 + 2α

3w

(
1 − 2

w

[√
w − 1 − 1

])]
,

E

ωLO
� −α − 1.23

(
α

10

)2

. (30)

In the strong-coupling (large alpha) limit v is large and w

approaches 1 so w/v << 1. Therefore, Feynman expanded
the energy expression with respect to w/v and then minimized
the energy with respect to v and w and found that in the
strong-coupling limit the energy is least when

w

ωLO
= 1,

v

ωLO
= 4α2

9π
− 4

(
log 2 + 1

2
γ

)
+ 1,

E

ωLO
� − α2

2π
− 3

2
(2 log 2 + γ ) − 3

4
+ O

(
1

α2

)
, (31)

where γ = 0.5772 . . . is the Euler-Mascheroni constant.
For finite temperature a numeric variational solution is

required. As temperature is relative to the phonon energy,
soft polar materials will require a numeric solution at room
temperature. The variational parameters for finite temperature
can be evaluated by numerically minimizing Ōsaka’s finite
temperature generalization of Feynman’s variational principle
[42] to give a lower upper bound to the polaron free energy.

The effective polaron mass at zero temperature was found
by Feynman [6] by assuming that the electron moves with
a small velocity �u from an initial coordinate �0 to a final
coordinate �r f = �uh̄β in an imaginary time h̄β. Feynman then
sought the total energy of the polaron and equated it to the
form E0 + 1

2 m∗
Pu2 by expanding the total energy expression to

quadratic order in the velocity �u. From the kinetic energy term
Feynman found the polaron effective mass:

m∗F
P = m∗

[
1 + α

3
√

π

(
v

w

)3 ∫ ∞

0
dτ

e−τ τ 1/2

[D(τ )]3/2

]
(32)

where the values of the variational parameters are those that
minimize the original polaron ground-state energy when u = 0
in Eq. (29). From the values in Eq. (30) Feynman obtained the
weak-coupling expression

m∗F
P = m∗[1 + 1

6α + 0.025α2 + · · · ], (33)

and from the values in (31) the strong-coupling expression is

m∗F
P = m∗ 160

81

(
α

π

)4

. (34)

At finite temperatures the effective polaron mass is pro-
portional to the imaginary part of the complex impedance
function Z (ν, β ) provided by Feynman et al. [43] [Eqs. (35),
(36), and (41)] in the zero frequency limit ν → 0:

m∗F
P (β ) = m∗ lim

ν→0

{
ImZ (ν, β )

ν

}
(35)

as described by Peeters and Devreese [44].
Schultz [45] estimated the polaron size by calculating the

root mean square distance between the electron and the fic-
titious particle. The reduced mass of their relative motion is

μ = m∗

m∗F
P

(
m∗F

P − m∗). (36)

Schultz then used the ground-state harmonic oscillator wave
function for the relative coordinate ρ,

φ0(ρ) =
(

μvωLO

π

)3/4

exp

(
−μvωLOρ2

2

)
, (37)

to define a polaron radius:

rP ≡ 〈ρ2〉1/2 = 1

2

(
3

μvωLO

)1/2

. (38)

In the weak-coupling limit this is

rP ∼ 3

4

(
6

αm∗ωLO

)1/2

, (39)

and in the strong-coupling limit

rP ∼ 3

2α

(
π

m∗ωLO

)1/2

. (40)

In the degenerate anisotropic uniaxial case, we propose to
naïvely incorporate the anisotropy into the Feynman approach
(which is one-dimensional due to the underlying isotropy
of the Fröhlich Hamiltonian) by treating the two directions
independently with effective masses m⊥ and mz. We then use
the variational principle separately in each direction to find
the variational parameters v⊥/z and w⊥/z that give the lowest
upper bound to the ground-state energy E⊥/z for each direc-
tion. The variational parameters can then be used to obtain
the effective polaron masses m∗F

P,⊥ and m∗F
P,z using Eq. (32) and

polaron radii rP⊥ and rPz using Eq. (38).
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We define an effective ground-state energy by taking the
arithmetic mean,

E = 2E⊥ + Ez

3
, (41)

and the effective radius of the anisotropic polaron by the
geometric mean:

rP = (
r2

P⊥rPz
)1/3

. (42)

C. Polaron formation energy in the generalized
Fröhlich cubic model

The generalized Fröhlich model is considered now in the
specific case of cubic materials. The most general case of
the Fröhlich model without restriction on the crystallographic
systems is discussed elsewhere [26]. In particular the cubic
case arrives with certain advantages: the macroscopic dielec-
tric tensor ε∞ and, in the neighborhood of the zone center,
the phonon dispersion do not depend on the wave-vector
direction. The results are now reformulated to simplify their
structure.

Considering both the electron polaron and the hole polaron
in cubic materials (corresponding to conduction states and
valence states), the variable σ , that takes value σ = 1 for
electron polarons and σ = −1 for hole polarons, is introduced
to characterize the electronic band dispersion, which will be
used to ensure the effective mass is always positive at a band
extremum.

The gFr Hamiltonian in the cubic case is expressed as
follows:

ĤgFr =
∑
�k,n

σ �k2

2m∗
n (k̂)

ĉ+
�k,n

ĉ�k,n
+

∑
�q, j

ω jLOâ+
�q, j â�q, j

+
∑

�knn′,�q j

ggFr(�knn′, �q j)ĉ+
�k+�q,n′ ĉ�k,n

(â�q, j + â+
−�q, j ). (43)

One can point out several aspects in Eq. (43), with respect
to the usual Fröhlich Hamiltonian. The electronic effec-
tive mass k̂ dependence in this case accounts for possible
anisotropic behavior of the electronic dispersion. k̂ is the
normed direction of the �k vector. Index n accounts for the
summation over the electronic bands, thus one can consider
possible degenerate states. The summation over j includes
the possibility to couple to multiple phonon branches, still
considering only the LO type. Most importantly, compared to
the basic one-band model, the EPC term summation over the
n and n′ indices now includes interband contribution, if the
bands are degenerate at the edge.

The EPC is given by

ggFr(�knn′, �q j) = i

q

4π

�0

(
1

2ω jLOVBvK

)1/2 p jLO

ε∞

×
∑

m

sn′m(k̂′)[snm(k̂)]∗ (44)

where p jLO is the phonon mode polarity and the s(k̂) ten-
sors are unitary matrices [26], actually the overlap matrices
between a fixed basis of wave functions at � and the wave
functions tending to � along direction k̂. The wave vector

�k′ = �k + �q has direction k̂′. In the nondegenerate case, s is
1, irrespective of k̂.

The polaron binding energy has been derived within the
gFr model [26], taking into account possible wave-vector de-
pendence of the phonon frequencies and mode-polarity vector,
as well as anisotropic dielectric tensor. These do not show up
in the cubic case, thus Eq. (6) of Ref. [26] reduces to

ZPRgFr = −
∑

jn

σ√
2�0ndeg

{∫
4π

dk̂[m∗
n (k̂)]1/2

}

× (ω jLO)−3/2

(
p jLO

ε∞

)2

(45)

with ndeg the degeneracy of the band extrema and ω jLO the jth
LO phonon mode.

In view of further developments, and in order to high-
light the similarity with Eqs. (7) and (11), we rewrite this
expression, and introduce the phonon branch-dependent gen-
eralization of the adimensional parameter α:

α j = 〈m∗1/2〉(2ω jLO)–1/2(ε∗
j )-1, (46)

where the average square-root effective mass is

〈m∗1/2〉 =
∑

n

1

ndeg

{
1

4π

∫
4π

dk̂[m∗
n (k̂)]1/2

}
, (47)

and the phonon branch j contribution to ε∗–1 is

ε∗–1
j = 4π

�0

(
p jLO

ω jLOε∞

)2

. (48)

One can check that the static dielectric constant is the
sum of the electronic (optical) one and those of all phonon
branches [26,46]:

(ε0)–1 = (ε∞)–1 +
∑

j

(ε∗
j )–1. (49)

Such formulas generalize easily to the noncubic case, but
the cubic case allows a decoupling of the electronic direction-
ality average from the vibrational and dielectric behavior.

In terms of these quantities, the polaron binding energy in
the generalized cubic Fröhlich model is expressed as

ZPR = −σ
∑

j

α jω jLO

= −σ 〈m∗1/2〉
∑

j

(2ω jLO)–1/2(ε∗
j )–1ω jLO. (50)

In what follows, the vibrational and dielectric factor in this ex-
pression, as well as a similar expression without the rightmost
factor ω jLO, will be encountered often, so that we define, for
n = 0 and 1,

Vn =
∑

j

(2ω jLO)–1/2(ε∗
j )–1(ω jLO)n, (51)

which gives

ZPR = −σ 〈m∗1/2〉V1. (52)
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III. POLARON EFFECTIVE MASS IN CUBIC MATERIALS

We now derive the expressions for the polaron effective
mass, in the weak-coupling limit, from many-body perturba-
tion theory. The self-energy is obtained, then derived twice
with respect to the wave vector, giving the effective mass.
We will treat first the nondegenerate case, then the degenerate
case.

A. Effective masses in the nondegenerate case

In order to determine the polaron effective mass, the self-
energy �(�k) is determined at the lowest order in many-body
perturbation theory, in the on-the-mass-shell approach. The
polaron energy EP(�k) is obtained as

EP(�k) = E (�k) + �(�k, E (�k)), (53)

with

�(�k, z) = 1

π

∑
j

∫
d3q

ω jLO

4πq2ε∗
j

1

[z − E (�k + �q)] − σω jLO

,

(54)
where E (�k) is the bare electron or hole energy depending on
the wave vector �k.

In the nondegenerate case, the bare electronic energy is ex-
pressed in terms of effective masses along the three principal
axes of the electronic dispersion relation (with the general
case of a band edge anywhere in the Brillouin zone, note
that cross terms like mxy can always be eliminated by the
proper choice of axes). Deviations from quadratic behavior
are ignored, and are beyond the gFr model. Thus,

E (�k) = σ

2

(
k2

x

m∗
x

+ k2
y

m∗
y

+ k2
z

m∗
z

)
. (55)

After expanding the self-energy in a Taylor series up to
second order in the wave-vector components, the polaron dis-
persion energy in the nondegenerate energy case becomes

EP(�k) ≈ �(0, �k = 0) + σ

2

(
k2

x

m∗
P,x

+ k2
y

m∗
P,y

+ k2
z

m∗
P,z

)
, (56)

where �(0, �k = 0) is the ZPR energy. The quantities m∗
P,i are

the sought polaron effective masses:

1

m∗
P,i

= 1

m∗
i

+ σ
d2�(�k, E (�k))

dk2
i

∣∣∣∣
k=0

; i = x, y, z. (57)

Equations (53)–(57) can be worked out as follows. One
defines

IP(�k, ω jLO, m∗
i ) =

∫
d3q

4πq2

1

σ [E (�k) − E (�k + �q)] − ω jLO

,

(58)
with the dependence of IP on effective masses being given by
Eq. (55), so that

�(�k, E (�k)) = σ

π

∑
j

ω jLO

ε∗
j

IP(�k, ω jLO, m∗
i ). (59)

One easily proves that

IP(0, ω jLO, m∗
i ) = (ω jLO)−1/2IP(0, 1, m∗

i ) (60)

and

∂2IP

∂k2
i

∣∣∣∣
k=0

= −2
∂2IP

∂ω jLO∂m∗
i

∣∣∣∣
k=0,ω jLO

, (61)

giving

d2�(�k, E (�k))

dk2
i

∣∣∣∣
k=0

= σ

π

∂IP

∂m∗
i

∣∣∣∣
k=0,ω=1

V0, (62)

to be inserted in Eq. (57). In this expression, the decomposi-
tion between dependence on the electronic dispersion, through
the effective masses, and the dependence on the phonon
branches is clear.

The required expression for IP(0, 1, m∗
i ), namely,

IP(0, 1, m∗
i ) = −

∫
d3q

4πq2

1
1
2

( q2
x

m∗
x
+ q2

y

m∗
y
+ q2

z

m∗
z

) + 1
, (63)

relates directly to the average square-root effective mass,
Eq. (47), in this nondegenerate case. Indeed, �q can be de-
composed in its norm q and direction q̂, �q = qq̂, the radial
and angular integrations can be decoupled, and the radial one
can be performed exactly. The effective mass in direction q̂ is
given by

1

m∗(q̂)
= q̂2

x

m∗
x

+ q̂2
y

m∗
y

+ q̂2
z

m∗
z

, (64)

and one obtains

IP(0, 1, m∗
i ) = − π√

2
〈m∗1/2〉. (65)

Finally, one recovers first Eq. (50), as ZPR = �(�0, E (�0)), but
one finds also

1

m∗
P,i

= 1

m∗
i

− ∂〈m∗1/2〉
∂m∗

i

V0. (66)

In the nondegenerate isotropic case, e.g., when one has a
single electronic band edge at �, the polaron effective mass
simplifies to Eq. (12).

Moreover, one can treat also analytically the nondegenerate
anisotropic uniaxial case, suitable to describe materials where
the band extremum is found at X or L points in cubic materi-
als, with a uniaxial electronic dispersion relation. In this case,
we define

mx = my = m⊥, (67)

as well as the ratio between effective masses μ∗ = m⊥
mz

. We
can distinguish two possible scenarios, μ∗ > 1 and μ∗ < 1.
The self-energy will inherit the uniaxial symmetry of the
electronic structure and we can determine the in-plane and
out-of-plane derivatives based solely on the two different
electronic effective masses. Mathematically, one obtains the
following formulas. The average square root of the effective
mass over all directions becomes

〈m∗1/2〉 = m1/2
⊥ S(μ∗ − 1) (68)

where

S(x) =
{

arcsinh(x1/2 )
x1/2 , x > 0,

arcsin[(−x)1/2]
(−x)1/2 , x < 0.

(69)
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FIG. 1. Polaron effective mass breakdown limit in the uniaxial
case. Note that when the two relevant effective masses m∗

z and m∗
⊥,

respectively, are equal we reach the isotropic limit breakdown of 6.

This yields analytical formulas for the electron-phonon
modification of the inverse effective masses:

d2

dk2
⊥

�

∣∣∣∣
k=0

= σ
1

4
√

2
m−1/2

⊥

[
S(μ∗ − 1) − (μ∗)1/2

μ∗ − 1

]
V0 (70)

and

d2

dk2
z

�

∣∣∣∣
k=0

= σ
1

2
√

2
m−1/2

z

μ∗

μ∗ − 1
[1 − μ∗1/2S(μ∗ − 1)]V0.

(71)
The polaron effective mass is shown to reach the perturba-

tion theory breakdown limit at a different rate when compared
to the isotropic case, as it depends on the direction in the
uniaxial case. The self-energy behaves differently along ⊥ and
z directions, as shown in Eqs. (70) and (71), and the polaron
effective mass has the same behavior:

m∗
P,⊥ = m∗

⊥

(
1 − 1

f⊥(μ∗)
�iαi

)−1

(72)

and

m∗
P,z = m∗

z

(
1 − 1

fz(μ∗)
�iαi

)−1

, (73)

with

f⊥(μ∗) = 4(1 − μ∗)

[
1 − (μ∗)1/2

S(μ∗ − 1)

]−1

(74)

and

fz(μ∗) = 2
(1 − μ∗)

μ∗

[
(μ∗)−1/2

S(μ∗ − 1)
− 1

]−1

. (75)

Written as above, one sees that the effective mass changes
sign when the relevant f (μ∗) function equals �iαi. In the
isotropic case, μ∗ = 1, f (1) = 6, which recovers the α = 6
limit for the perturbation theory breakdown. Figure 1 shows
that the mass breakdown limit is reached earlier when moving
away from the isotropic case (μ∗ = 1). In the low physical

limit of μ∗, the breakdown is dominated by the mass enhance-
ment to the in-plane electronic effective mass, m∗

⊥, reaching a
limit as low as 4, while in the high physical limit the limitation
comes from the out-of-plane mass enhancement, with an even
lower limit of 2. We recall that, as in the standard Fröhlich
model, the breakdown of perturbation theory does not nec-
essarily entail a true divergence or pathology of the physical
system.

B. Effective masses in the threefold degenerate case

The top valence bands of many cubic materials present a
threefold degeneracy. The degeneracy will be lifted when the
wave vector departs from the band extremum (splitting either
2+1 or 1+1+1 depending on the direction). This behavior
follows the general description of band structures around de-
generate extrema, given by Luttinger and Kohn [47]. Taking
the extremum eigenvalue as a reference, the bare electronic
energy dispersion is described by

En(�k) = σ
k2

2m∗
n (�k)

, (76)

up to quadratic order, with a direction- and band-dependent
effective mass m∗

n (k̂). Such an effective mass fulfills the fol-
lowing eigenvalue equation:

HLK(�k)�en(k̂) = k2

2m∗
n (k̂)

�en(k̂), (77)

where HLK is the Luttinger-Kohn (LK) Hamiltonian matrix
the dimension of which is equal to the degeneracy of the
problem, �k = k · k̂, and n is the band index. This matrix is
written referring to a fixed basis set for the wave functions
which forms an irreducible representation of the symmetry
group of the extremum wave vector. The actual k̂-dependent
eigenfunction for band n in direction k̂ is obtained from the
eigenvector �en(k̂).

Specifically, in the cubic three-band degenerate case, the
Luttinger-Kohn Hamiltonian is written [47]

HLK(�k)

=
⎛
⎝Ak2

x + B
(
k2

y + k2
z

)
Ckxky Ckxkz

Ckxky Ak2
y + B

(
k2

z + k2
x

)
Ckykz

Ckxkz Ckykz Ak2
z + B

(
k2

x + k2
y

)
⎞
⎠,

(78)

with three parameters A, B, and C.
Turning on the electron-phonon coupling, the polaron dis-

persion relation in the degenerate band case will have the same
behavior, including the same symmetry characteristics, which
gives, similarly to Eqs. (53) and (56),

EP,n(�k) = σ
k2

2m∗
n (�k)

+ �n(�k)

≈ �n(�k = 0) + σ
k2

2m∗
P,n(k̂)

(79)
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with

1

m∗
P,n(k̂)

= 1

m∗
n (k̂)

+ σ
d2�n(�k, En(�k))

dk2

∣∣∣∣∣
k=0,�k=k.k̂

. (80)

Due to the electron-phonon interaction, the bare effective elec-
tronic mass m∗

n (�k) is replaced by the polaron effective mass
m∗

P,n(�k).
The behavior of the effective masses with respect to the

direction �k is far from trivial, and generates a so-called warp-
ing of the band structure, which has been analyzed in detail
by Mecholsky et al. [28]. For further reference, we list the
inverse of effective masses and degeneracies along the (100),
(110), and (111) high-symmetry directions:

m∗−1
n (100) = 2A or 2B (twofold),

m∗−1
n (110) = (A + B + C), (A + B − C) or 2B,

m∗−1
n (111) = 2

3 (A + 2B + 2C) or

2
3 (A + 2B − C) (twofold). (81)

The maximal and minimal effective masses are found
along these three directions, depending on the ratio between
Luttinger-Kohn parameters. The self-energy, in the on-the-
mass-shell approach, is similar to that for the nondegenerate
case, although one has to generalize the denominator of
Eq. (54) from scalar quantities to matrix quantities, as follows:

�n(�k, En(�k))

= 1

π

∑
j

∫
d3q

ω jLO

4πq2ε∗
j
�e T

n (k̂)

×
(

k2

2mn(�k)
I − H (�k + �q) − σω jLOI

)−1

�en(k̂). (82)

In order to characterize the polaron effective masses, in-
stead of working with a particular band, it is easier to work
with the direct generalization of the LK Hamiltonian (which
is obtained from generic symmetry considerations) to the
electron-phonon case, with modified values of the A, B, and
C parameters, namely, AP, BP, and CP.

As an important property of the LK Hamiltonian, the sum
of the effective mass inverses for the three bands gives the
trace of the LK matrix, which amounts to a constant value,
namely, (A + 2B)k2, independently of the wave-vector direc-
tion. This is indeed fulfilled in Eq. (81). As a consequence the
sum of the polaron effective mass inverses also amounts to a
constant value, 2(AP + 2BP ), irrespective of the direction of
the polaron energy dispersion.

We now examine specific cases. When the Luttinger-Kohn
parameter C vanishes, the electronic dispersion relation cor-
responds to the absence of coupling between the top (bottom)
three valence (conduction) bands: the HLK matrix is diagonal.
The eigenvectors of Eq. (77) are unit vectors for bands 1, 2,
and 3, irrespective of the direction k̂. The electronic effective
masses for the three disjoint bands are determined by the
values of the remaining Luttinger parameters, with m−1

⊥ = 2B
and m−1

z = 2A, interestingly falling back on the nondegener-
ate uniaxial case, for each band. Thus the analysis of Sec. III A
applies.

In contrast, if A = B + C, one obtains the isotropic three-
fold degenerate case, in which, irrespective of the wave-vector
direction, there is a nondegenerate band, with inverse effective
mass m−1

0 = 2A and two degenerate bands with effective mass
m−1

1 = 2B. This case has been tackled by Trebin and Rössler
[32], who provide the analytical expression for the self-energy
and effective masses in the one-phonon branch hypothesis.
The present formalism delivers exactly the same analytical
expressions for the effective masses in such case, but also
generalizes them to the multiphonon case. Explicitly,

ZPR = −σ

3
[(m∗

0 )1/2 + 2(m∗
1 )1/2]V1, (83)

in line with Eq. (52), and for the polaron effective masses

1

m∗
P,0

= 1

m∗
0

+
[

3

10
(m∗

0 )−1/2 − 2

15
(m∗

1 )−1/2 − (m∗
1 )1/2

3m∗
0

]
V0

(84)
and

1

m∗
P,1

= 1

m∗
1

+
[
− 1

15
(m∗

0 )−1/2

+ 1

15
(m∗

1 )−1/2− (m∗
0 )1/2

6m∗
1

]
V0, (85)

In all cases except C = 0 and A = B + C, as soon as
n > 1, Eq. (82) must be evaluated numerically, first treating
the computation of the self-energy as a function of the wave
vector, and then taking its second-order derivative, as needed
in Eq. (80).

In order to calculate the self-energy in the degenerate band
case, we perform a numerical integration over �q expressed in
spherical coordinates:

�n(�k, En(�k))

= 1

π

∑
j

ω jLO

ε∗
j

∫ ∞

0
dq

1

4πq2

∫
4π

dq̂ �e T
n (k̂)

×
(

k2

2mn(�k)
I − H (�k + �q) − σω jLOI

)−1

�en(k̂) (86)

with

�q = qq̂ = q

⎛
⎝sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠. (87)

Regarding the integral over q ∈ [0,∞), one could use a ho-
mogeneous grid integration method, with the maximal value
qmax tending to infinity. However, such homogeneous grid in-
tegration approach converges slowly. Instead, the semi-infinite
domain q ∈ [0,∞) can be mapped onto a finite one given
that the behavior of the integrand follows f (q) → 1

α2+β2q2 , for
large q. One performs the following change of variable:

q =
(

ωLO

γ

)1/2

tan ξ, (88)

giving

dq

dξ
=

(
ωLO

γ

)1/2 1

cos2 ξ
=

(
ωLO

γ

)1/2(
γ q2

ωLO
+ 1

)
(89)

235123-9



BOGDAN GUSTER et al. PHYSICAL REVIEW B 104, 235123 (2021)

and ∫ ∞

0
dq f (q) =

∫ π/2

0
dξ

dq

dξ
f [q(ξ )], (90)

which can easily be integrated numerically, as the additional
factor in the integrand, dq

dξ
, counterbalances the behavior of

f (q), giving a smooth integrand in the interval [0, π/2]. γ

can be chosen arbitrarily, but the integral converges quickly if
it is chosen as the A Luttinger parameter.

For the φ integration, we use Nφ points, regularly spaced,
with appropriate weights, while the integral over θ is per-
formed in terms of a uniform grid of cos(θ ) using Nθ points,
also with appropriate weights (see Supplemental Material for
details [48]). One might instead use the Gauss-Legendre tech-
nique for the cos(θ ) integral. Although it has not been used
in the present paper, the implementation available in the latest
version of ABINIT relies on this more efficient approach.

IV. POLARON LOCALIZATION LENGTHS
IN CUBIC MATERIALS

Similarly to the case of effective masses, we will examine
the nondegenerate situation first, then the degenerate case,
with particular focus on the threefold degeneracy.

A. Polaron localization lengths in the nondegenerate case

In Sec. II A the polaron radius for the isotropic electronic
dispersion was considered, for the case with only one phonon
branch. In the present section, the electronic dispersion is
anisotropic, with three different effective masses along the
three principal axes, and several phonon branches are in-
cluded.

The variational energy is again a sum of electronic and epp
contributions, as written in Eq. (13). Due to the anisotropy of
the effective masses, Eel becomes

Eel[φ(�r)] =
∫

d�r
∑

i

1

2mi

∣∣∣∣∂φ(�r)

∂ri

∣∣∣∣
2

(91)

for i = x, y, z. The density construction, Eqs. (15) and (16), is
unchanged. The epp energy Eq. (17) now includes contribu-
tions from several phonon modes, labeled j:

Eepp[φ(�r)] = −
∑

j

∫
d�k 4π

2k2
(ε∗

j )−1ρ∗(�k)ρ(�k). (92)

The multiphonon situation is actually quite easy to treat in this
strong-coupling approach, as one can define

(ε∗)−1 =
∑

j

(ε∗
j )−1, (93)

and recover Eq. (17).
Following the same line of thought as in Sec. II A, a

(anisotropic) Gaussian variational wave function ansatz can
be considered as follows:

φ(x, y, z) =
(

1

π3/2a3
P

)1/2

e
− 1

2 ( x2

a2
Px

+ y2

a2
Py

+ z2

a2
Pz

)
, (94)

where aPx, aPy, and aPz are characteristic localization lengths
along the x, y, and z directions, and aP is the volumetric mean

radius of the polaron, that is, the radius of the sphere that gives
the same volume as that of the ellipsoid built on the semiaxes
aPx, aPx, and aPx:

a3
P = aPxaPyaPz. (95)

With such a trial wave function, Eel and Eepp become

Eel = 1

4

(
1

a2
Pxm∗

x

+ 1

a2
Pym∗

y

+ 1

a2
Pzm

∗
z

)
(96)

and

Eepp = − 1

ε∗(2π )1/2

× 1

4π

∫
4π

dk̂
(
a2

Pxk̂2
x + a2

Pyk̂2
y + a2

Pzk̂
2
z

)−1/2
. (97)

A polaron directional localization length aPd (k̂) is then de-
fined as

aPd (k̂) = (
a2

Pxk̂2
x + a2

Pyk̂2
y + a2

Pzk̂
2
z

)1/2
, (98)

the angular average of its inverse being

〈
a−1

Pd

〉
4π

= 1

4π

∫
4π

d3k [aPd (k̂)]−1, (99)

so that Eepp can be written in terms of this average:

Eepp = −
〈
a−1

Pd

〉
4π

ε∗(2π )1/2
. (100)

Minimization of Eel + Eepp by variation of the localization
lengths aPi, for given ε∗ and m∗

i , delivers the optimal Gaussian
trial wave function.

This optimization problem does not have an analytical so-
lution in the most general case, but can be treated numerically,
either by direct minimization of E in the space of aPi, or by
requiring that the derivatives of E with respect to aPi vanish,
which amounts to

1

m∗
i

= − 2a3
Pi

ε∗(2π )1/2

∂
〈
a−1

Pd

〉
4π

∂aPi
. (101)

As for the effective masses, a specific treatment of the
uniaxial case is possible. It does not deliver explicit values
for the localization lengths as a function of ε and m∗

i , but
an implicit relationship, as follows. The convention for the x
and y masses is given by Eq. (67). By symmetry, the x and y
localization lengths must be equal, with

aPx = aPy = aP⊥, (102)

We define the anisotropy parameter δ,

δ = a2
Pz

a2
P⊥

− 1, (103)

and arrive at relatively simple and intuitive formulas for the in-
plane, aP⊥, and out-of-plane, aPz, polaron localization lengths
as functions of aP and δ:

aP⊥ = aP(1 + δ)−1/6, (104)

aPz = aP(1 + δ)1/3. (105)
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After some algebra, the energy to be minimized as a function
of aP and δ is written

EP = 1

4a2
P

(
2(1 + δ)1/3

m∗
⊥

+ (1 + δ)−2/3

m∗
z

)

− 1

ε∗(2π )1/2aP
(1 + δ)1/6S(δ), (106)

where the S function is defined in Eq. (69).
Optimization with respect to aP is easy, while the deter-

mination of δ is more delicate. Considering δ as the basic
variable, the effective mass ratio μ∗ = m⊥

mz
can be determined

analytically:

μ∗(δ) =
(

S

(
dS

dδ

)
+ 1

2(1 + δ)

)−1

− 2(1 + δ), (107)

where the derivative of the S function is
dS

dδ
= 1

2δ(1 + δ)1/2
− S(δ)

2δ
. (108)

An explicit solution of the optimization problem would re-
quire δ as a function of μ∗, but unfortunately Eq. (107) cannot
be inverted analytically. Still, the polaron localization length
and energy can be determined as a function of δ as well, so
that there is a parametric relationship between the polaron
characteristics and μ∗.

Compared to the spherical (isotropic) scenario, Eq. (19),
the spherical average of the polaron localization length is now

aP = 3
2

√
2π〈m∗1/2〉−2ε∗D(δ) (109)

where D(δ) is the enhancement factor with respect to the
isotropic case. Its expression is

D(δ) = 1

3
(1 + δ)−5/6

(
dS

dδ
+ S(δ)

2(1 + δ)

)−1

. (110)

In Fig. 2 we show the in-plane, ap⊥ , and out-of-plane, apz ,
localization lengths expressed in terms of μ∗. For μ∗ smaller
than 1, the smallest polaron localization length is apz , while
for μ∗ larger than 1 ap⊥ is the smallest. For μ∗ = 104, the
value of ap⊥ is roughly one order of magnitude smaller than
apz .

Finally the polaron formation energy in the uniaxial case
can be expressed in terms of the adimensional parameters δ

and μ∗(δ) and one of the dimensional parameters m∗
⊥, 〈m∗1/2〉,

or even aP:

E (δ) = − 1

4π
ε∗−2m∗

⊥[S(δ)]2

(
1 + μ∗

2(1 + δ)

)−1

, (111)

or, equivalently,

E (δ) = − 1

4π

( 〈m∗1/2〉S(δ)

ε∗S(μ∗ − 1)

)2(
1 + μ∗

2(1 + δ)

)−1

, (112)

or

E (δ) = −3
√

2π

8π

D(δ)

ε∗aP

(
S(δ)

S(μ∗ − 1)

)2(
1 + μ∗

2(1 + δ)

)−1

.

(113)

Numerically, it is then easy to represent E as a function of μ∗
only, either fixing m∗

⊥, 〈m∗1/2〉, or aP. The polaron formation
energy in the latter case is represented in Fig. 3.

FIG. 2. Polaron localization length in the uniaxial limit calcu-
lated at constant density of states expressed in terms of μ∗ for the
volumetric average case (aP), the out-of-plane localization length
(aPz), and the in-plane localization length (aP⊥). In the low limit
of μ∗, the asymptotic analytical behavior is represented in blue. In
the μ∗ → 1 limit, the analytical expression is represented in green.
Finally, in the large μ∗ limit, the asymptotic behavior analytical limit
is represented in red. The expressions for the analytical asymptotic
behavior in the three cases are provided in the Supplemental Mate-
rial [48]. We consider here ε∗ = 1 and m∗

DoS = 1 (see definition in
Supplemental Material).

B. Polaron localization lengths in the degenerate case

In the degenerate case, the polaronic wave function
includes several components, namely, a superposition of con-
tributions from the different degenerate electronic bands. We
introduce the band label j that runs from 1 to n, and note the

FIG. 3. Absolute value of the polaron formation energy in the
uniaxial limit calculated at constant volumetric localization length
(or spherical average aP) as a function of μ∗. In the low limit of
μ∗, the asymptotic analytical behavior is represented in blue. In
the spherical limit, the analytical expression is represented in green.
Finally, in the large μ∗ limit, the asymptotic behavior analytical limit
is represented in red. The expressions for the analytical asymptotic
behavior in the three cases are provided in the Supplemental Material
[48]. We consider ε∗ = 1 and aP = 1 (see definition in Supplemental
Material).
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components of the wave function φ j (�r). The electronic density
is formed by summing the densities from all components,

ρ(�r) =
∑

j

|φ j (�r)|2, (114)

and contributes to the Eepp in the same way as in the non-
degenerate case, even if there are several phonon branches.
The electronic energy, Eel, is also obtained from the contribu-
tion of the different components, through the Luttinger-Kohn
Hamiltonian. Expressed in reciprocal space,

Eel[φ j] = σ

∫
d3k

n∑
j, j′=1

φ∗
j (�k)HLK(�k)

∣∣∣∣∣
( j, j′ )

φ j′ (�k). (115)

Moreover, the multicomponent wave function must be nor-
malized:

1 =
n∑

j=1

∫
d3kφ∗

j (�k)φ j (�k) =
n∑

j=1

∫
d3rφ∗

j (�r)φ j (�r). (116)

Like in the nondegenerate case, we are not looking for an
exact solution of this minimization problem, but we are trying
to find the best trial wave function among a set of acceptable
wave functions with some adjustable parameters.

In particular, since the Eepp contribution depends only on
the density, and not on the way this density is generated from
the different components, the same Eepp is obtained if the
density is generated entirely from one component only, e.g.,
by hypothesizing that this component of the wave function
is the square root of the density, or whether this component
is generated from the same square root multiplied by some
fraction for one component, some other fraction for a second
component, etc., or even by a less regular spread of the density
over the components. However, one can hypothesize that in
order to minimize the kinetic energy (or, equivalently, as a
consequence of the quadratic behavior of the HLK Hamil-
tonian with respect to the wave-vector length) the Eel will
be minimal when all the components have the same spatial
variations. Hence, one is lead to the following ansatz:

φ j (�r) = c jφ0(�r), (117)

where the coefficients c j are normalized,

1 =
∑

j

|c j |2, (118)

as well as the wave function φ0(�r):

1 =
∫

d3kφ∗
0 (�k)φ0(�k) =

∫
d3rφ∗

0 (�r)φ0(�r). (119)

The density is written directly from φ0(�r):

ρ(�r) = |φ0(�r)|2. (120)

In this case, the electronic energy becomes

Eel[φ0, c] = σ

∫
d3kφ∗

0 (�k)φ0(�k)
n∑

j, j′=1

c∗
j HLK(�k)

∣∣∣∣∣
( j, j′ )

c j .

(121)

Moreover,
∑n

j, j′=1 c∗
j HLK(�k)|( j, j′ )c j is a quadratic form over

the wave vectors, that has principal axes. Along these princi-
pal axes one recovers the usual dispersion relation

Ekin(�k) = k2
1

2m∗
1

+ k2
2

2m∗
2

+ k2
3

2m∗
3

, (122)

although the new 1, 2, and 3 principal axes might not be
aligned with the initially chosen 1, 2, and 3 states.

The search for the best trial wave function can proceed as
follows.

(1) One chooses several possible c j sets.
(2) For each of these sets, one solves a nondegenerate opti-

mization problem, of the kind already tackled in Sec. IV A,
with effective masses m∗

n , for which the polaron formation
energy can be computed as well as the localization length.

(3) Among the different c j sets, the best ansatz will be the
one that delivers the lowest polaron formation energy, with
corresponding localization length.

In practice, we consider for c j the three directions (100),
(110), and (111), for which we know the effective masses
[see Eq. (81)]. For the (100) and (111) directions, we recover
the nondegenerate uniaxial case, as two of these effective
masses are equal. However, for the (110) direction, the three
effective masses are distinct, and the variational problem must
be addressed entirely numerically, or using an approximate
expression for 〈a−1

Pd 〉4π , that we provide in the Supplemental
Material [48].

V. RESULTS

We have applied our formalism to a range of (cubic) ma-
terials, including II-VI compounds CdS, CdSe, CdTe, ZnS,
ZnSe, and ZnTe; III-V compounds AlAs, AlSb, AlP, BAs,
BN, GaAs, GaN, and GaP; oxides BaO, CaO, Li2O, MgO,
and SrO; and SiC and Cs2NaScF6 (a case with multiple polar
phonon modes) adding up to a total of 21 cases. In all the cases
we study both hole and electrons polarons the characteristics
of which are analyzed in the present section.

We find a range of polaron behaviors in the studied mate-
rials, among which we identified nine electron polarons in the
nondegenerate and isotropic case, 11 electron polarons and
one hole polaron in the nondegenerate and anisotropic case,
and 20 hole polarons and one electron polaron in the threefold
degenerate case.

In order to obtain parameters for the gFr model, we use
density functional theory as implemented in the ABINIT pack-
age [46,49,50]. Calculation parameters (kinetic energy cutoff
and reciprocal space sampling) for both the electronic and
phononic wave vectors are provided in Table S1 in Sup-
plemental Material [48]. The exchange-correlation energy
has been treated using the generalized gradient approxi-
mation Perdew-Burke-Ernzerhof (GGA-PBE) approximation
[51] with the corresponding norm-conserving pseudopoten-
tials provided by the PseudoDojo project [52], except for
BN-zb where previously published results were used [22].
Although effective masses from GGA-PBE are not very
accurate, it is sufficient to highlight the role of electron-
phonon coupling in electronic mass renormalization. Based
on the converged electronic wave functions, density functional
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FIG. 4. Electron polaron effective mass as a function of the ratio
between in-plane, m⊥, and out-of-plane, mz, bare electron effective
masses for the studied materials. For the full set of values refer to
Table S12 in Supplemental Material [48].

perturbation theory [46,53] has been used in order to obtain
the Luttinger parameters, electronic effective masses, dielec-
tric constants, and �-point phonon frequencies. Parameters
can be found in Tables S2 and S3 in Supplemental Material
[48].

We show the corresponding electron and hole polaron ef-
fective masses in Figs. 4 and 5. For the nondegenerate case,
this is presented as a function of the ratio between the in-
plane, m⊥, and out-of-plane, mz, electronic effective masses,
referred to as μ∗. The reason for which we depart from the
spherical shape follows from the character of the electronic
band structure. While for the spherical effective masses the
conduction band minimum is at the Brillouin zone center, in
the ellipsoidal case the minimum is found at X or L. For the

FIG. 5. Hole polaron effective mass as a function of the (min-
imum) ratio between the corresponding electronic effective masses
for the studied materials. Negative values for the polaron effective
masses indicate a crossing of the mass breakdown limit. For the full
set of values refer to Table S6 in Supplemental Material [48].

FIG. 6. Ratio between the electron polaron localization length
and repetition distance d between equivalent atoms as a function
of the ratio between in-plane, m⊥, and out-of-plane, mz, effective
masses for the studied materials. For the full set of values refer to
Table S9 in Supplemental Material [48]. Note that when the two
effective masses are equal, the isotropic case is reached and the
characteristic localization length is isotropic (red dots), while for the
other cases two localization lengths are necessary, for the in- and
out-of-plane lengths (orange and blue dots).

degenerate case, we also use an anisotropy measure to plot
the results, namely, the minimum ratio between the electronic
effective masses of different bands, be it along the (100), the
(110), or the (111) direction, depending on the direction along
which the polaron has the lowest formation energy in the
strong-coupling case. We note this quantity μ∗

min.
As a sanity check of the obtained values, for the degenerate

case, we compute the sum of the three inverse polaron effec-
tive masses for different directions, and find that it is indeed
constant, and independent of the direction in the Brillouin
zone. This is expected based on the derivations above, from
a similar property described in Eq. (81).

In Figs. 6 and 7 we report the localization length for the
electron and hole polaron, respectively, in units of the crystal
lattice constant. This is also presented as a function of the ratio
between the in-plane, m⊥, and out-of-plane, mz, electronic
effective masses, referred to as μ∗. If μ∗ = 1 we recover the
spherically shaped polaron scenario, while for other values we
describe ellipsoidal shaped polarons with two different axes:
ap⊥ and apz , respectively. More importantly, for some oxides
the localization length is on the order of the distance between
the atoms, which indicates a breakdown of the Fröhlich con-
tinuum hypothesis.

Along the (100) or (111) directions, polarons have a shape
of an oblate spheroid for μ∗ < 1, and a prolate one for μ∗ > 1.
The deviation from a sphere becomes more visible with in-
creasing difference between the three radii characterizing the
polaron, as we move away from μ∗ = 1. In the case of (110)
direction the degeneracy among the effective masses is lifted
and the polaron takes the shape of a general ellipsoid.
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FIG. 7. Ratio between hole polaron localization lengths along
the direction with lowest formation energy expressed and repetition
distance between equivalent atoms as a function of the (lowest) ratio
between the electronic effective masses for the studied materials.
Note that in the case when the lowest polaron formation energy is
along the (110) direction there is no degeneracy in the electronic
effective masses and, consequently, the polaron has the shape of a
triaxial ellipsoid. a1 represents the polaron radius along the direction
in which the polaron formation energy is the lowest, while a2 (or a3)
represents that along the perpendicular direction.

We show in Fig. 8 the characteristics for both electron and
hole polarons in the studied materials. The ratio between the
electronic and polaronic effective masses serves as a reference
relative to the strength of the electron-phonon coupling; thus

FIG. 8. Ratio between shortest electron and hole polaron local-
ization lengths and repetition distance between equivalent atoms, as
a function of the smallest ratio between electron (or hole) effective
mass and polaron effective mass for the studied materials. When the
latter drops below zero, perturbation theory breaks down, while when
the former drops below 1 the continuum hypothesis breaks down.

the closer the ratio is to 1, the weaker the coupling. At the
other end of the EPC effect we arrive at an opposite sign po-
laron effective mass with respect to the electronic one, going
beyond the mass breakdown limit. This is a clear indication of
self-trapping hole polaron formation in the indicated oxides.
On the other hand, we set a relatively arbitrary breakdown
(aP ≈ d) to the continuum hypothesis inherent to the Fröhlich
model (aP � d). In this case we show the shortest localization
length in the cases where we do not find ourselves in the
nondegenerate isotropic scenario. We note that for some of the
studied materials the localization length is of the order of the
repetition distance (e.g., BaO, SrO, MgO, and CdSe), and as a
consequence we reach the continuum breakdown limit. In this
case the discrete character of the crystal should be taken into
account and another theoretical model might be more suitable
for describing the polaron.

VI. DISCUSSION

We show in Fig. 8 the characteristics (effective mass and
localization length) for both electron and hole polarons in the
studied materials. On the horizontal axis, the ratio between
the electronic and polaronic effective masses characterizes the
strength of the electron-phonon coupling: the closer the ratio
is to 1, the weaker the coupling, whereas for very strong EPC
we arrive at a change of sign for the polaron effective mass.
As previously discussed this is associated with a breakdown
of weak-coupling perturbative treatment, and indicates that
a strong-coupling approach is needed: self-trapped polarons
will form in these oxides. On the other hand, we set a some-
what arbitrary breakdown threshold (aP ≈ d) to characterize
the applicability of the continuum hypothesis inherent to the
Fröhlich model (aP � d). We show the shortest localization
length in cases beyond the nondegenerate isotropic scenario.

We note that for some of the studied materials the localiza-
tion length is of the order of the repetition distance (e.g., BaO,
SrO, CaO, MgO, Li2O, and Cs2NaScF6, for both electron and
hole polarons, except the MgO electron polaron), and as a
consequence we reach the continuum breakdown limit: the
discrete character of the crystal should be taken into account,
and another theoretical model would be more suitable to
describe the polaron. The weak-coupling perturbation theory
treatment also breaks down for the hole polarons of BaO, SrO,
MgO, and Li2O. For all these cases, the ZPR obtained from
perturbation theory (including the AHC approach) might be
questioned.

The results from the Feynman approach, computed exactly
for the isotropic mass situation, are averaged as described
in Sec. II B. This is done for the nondegenerate anisotropic
electronic dispersion.

In Fig. 9 we note that the variational approach reaches, as
expected, a lower ground-state energy for both anisotropic and
isotropic electronic dispersions. While in the isotropic case
the relative difference between the two theoretical approaches
remains within 2.5%, the anisotropic case produces differ-
ences as high as 17.5% among the studied materials. Although
in both treatments the wave function is constructed based on
a Gaussian function, in the Feynman approach we consider an
approximate treatment of the anisotropy which nevertheless
yields a reasonable comparison.
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FIG. 9. In the nondegenerate electron polaron situation, relative
difference between the ZPR determined using perturbation theory
(fully taking into account the possible anisotropy) and Feynman
variational path integral approach (with approximate treatment of
the anisotropy). In all cases the ZPR determined using the pertur-
bative method has a larger value than the ZPR determined using the
variational approach. For the full set of values refer to Table S11 in
Supplemental Material [48].

In Fig. 10 we present the relative difference in polaron
effective mass between the above-mentioned theoretical ap-
proaches. We note that the largest difference is found in
materials that, within the Fröhlich approach, are at the

FIG. 10. In the nondegenerate electron polaron situation, relative
difference between the effective masses determined using perturba-
tion theory (fully taking into account the possible anisotropy) and
Feynman variational path integral approach (with approximate treat-
ment of the anisotropy). m∗

P,iso is the isotropic effective mass, while in
the anisotropic case m∗

P,⊥ and m∗
P,z are the in-plane and out-of-plane

polaron effective masses.

continuum limit breakdown, like BaO, CaO, SrO, and, to a
lesser extent, Li2O. In both anisotropic and isotropic cases
we note that the relative difference increases with polaron
effective mass, and the in-plane and out-of-plane effective
mass differences seem to diverge. This sudden increase in the
relative difference is associated with the lower α breakdown
limit in the anisotropic case, as expressed in Fig. 1.

VII. CONCLUSIONS

In this paper, we propose a formalism to describe real-
istic scenarios of polarons in cubic materials. Starting from
the basic Fröhlich model, we include both anisotropic and
degenerate electronic bands, and determine the basic char-
acteristics of both electron and hole polarons (ground-state
energy, localization lengths, and effective masses) for a set of
21 materials. We assess the limitations of the weak-coupling
approach in determining the polaron effective masses: in
lowest-order perturbation theory, several of the studied oxide
compounds go beyond the mass breakdown limit. In gener-
alizing the isotropic electronic energy dispersion, the mass
breakdown limit is reached earlier depending on the degree
of electronic anisotropy present in the system. We also per-
form strong-coupling calculations to determine the polaron’s
ground-state energy and localization length. We note that for
the studied oxides we reach the continuum limit inherent to
the Fröhlich model. We compare the perturbative treatment of
the Fröhlich model for anisotropic electronic dispersions with
the Feynman variational path integral approach, and find them
to be in reasonable agreement in the weak-coupling regime.
The Feynman path integral approach signals clearly where the
perturbative approach fails to properly describe the polaronic
behavior.

The main results of this paper are polaron properties for
a set of 21 materials, obtained from the generalized Fröhlich
model, with parameters determined from first principles. The
increased range of applicability of the gFr model with respect
to the standard Fröhlich model opens the possibility to analyze
a wide spectrum of polarons, including the realistic treatment
of effective mass anisotropy and possible band degeneracy.
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