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Large cylindrical polaron in orthorhombic SnSe: A theoretical study
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Due to its phenomenal thermoelectric properties, SnSe has received increased interest, triggering systematic
studies of both electronic and vibrational properties and the associated coupling. Recent experimental work
claims that orthorhombic SnSe sustains a one-dimensional large polaron with a dimension of about 2 nm.
In search of its theoretical signature, we first establish the level of precision that can be reached in describing
the electronic structure of SnSe by means of ab initio density functional and many-body perturbation theories.
As the characterization of band extrema by means of effective masses plays a crucial role in determining
polaron properties, we signal the existence of a broad variation of such quantity among the various ab initio
methodologies employed and in the available experimental data. The impact of electron-phonon coupling is
then analyzed by employing the recently developed generalized Fröhlich model as well as the nonadiabatic
Allen-Heine-Cardona formalism, and their relative accuracy is rationalized. We found that, although the vast
majority of band extrema in SnSe cannot sustain a large one-dimensional polaron with a radius as small as
2 nm, there is one case in which another type of polaron emerges, indeed one-dimensional, but with an unusual
oscillating electronic density of an approximate real space period of ∼3 nm that evokes a stack of disks. Such type
of polaron is obtained from two theoretical treatments: a fixed Gaussian ansatz for the polaron wave function and
a variational approach, both within the Fröhlich formalism. We hypothesize that such cylindrical polaron might
be found in other materials with extended, shallow double-well band extrema.
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I. INTRODUCTION

The outstanding thermoelectric figure of merit of or-
thorhombic SnSe [1] has stimulated active experimental and
theoretical investigations of its physical properties, paving the
way for SnSe to become a paradigmatic case in the field of
thermoelectricity [2–7]. SnSe is a versatile material exhibiting
lattice phase transitions at high temperature [8], either driven
from highly anharmonic phonon behavior [9–11] or near-
infrared light-induced distortion [12], with strong electronic
structure reorganization driven by chemical doping [13–15],
pressure [16], strain [17], or temperature [18]. Rich poly-
morphism of SnSe [19,20] also gives rise to other avenues
of study, such as the investigation of topological electronic
structure in orthorhombic and rocksalt phases of the material
[21,22].

Recently, by means of ultrafast electron spectroscopy, it
has been hypothesized that orthorhombic SnSe accommodates
two distinctive polarons, one large one-dimensional polaron
and one small polaron with a three-dimensional character
[23]. Since, at their core, polarons are quasiparticles (QPs)
correlating the behavior of charge carriers with lattice de-
formations, understanding this behavior from a microscopic
point of view builds upon the fundamental understanding of
both the electronic and phononic structure, and the electron-
phonon interaction (EPI) that ties the two ingredients.

*Corresponding author: xavier.gonze@uclouvain.be

Polarons, generally speaking, are pervasive QPs in many
semiconductors and insulators [24]. This notion is far from
new, tracing back to Landau and Pekar’s works [25–27]
decades ago. Polarons are traditionally separated in two
categories: small or large, depending on whether or not their
localization length is comparable with the crystal atomic pe-
riodicity. On this account, different theoretical models are
suitable for accurately capturing the physical scenario. The
Holstein model is appropriate in studying small polarons in
which the discrete nature of the lattice is considered and the
EPI is short-ranged [28,29]. In the case of large polarons,
the Fröhlich model has been successful in apprehending the
physical scenario in which the lattice discreteness and the
electron-phonon coupling are treated in the long-wavelength
limit, with lattice vibrations restricted to infrared-active op-
tical phonon modes [30–35]. The standard Fröhlich model
relies on the knowledge of the effective mass at the band
extremum, the dielectric constant, and the long-wavelength
polar phonon mode frequency. Recent developments have re-
lied on first-principles approaches, built on accurate electronic
and phononic band structures, as well as EPI computations
[36–40]. Connections with the zero point renormalization
(ZPR) of the electronic band gap have been established
[36,40–45].

For the electronic structure of SnSe, the effort leaned to-
ward understanding the behavior of the band gap and the
subtle nature of the valence band extremum via ARPES
studies [13–15,46–49] or, theoretically, via density functional
theory (DFT) [2] or many-body perturbation theory (MBPT)
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within the G0W0 approximation [50]. Although the under-
standing of the material electronic structure is utterly crucial,
a systematic theoretical study in unveiling the fairly intri-
cate band extrema and the corresponding effective masses
associated with them is lacking. Up to now, electronic
effective masses have been reported in several accounts, for
selected extrema, yet for somewhat different circumstances,
originating in experimental conditions (different temperatures
for measurements) or methodological description, preventing
fair comparison between published data [2,5,18,46–48,50].

In this paper, we employ state-of-the-art approaches to
explore these properties and validate our findings against
the available experimental data. Moreover, the recent exper-
imental evidence of polarons motivates the careful analysis
of EPI. We consequently determine the EPI effect on the
electronic structure based on different methodologies. We
first rely on a generalized Frölich model Hamiltonian for the
determination of the polaron energy, shape, and localization
length associated with the different band extrema present
in the electronic structure. This is done using both a fixed
Gaussian wave-function ansatz, as described in Refs. [51,52],
as well as a numerical variational approach [53]. We also
compute the ZPR to the electronic band gap in the nonadi-
abatic self-energy approach [41–43,45,54] using both the on
the mass shell (OTMS) and the linearized solution of the QP
equation.

Our results indicate that most of the band extrema cannot
deliver a large polaron with a localization radius on the order
of 3 nm, their localization length being much larger. Only the
very flat profile of the electronic eigenenergy around � ap-
pears as a candidate to generate such a (not-so-)large polaron.
Indeed, either right at � or at a shallow minima close to it,
if � is only a saddle point, the effective mass can be quite
large. However, its precise value, and even the location of the
minimum, depend strongly on the theoretical methodology.
Pushing further, the nonquadratic eigenenergy profile is fed in
the Frölich Hamiltonian. We observe that if the flat profile has
two separated minima, a new type of polaron appears, with
an oscillating electronic wave function. By contrast, the elec-
tronic wave function found in the standard Frölich model is
everywhere positive. The associated electronic charge density
oscillates, with a period on the order of 3 nm in one of the
methodologies.

The paper is organized as follows: In Sec. II, we summa-
rize the state-of-the-art theoretical tools employed to describe
the electronic structure, the phonon dispersion, and the EPI;
in Sec. III, we describe the crystal structure; in Sec. IV,
we perform a thorough investigation of the electronic struc-
ture, where we describe the different band extrema, and
their relative energy difference depending on the employed
methodology along with their corresponding effective masses;
in Sec. V, we focus on the phonon dispersion, with particular
emphasis on the eigenmodes that ultimately can contribute
to the polaron formation in the Fröhlich picture; and, finally,
we tie the fermionic and bosonic picture in Sec. VI, where
we provide polaron formation energy, localization length, and
effective masses in the framework of the Fröhlich model based
on both a fixed Gaussian ansatz for the wave function as
described in Refs. [51,52], as well as a variational approach
recently developed in Ref. [53]. In this section, we engage

as well the nonadiabatic Allen-Heine-Cardona (AHC) formal-
ism [41–43,54] to compensate for the shortcomings of the
Fröhlich model in describing polaron formation energy, more
commonly referred to as zero-point renormalization of the
band gap. We conclude in Sec. VII.

II. COMPUTATIONAL DETAILS

Calculations are performed using DFT as implemented in
the ABINIT package [55–57]. It will be shown that crucial
details of the electronic structure depend on the choice of the
exchange-correlation (XC) energy functional, either directly
or through the effect of optimized atomic positions and lattice
parameters. In this respect, for all properties, we provide at
least results based on the GGA-PBEsol approximation [58]
using the corresponding norm-conserving pseudopotentials
provided by the PseudoDojo project [59,60]. However, given
the sensitive dependence between polaron properties and elec-
tronic structure, an enlarged systematic approach towards
electronic structure has been carried out employing different
semiempirical van der Waals corrections, commonly known
as D2 [61], D3 [62], and D3-BJ [63], or hybrid functionals,
such as HSE06 [64].

A fully optimized crystal structure is obtained for each XC,
with a corresponding tolerance on the maximum force of 5
meV/Å. The wave functions are expanded over a plane-wave
basis set with a kinetic energy cutoff of 44 Ha. The Brillouin
zone is sampled with a Monkhorst-Pack grid of 8 × 8 × 4
wave vectors for all cases, except for HSE06 calculations
where a 6 × 6 × 3 wave-vector grid is used. To compute the
energy dispersion with hybrid functionals, a Wannier inter-
polation scheme [65] is used for the states around the Fermi
level. The effective masses are determined based on a second-
order central finite difference.

Based on the converged electronic wave functions, Density
Functional Perturbation Theory (DFPT) [57,66,67] has been
used to obtain the phonon dispersion, the electronic effec-
tive masses (only in the case of PBEsol XC), Born effective
charges [68], and dielectric constants. For the phonon disper-
sion, a �-centered grid of 8 × 8 × 4 electronic wave function
and dynamical matrices has been used (with much finer
interpolation of phonon dispersion using interatomic force
constants). For the other properties, a denser 16 × 16 × 8
mesh has been used. Given that effective mass calculations
with DFPT are not available for all XC functionals, the
agreement between DFPT and finite-difference approach was
carefully checked for PBEsol, and the converged finite differ-
ence parameters have then been used for all remaining XCs.
It is worth noting that a particular treatment for determining
effective masses is required when employing HSE06 XC.
The hybrid calculation eigenvalues are indeed obtained over a
reduced grid of wave vectors in the irreducible BZ. On top of
these values, Wannier interpolation is used over a designated
k-path around the (local or global) wave-vector extremum.
This is then followed by a finite difference procedure imple-
mented in ABIPY [55].

To correct for the limited description of the electronic
structure provided by the Kohn-Sham (KS) formalism, the
G0W0 approximation has been employed to account for many-
body interactions. Such one-shot G0W0 calculations relied
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either on the PBEsol self-consistent wave functions evaluated
at the PBEsol geometry, denoted G0W0@PBEsol, or on the
HSE06 self-consistent wave functions evaluated at the HSE06
geometry, denoted G0W0@HSE06. The QP corrections have
been computed over an enlarged 10 × 10 × 5 electronic
wave-vector grid and corrections were converged with respect
to the fundamental band gap within 10 meV. The energy cutoff
values for the dielectric matrix and the exchange part of the
self-energy were set to 6 and 18 Ha, respectively. A set of
300 bands was included in the summation over states, and
the extrapolar approximation proposed in Ref. [69] was used
to accelerate convergence. The QP energy dispersion along
the high-symmetry wave-vector path was produced using an
interpolation scheme [70] based on 140 star functions per
wave vector for both G0W0@PBEsol and G0W0@HSE06. The
same approach was applied to determine the effective masses
via finite differences.

In the case of phonon-induced QP corrections within the
AHC formalism, the Kohn-Sham wave functions are calcu-
lated on a 28×28×14 wave-vector grid which contains the
wave vector (9/28, 0.00, 0.00) that is very close to the band
extremum of interest, located roughly at (0.32, 0.00, 0.00)
across different XC functionals. The self-energy is computed
with 80 bands and the Sternheimer equation is used to accel-
erate the convergence of the QP corrections with the number
of empty states.

In the variational method for determining the polaron
ground state [53] in the Fröhlich approximation, the QP wave
function is converged using an anisotropic 15 × N × 15 wave-
vector mesh with N increasing up to 105 to capture the fine
features of the band minima along the �-Y direction. For the
sake of convergence, the employed wave-vector meshes al-
ways include the extremal points, which is achieved by fixing
the appropriate lattice parameters of the model that actually
specify the size of the BZ hosting the polaronic wave function.
These parameters can be adjusted irrespective of the actual
lattice constants of the material, provided they define a BZ
large enough for the wave function, since the Fröhlich model
washes out the atomic character of a system and treats it as a
continuous medium.

III. CRYSTAL STRUCTURE

SnSe crystallizes in space group 62 (the Pbnm convention
is used in this paper) with eight atoms in the unit cell and asso-
ciated point group D2h. The Sn atoms are covalently bonded in
plane to Se forming slabs of corner-sharing trigonal pyramids,
while out of plane (c direction) the slabs are weakly coupled
through van der Waals interactions.

Crystal structure relaxations are performed using different
XC functionals to assess their relative accuracy of DFT with
respect to the experimental lattice parameters as presented
in Table I. There is non-negligible variability in both exper-
imental and theoretical data. Roughly speaking, PBEsol falls
within 2.5% accuracy, VdW-D2: 1.5%, VdW-D3: 3%, VdW-
D3(BJ): 2%, respectively, HSE06: 3%. This variability will
play some role in the electronic structure results, especially at
the level of the effective masses, see next section.

The atomic positions in SnSe can be expressed in terms of
four internal parameters as detailed in Table II. At the level

TABLE I. Lattice parameters determined under a full relaxation
with the indicated XC functional. For reference, the experimental
values from different references are included.

XC a (Å) b (Å) c (Å)

PBEsol [58] 4.158 4.355 11.439
VdW-D2 [61] 4.195 4.382 11.635
VdW-D3 [62] 4.178 4.585 11.550
VdW-D3 (BJ) [71] 4.175 4.373 11.490
HSE06 [64] 4.148 4.582 11.860
Experiment [1] 4.135 4.440 11.490
Experiment [12] 4.120 4.300 11.310
Experiment [19] 4.182 4.387 11.540
Experiment [72] 4.153 4.450 11.502
Experiment [73] 4.190 4.460 11.570
Experiment [74] 4.153 4.445 11.501

of internal coordinates, the better-performing approaches are
VdW-D3(BJ) and PBEsol, which fall reasonably close with
respect to the experimental values, as shown in Table III. In
addition to internal coordinates computed using fully relaxed
PBEsol calculations (thus, relaxing the lattice parameters
altogether), the internal positions obtained when fixing the
lattice parameters at the experimentally determined ones from
Ref. [74] are also provided, and denoted PBEsol[int].

IV. ELECTRONIC STRUCTURE

The electronic structure of orthorhombic SnSe (referred to
as SnSe from now on) has been at the center of a significant
debate, especially focused on the nature of the valence band
maximum (VBM), namely, whether or not its composition is
.pudding-mold-like” [3,46]. The electronic band dispersion is
presented in the ordinary DFT treatment using the semilocal
XC PBEsol in Fig. 1 to allow for a first-hand qualitative
evaluation. SnSe is a semiconductor with an indirect band gap
presenting several close extrema.

The VBM situated, seemingly, along the �-Y direction
presents a double hump decoupled from the underlying band
due to an avoided crossing, situated at VB2 = (0.00 a∗, 0.35
b∗, 0.00 c∗) and VB3 = (0.00 a∗, 0.44 b∗, 0.00 c∗). A closer
inspection is provided in Fig. 1(c), where the band extrema

TABLE II. Reduced atomic coordinates of the eight atoms in the
primitive cell of orthorhombic SnSe, in terms of the four internal
parameters uSn,y, uSn,z, uSe,y, and uSe,z.

Reduced atomic coordinates

Atom x y z

Sn1 1/4 1/2-uSn,y 1/2+uSn,z

Sn2 3/4 1/2+uSn,y 1/2-uSn,z

Sn3 3/4 −uSn,y −uSn,z

Sn4 1/4 uSn,y uSn,z

Se1 1/4 uSe,y 1/2-uSe,z

Se2 3/4 −uSe,y 1/2+uSe,z

Se3 3/4 1/2+uSe,y uSe,z

Se4 1/4 1/2-uSe,y −uSe,z
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(a)

(b) (c)

FIG. 1. (a) Kohn-Sham (PBEsol) electronic structure in SnSe. The band extrema considered in detail are marked. For the valence band
maxima, the following positions occur, with a∗, b∗ and c∗ being the reciprocal lattice vectors: VB1 = (0.32 a∗, 0.00 b∗, 0.00 c∗), VB2 = (0.00
a∗, 0.35 b∗, 0.00 c∗), VB3 = (0.00 a∗, 0.44 b∗, 0.00 c∗), also �−VB, albeit irrelevant as much too low. For the conduction-band minima, the
following occur: �−CB, CB1 = (0.32 a∗, 0.00 b∗, 0.00 c∗), CB2 = (0.32 a∗, 0.00 b∗, 0.03 c∗) that is shown with a small dotted segment
representing the c∗ direction from CB1, since it is not found on a high-symmetry path, but close to CB1, CB3 = (0.00 a∗, 0.07 b∗, 0.00 c∗).
Note that for some XC functionals CB2 and CB3 are not present. (b) Brillouin zone with corresponding high-symmetry points having X along
a∗, Y along b∗, respectively, Z along c∗. (c) Energy map of the electronic band corresponding to the VBM in part of the �YZT plane.

are shown to have a broad character expanding over a sizable
fraction of the BZ (∼60% in a direction parallel to �Z) in the
�YZT plane in a boomerang shape, while the second hump
extends over 1/3 of the BZ in a cigarlike shape parallel to
the �Z direction. A tertiary extremum is present in the upper
valence band along the �-X direction just below the VB1 at
(0.32 a∗, 0.00 b∗, 0.00 c∗).

Regarding the conduction band (CB), the situation is also
interesting: an extremum indeed appears along the �-X direc-
tion at CB1 = (0.32 a∗, 0.00 b∗, 0.00 c∗), but it is not the
lowest energy of the CB, since moving slightly away of the �-
X segment in the Z direction, induces a small lowering of the

TABLE III. Parameters uSn,y, uSn,z, uSe,y, and uSe,z of reduced
atomic coordinates obtained from a full relaxation with the indicated
XC functional.

XC uSn,y uSe,y uSn,z uSe,z

PBEsol[int] 0.1067 0.0260 0.1180 0.1431
PBEsol 0.0940 0.0241 0.1177 0.1425
VdW-D2 0.0713 0.0024 0.1266 0.1400
VdW-D3 0.1098 0.0108 0.1161 0.1454
VdW-D3 (BJ) 0.0939 0.0240 0.1177 0.1426
HSE06 0.1198 0.0103 0.1244 0.1492
Experiment [74] 0.1035 0.0181 0.1185 0.1452

eigenenergy, reaching a minimum at CB2 = (0.32 a∗, 0.00 b∗,
0.03 c∗). However, it should be mentioned that such a slight
decrease of energy is not observed for all XC functionals.
Also, depending on the XC functional employed, a secondary
local extremum at � might be observed or � might only be a
saddle point, possibly slightly higher in energy than another
point along the �Y direction, that is, the true minimum in
this neighborhood. Indeed, in the case of the PBEsol, the
minimum along the �-Y line is observed at CB3 = (0.00 a∗,
0.07 b∗, 0.00 c∗).

To complete the first assessment of the electronic structure,
the density of states (see Fig. 2) reveals that the electronic
bands around the Fermi level are determined by bonding in-
teractions between Sn-5p and Se-4p and weaker hybridization
between Sn-5s and Se-4p.

As will be seen later, the electronic effective mass is a core
quantity in describing polarons, while the precise value of the
band gap is not a concern. However, it is worth improving
on the electron-electron interaction description beyond the
KS-DFT mean-field approximation to obtain accurate band
dispersions, including the electronic effective mass. Accord-
ingly, the QP band structure based on G0W0@PBEsol is
presented in Fig. 3 in comparison with the PBEsol dispersion.
Except for the band gap, strong similarities exist between
the two band structures. The change in curvature around �,
along the �-Y direction, is a first noticeable difference. The
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FIG. 2. Calculated electronic density of states of SnSe decom-
posed in orbital contributions.

decrease in the relative difference between the two band ex-
trema in the CB is another one. A direct comparison with
experiment can be made though at the level of the valence
extrema ordering with the difference between global VBM
and �-VB being in good agreement for both PBEsol (0.56 eV)
and G0W0@PBEsol (0.75 eV) with respect to ARPES mea-
surements (0.5 eV). The energy difference between the two
VB humps (VB2 and VB3) is found to be 55 (24) meV under
the PBEsol (G0W0@PBEsol) treatment, while in ARPES it is
29 meV. Experimentally, it has been proven that the relative
difference between the different extrema is kept constant for
the whole range of temperatures up to 600 K in which the
orthorhombic phase is still stable [75]. A broader description
of the relative energy difference between extrema of interest
is presented in Table IV. The CBM position is shown in bold,
while the VBM is VB2 unless otherwise bolded. Depending
on the employed methodology, the CBM can be found either
in a shallow extended minimum where the CBM is located at
CB2 or in a parabolic band with the CBM located at CB1. In

FIG. 3. Comparison of electronic bands dispersion between
PBEsol and G0W0@PBEsol. Besides the obvious impact that
G0W0@PBEsol has on the band gap, it is worth mentioning that
G0W0@PBEsol shows a reordering of the double-hump extrema
present in the VBM, having now VB3 as the VBM.

TABLE IV. Relative electronic eigenenergy difference with re-
spect to the valence band maximum at VB2. All values are expressed
in meV. Eg is the global (possibly indirect) gap. Results are ob-
tained from different methodologies and a few geometries, namely,
PBEsol at experimental geometry (PBEsol[exp] [74]), PBEsol at
experimental lattice vectors [74], and relaxed internal coordinates
(PBEsol[int]), different XC functionals at their own optimized ge-
ometries (PBEsol, D2, D3, and D3-BJ), hybrid functional at the
corresponding optimized geometry (HSE06), G0W0 from PBEsol
wave functions, at PBEsol optimized geometry, G0W0 from HSE06
wave functions, at HSE06 optimized geometry. The indicated ex-
trema correspond to the conduction band at the zone center (�-CB),
CB1 = (0.32 a*, 0.00 b*, 0.00 c*), CB2 = (0.32 a*, 0.00 b*, 0.03
c*), CB3 = (0.00 a*, 0.07 b*, 0.00 c*), VB1 = (0.32 a*, 0.00 b*,
0.00 c*), VB2 = (0.00 a*, 0.35 b*, 0.00 c*), respectively, VB3 =
(0.00 a*, 0.44 b*, 0.00 c*) valid in the case of PBEsol XC functional
(see Supplemental Material Table S1 for the complete set of extremal
points [76]). The CBM position is shown in bold, while the VBM
is VB2 unless otherwise bolded. Experimental CBM is attributed
arbitrarily at the three �CB locations (in parentheses) due to the lack
of experimental data in the mentioned works.

Method �CB1 �CB2 �CB3 ��-CB �VB1 �VB3 Eg

PBEsol[exp] 473 604 599 −130 −41 473
PBEsol[int] 557 374 378 549 −159 −66 374
PBEsol 338 334 418 427 −73 −55 334
D2 473 473 558 577 −81 −17 473
D3 578 575 865 856 −198 −61 575
D3-BJ 397 479 484 −86 −59 397
HSE06 1299 1301 1437 1416 −299 6 1293
G0W0@PBEsol 896 1031 1022 −16 24 872
G0W0@HSE06 1378 1359 1330 1339 −183 −5 1330
Exp. [47] −70 0
Exp. [46] −20
Exp. [48] −260 0
Exp. [13] (1200) (1200) (1200) −300 0 1200
Exp. [75] (860) (860) (860) −215 −29 860

the case of VBM, G0W0@PBEsol and HSE06 reorganize the
double-hump valence band with the VBM situated now at the
VB3 point.

While most of the XC functionals perform reasonably well
in reproducing the experimental lattice parameter along the c
direction, HSE06 yields a larger deviation. Similarly HSE06
internal atomic coordinates deviate noticeably from experi-
mental ones (see Table III) Hence, the electronic structure
topology differs noticeably from the other ones. A comparison
between PBEsol and HSE06 electronic structures is presented
in Fig. 4. The pronounced change of lattice parameter drives a
strong reorganization of the electronic structure. The double-
hump VB shows a reordering compared to both theoretical
and experimental data. A second major change is present in
the secondary valence band extrema that are now located at �

instead of being along the �-X direction.
Considering the different treatments of the electronic

structure, the effective masses are evaluated for the several
extrema, as presented in Table V.

We earlier noticed that the determination of the lattice
parameters show variations of up to 3% depending on the
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TABLE V. Effective mass determined for various electronic band extrema (local or global) present in the electronic structure obtained from
different methodologies and a few geometries. Notations are the same as in Table IV. The effective masses are expressed in electron mass unit.

Method Direction � - CB CB1 CB2 CB3 VB1 VB2 VB3

PBEsol[exp] (100) 0.9472 0.0792 0.0800 −0.0820 –0.3514 –0.1421
(010) 55.9628 0.1391 0.1385 −0.1755 –0.1300 –0.1542
(001) 0.0654 0.8856 0.5918 −0.2622 –0.5354 –2.0942

PBEsol[int] (100) 0.9975 0.0701 0.0693 0.9598 −0.0750 –0.3109 –0.1304
(010) –3.2052 0.1323 0.1323 2.8195 –0.1670 –0.1210 –0.1644
(001) 0.0659 0.8226 0.6746 0.0651 –0.2227 –0.3759 –1.4431

PBEsol (100) 0.9116 0.0336 0.0512 0.8722 –0.0539 –0.2422 –0.0965
(010) –3.0050 0.1127 0.1253 2.6615 –0.1500 –0.1144 –0.1690
(001) 0.0624 –3.1632 1.2504 0.0611 –0.3154 –0.5617 –1.2427

D2 (100) 1.1221 0.0676 0.0672 1.0178 –0.0711 –0.2158 –0.1376
(010) –2.2340 0.1307 0.1315 1.2926 –0.1359 –0.1678 –0.1644
(001) 0.0749 –4.1357 1.8511 0.0721 –0.2804 –0.8119 –9.6217

D3 (100) 0.9999 0.1196 0.1191 –0.1300 –0.5396 –0.1976
(010) 7.1832 0.1558 0.1570 –0.2332 –0.1682 –0.1877
(001) 0.0708 0.6776 0.5434 –0.2878 –0.6118 –1.4329

D3-BJ (100) 0.9086 0.0570 0.0576 0.8953 –0.0610 –0.2407 –0.1047
(010) –4.0922 0.1263 0.1261 2.5786 –0.1491 –0.1218 –0.1958
(001) 0.0644 1.4908 0.6937 0.0634 –0.2914 –0.5136 –1.0809

HSE06 (100) 0.9225 0.1736 0.1742 −0.2269 –0.7466 –0.3056
(010) 1.8390 0.1722 0.1729 –0.2557 –0.1765 –0.1951
(001) 0.0927 0.5184 0.4948 –0.4185 –0.8328 –2.0015

G0W0@PBEsol (100) 0.8195 0.0477 0.0475 0.8641 –0.0610 –0.3029 –0.1001
(010) 10.4202 0.1102 0.0993 1.5084 –0.1969 –0.1313 –0.1494
(001) 0.0669 –1.0124 0.7556 0.0672 –0.3921 –0.6958 –1.2510

G0W0@HSE06 (100) 0.9772 0.0546 0.0548 0.9131 –0.0561 –0.2253 –0.1083
(010) –1.9112 0.1184 0.1196 1.6242 –0.1375 –0.1013 –0.1403
(001) 0.0600 –0.8610 7.7083 0.0582 –0.3397 –0.5257 –2.3934

used methodology. Moreover, the deviation might be larger
along the slabs or perpendicular to them, which plays an
important role, with an immediate impact on the effective
masses. The effect is particularly strong in situations where
the interslab separation is poorly described, as a consequence,
giving rise to differences up to a factor of 2 in the electronic
effective mass determination, except HSE06, which should

FIG. 4. Comparison of electronic bands dispersion between
PBEsol and HSE06. Like in the G0W0@PBEsol many-body pertur-
bative treatment, the inclusion of the exact exchange in the electronic
structure description provided by HSE06 XC yields a reordering of
the double-hump extrema present in the VBM.

be considered separately. It is thus apparent that the crystal
structure is crucial in describing subtle electronic properties
(see Supplemental Material Figs. S1 and S2 [76]). To further
assess the relevance of the crystal structure, we shall restrict
for a moment our comparison at the three PBEsol treatments
of the effective masses in Table V: experimental structure
(PBEsol[exp] [74]), PBEsol internal coordinate optimization
with experimental lattice parameters [74] (PBEsol[int]), and
fully relaxed structure with own functional (PBEsol). While
for the � point, the effective masses at PBEsol[int] seem
closer to the ones at PBEsol, the rest of the band extrema are
neither closer to PBEsol[exp] nor to PBEsol, so we conclude
in this regard that both internal coordinates and lattice vectors
play a relevant role in the electronic band dispersion and the
sensitive ordering of the band extrema. On the same note,
we performed G0W0@HSE06 calculation (see Supplemental
Material Fig. S3 [76]) and, most notably, the CBM is now
situated at CB3, although we remain cautious about stamping
this order as being the final one, given the extremely sensitive
nature of the electronic dispersion.

A direct comparison with the theoretical results presented
in this paper (see Table V) and other theoretical or experi-
mental results (see Table VI) is available, although in this
paper an optimized set of lattice parameters is used, while
in the work of Ref. [50] the experimental lattice parameters
are used. A second important point is that it is unclear in
Ref. [50] on which XC functional the G0W0 calculation is
based on. At the experimental level, the data is available
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TABLE VI. Published effective masses determined by various
means, either experimental or theoretical, in view of comparing with
Table V. No experimental data is available for the CB maximum.

Methodology Direction VB1 VB2 VB3 � CB1

LDA [2] (100) 0.24 0.30 0.16
(010) 0.16 0.18 0.12
(001) 0.46 0.78 0.50

GGA [77] (100) 0.85
(010) 2.12
(001) 0.069

G0W0 [50] (100) 0.31 0.12 0.11
(010) 0.16 0.15 0.15
(001) 0.74 0.90 2.40

ARPES [13] (100) 0.17 0.16
(010) 0.25 0.21
(001)

ARPES [46] (100) 0.38 2-3
(010) 0.16 0.17
(001) 0.71 0.17

ARPES [47] (100) 0.19 0.21 0.19
(010) 0.13 0.13 0.12
(001) 0.31 0.42 0.58

ARPES [48] (100) 0.24 0.18 0.18
(010) 0.17 0.21 0.21
(001) ≈ 2.5 ≈ 2.5

ARPES [5] (100) 0.20 0.25 0.20
(010) 0.13 0.17 0.13
(001)

ARPES [18] (100) 0.34
(010) 0.16
(001) 0.69

in a somewhat incomplete fashion compared to the set of
derivations of this paper, but the agreement is upheld up to a
factor of 2 between both this paper’s data and among different
experimental measurements for VB1 and VB2 accounting
for all employed methods. We account for the effects that
spin-orbit coupling (SOC) might play in the determining the
effective masses and we note that SOC is of no particular
importance with the usual band splitting happening away from
the band extrema (see Supplemental Material Fig. S4 [76])
and the effective masses are essentially degenerate (see, as an
example, Supplemental Material Table S2 [76]). Restricting
the comparison between PBEsol, D3-BJ, and G0W0 methods
and ARPES experimental results, the outcome is considerably
more favorable, with the effective masses falling within 50%
deviation from experiments. With this in mind, the window of
precision of effective masses will have radical consequences
on determining the polaron properties later.

Of particular importance are the selected points in the CB
local extrema. It is worth emphasizing that �-CB shows a flat
component of the band structure along the �-Y direction with
a negative curvature in some of the XC treatments (PBEsol,
D2, D3-BJ, or G0W0@HSE06) indicating that this is not a true
local minimum in these cases, but then the minimum can be
found along the high-symmetry path along �-Y. This behavior
is absent in the G0W0@PBEsol where the flat component
along �-Y has a positive curvature in turn. A similar behavior

FIG. 5. Phonon dispersion in SnSe.

is observed in the case of CB1 in which case this is not the
true extremum in PBEsol, G0W0@PBEsol, or G0W0@HSE06
treatments but rather is part of shallow band dispersion with a
hidden minimum along the c direction at CB2.

To conclude this section, the lack of fool-proof systematic
approaches for treating effective masses is underwhelming
given the ramifications that it might have in estimating the
electronic and polaronic properties of this potentially techno-
logically suited material and other materials.

V. PHONON STRUCTURE

The DFPT phonon dispersion obtained with the PBEsol-
optimized crystal structure is presented in Fig. 5. The
irreducible representations associated to the phonon modes
(D2h) are separated in Tables VII and VIII based on their
polar character. Altogether, the modes can be represented
as �3N = �trans + 4Ag + 2B1g + 2B2g + 4B3g + 2Au + 3B1u +
3B2u + B3u. As there is some arbitrariness about the notation
of irreducible point group representation of this point group,

TABLE VII. Theoretical and experimental phonon eigenfre-
quencies for nonpolar modes, with their irreducible point group
representation. Theoretical values are obtained within PBEsol XC
treatment.

ω(cm−1)

Theoretical Experimental [78] Symmetry

30.57 33 Ag

32.46 37 B1g

44.51 Au

52.87 57 B2g

61.71 B3g

62.41 B3g

63.79 70 Ag

104.18 108 B1g

120.51 Au

123.72 130 Ag

129.47 133 B2g

139.41 B3g

150.81 150 Ag

179.40 B3g
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TABLE VIII. Theoretical and experimental phonon eigenfre-
quencies for polar modes, depending on the limiting wave-vector
direction, with their irreducible point group representation. Theoreti-
cal values are obtained within PBEsol XC treatment. Experimental
TO frequencies correspond to the doubly degenerate theoretical
values, while experimental LO frequencies correspond to the non-
degenerate theoretical values.

ω(cm−1) Symmetry

(100) (010) (001) TO [73] LO [73]
50.63 50.63 51.11 56±5 57±5 B1u

75.18 77.88 75.18 80±5 85±5 B2u

150.57 90.44 90.44 96±5 172±5 B3u

115.69 147.93 115.69 123±5 149±5 B2u

125.79 125.79 135.30 130±5 141±5 B1u

135.84 135.84 172.96 142±10 191±10 B1u

149.08 163.97 149.08 150±5 180±5 B2u

we take the convention that the B1g and B1u are left invariant
under the action of the C2z binary axis, B2g and B2u are left in-
variant under the action of the C2y binary axis, and B3g and B3u

are left invariant under the action of the C2x binary axis. The
phonon frequencies are in good agreement with experimental
values having a deviation of up to 6 cm−1 [78], the deviation
being slightly larger towards the higher energy modes where
the harmonic approximation might not be suitable anymore.
In Table VII, a comparison between the theoretical and avail-
able experimental data for Raman active (g) phonon modes
is presented. In the case of infrared active (u) modes, espe-
cially relevant in the case of the Fröhlich model, the phonon
frequencies and their directional dependence are presented
in Table VIII. Generally, the phonon mode decomposition
agrees with experimental studies [78]. It does not agree with
another theoretical work [18] where the attribution of polar
modes is questionable and where the notation of irreducible
representations does not even correspond to the one for the
orthorhombic SnSe D2h point group.

In the Fröhlich model, only polar phonon modes couple
to the electronic degrees of freedom. They are distinctive due
to the nonanalytic directional behavior of the frequencies for
q → � originating in the long-range character of the Coulomb
interaction (see Table VIII). The origin of large polarons is
usually ascribed to such long-range Coulomb characteristics,
at variance with small polarons that stem from atomically
localized interactions.

Two quantities characterize such long-range interaction
with these modes: the Born effective charge tensors and the di-
electric tensors. Born effective charges, shown in Table IX, are
in good agreement with previous calculations [79], although
presented in a somewhat incomplete manner in the latter
reference. The Born effective charge tensor has off-diagonal
elements, and moreover is nonsymmetric. Indeed, the local
symmetry at one atom site is not orthorhombic, unlike the
crystal. Also, the two derivatives defining the Born effective
charge tensor, namely, with respect to the electric field, and
with respect to atomic positions, are not equivalent.

The electronic dielectric tensor, ε∞, is diagonal, with
values (29.85, 24.62, 21.97). The static dielectric tensor, ε0,
is also diagonal, with values (82.45, 52.23, 41.97). For

TABLE IX. Born effective charges of SnSe determined within
the PBEsol XC functional. Columns refer to derivatives with respect
to the electric field and lines to derivatives with respect to atomic
positions, in atomic units.

Atom Wyckoff Born effective charges (e)

Sn(1) 4c ∂/∂εx ∂/∂εy ∂/∂εz

∂/∂Rx 4.645893 0 0
∂/∂Ry 0 4.048746 0.005551
∂/∂Rz 0 0.553763 3.896242

Se(1) 4c ∂/∂εx ∂/∂εy ∂/∂εz

∂/∂Rx −4.645893 0 0
∂/∂Ry 0 −4.048746 0.497380
∂/∂Ry 0 0.511980 −3.896242

further reference, their combination, ε∗ = ((ε∞)−1 −
(ε0)−1)−1 has diagonal values (46.80, 46.59, 46.09). While
ε∞ and ε0 present some noticeable anisotropy along the
different crystallographic directions, ε∗ varies by less than
2%. These values deviate somewhat from experimental
values, as reported in Chandrasekhar et al. [73] with ε0 = (62
± 6, 45 ± 5, 42 ± 5) and ε∞ = (17 ± 2, 13 ± 2, 16 ± 2). The
theoretical values are not expected to be very accurate due to
the band-gap underestimation in PBEsol. Indeed, a smaller
band gap gives rise to a larger high-frequency dielectric
response. However, experimental ε∞ is inferred from fitting
and extrapolation of data at frequencies much lower than the
band gap, a procedure also prone to significant uncertainty. In
the following, we will stick, consistently with our approach,
with the theoretical values. Irrespective of the used ε∗, the
polaron radii of the different band extrema in most cases
would still be considerably larger than the experimental
findings as we will see later in Table XI.

VI. ELECTRON-PHONON EFFECTS

The impact of EPI can be evaluated using various theo-
retical methodologies, depending on the sought quantity, and
whether one aims at an accurate quantitative picture or a more
qualitative one. In the present paper, we analyze the polaron
formation energy and the polaron spatial characteristics, for
which different methodologies are indeed delivering comple-
mentary information.

The polaron formation energy (also known as ZPR of the
band edge) is addressed based on two approaches: the nonadi-
abatic AHC theory and the Frölich model based on parameters

TABLE X. Polaron formation energy (ZPR) in meV stemming
from various electronic band extrema (local or global) present in the
electronic structure. The PBEsol XC functional is used.

Method/extremum �-CB CB1/2 VB1 VB2 VB3

OTMS −4.6 −12.3 9.2 7.8 9.1
LQPE −4.7 −12.8 9.4 8.0 9.5
generalized Fröhlich −4.4 −4.4 3.9 5.7 6.1
Gaussian/PBEsol −0.10 0.08 0.16 0.20
Gaussian/G0W0@PBEsol −0.31 −0.08 0.10 0.19 0.15
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TABLE XI. Polaron localization lengths along different crys-
tallographic directions for the different electronic band structure
extrema from a Gaussian ansatz. Dimensions are expressed in Å. In
this scenario, the polaron has a triaxial ellipsoidal shape.

Method Dir �-CB CB2 CB3 VB1 VB2 VB3

PBEsol x 882.02 180.84 1063.03 387.69 426.90
y 630.72 123.52 726.29 509.78 372.98
z 284.31 488.67 589.26 288.73 133.81

G0W0 x 154.98 1037.46 839.46 317.46 548.81
y 65.17 788.26 546.98 430.82 472.85
z 403.29 389.28 430.26 237.14 225.14

extracted from first-principles calculations. The latter can also
be used to examine the spatial characteristics of the polaron in
the strong-coupling limit.

In the nonadiabatic AHC approach, the ZPR is de-
rived from the electron-phonon self-energy obtained within a
many-body perturbative approach. In the lowest order of per-
turbation theory, two contributions to the self-energy arise, the
frequency-dependent Fan-Migdal term and the static Debye-
Waller term [36]:

�EPH
kn (ω) = �FM

kn (ω) + �DW
kn . (1)

The AHC approach takes into account the details of phonon
modes and EPI over the entire Brillouin zone, computed from
first principles, at variance with the Fröhlich approach, which
relies only on zone-center quantities.

In the standard Fröhlich model, indeed, one assumes a
single isotropic electronic band, with parabolic dispersion
described by its corresponding effective mass m∗, and one
dispersionless longitudinal zone-center optical phonon mode
of frequency ωLO, both being coupled by a macroscopically
screened Coulomb interaction. Obviously, this simplified
isotropic one-band one-phonon picture does not apply in the
case of SnSe, with seven infrared active modes and several
electronic band extrema that could held the formation of a po-
laron. The effective masses at band extrema sometimes span
two degrees of magnitude along different crystallographic
directions.

Considering all this, the generalized Fröhlich model de-
veloped by Miglio et al. [54] is a much better starting point
to obtain the ZPR with a simple methodology compared to
the AHC one. We will indeed obtain the ZPR from such a
generalized model in the weak-coupling limit. For some band
extrema, the agreement between AHC and the generalized
Fröhlich approach is fair, between 10% and 20%, while it is
only qualitative for some others.

The localization and shape of a polaron are well-defined
in the strong-coupling limit but do not emerge from the
weak-coupling limit. We will rely on formulas valid in the
strong-coupling limit to tackle the comparison with exper-
iment, thus working also in a more qualitative approach.
In this respect, we will simplify the generalized Fröhlich
model thanks to directionality-averaged dielectric tensors,
and examine polaronic characteristics, first using a Gaussian
wave-function ansatz, and then using a fully variational nu-
merical approach. Both deliver a unique kind of large polaron,

whose electronic wave function oscillates in real space. The
corresponding electronic charge density vanishes on surfaces
separating sign changes in the electronic wave function. Thus,
in this type of polaron, the electronic charge density can
be thought of stacked disks given the not-so-large polaron
localization length out of- plane, while being much more
delocalized in plane. The period of oscillations matches the
characteristic length from experimental observations.

AHC model ZPR

The QP correction due to EPI, based on the nonadiabatic
AHC self-energy Eq. (1), can be obtained within two different
treatments of the self-energy, namely, the OTMS and the lin-
earized QP equation (LQPE). In OTMS, the QP correction is
given by the real part of the EPI self-energy evaluated at the
bare Kohn-Sham eigenvalue, so

ε
QP
kn = εkn + Re

(
�EPH

kn (εkn)
)
, (2)

while in the LQPE, the correction is provided on the basis
of a Taylor expansion of the self-energy around the bare KS
eigenvalue.

Table X gathers our computed values, from both OTMS
and LQPE. The two approximations show good agreement
among each other for both CBM and VBM QP corrections
within PBEsol XC. The polaron formation energies from
both methods are relatively low, with absolute values below
10 meV. Thus the lack of ARPES experimental evidence is
justifiable in this regard since it would require a relatively high
resolution to detect features of this order of magnitude, if any.
Also, when compared with Table IV, the QP corrections leave
the ordering of the band extrema unchanged.

A. Generalized Fröhlich model ZPR

The generalized Fröhlich model, delivering the zero-point
renormalization denoted ZPRgFr [54], is parameterized using
PBEsol results. At the lowest order of perturbation theory
(weak coupling limit), the ZPRgFr for the different local min-
ima of the CB can be calculated from the following expression
(similarly for the valence band maxima, with a sign change):

ZPRgFr
c = −

∑
jn

1√
2	0ndeg

∫
4π

dq̂(m∗
n (q̂))1/2

× (ω j0(q̂))−3/2

(
q̂ · p j (q̂)

ε∞(q̂)

)2

, (3)

with m∗
n (q̂) being the direction-dependent effective mass,

ω j0(q̂) being the direction-dependent infrared active phonon
mode frequency at the � point, and ε∞(q̂) being the direction-
dependent electronic dielectric tensor.

The generalized Fröhlich ZPR has the same order of mag-
nitude as the polaron ground-state energy values provided by
AHC methods. For �-CB, VB2, and VB3, they differ by less
than a factor of 2, which suggests that the main contribution to
the ZPR originates from the coupling of the long wavelength
longitudinal optical phonons with the electronic structure.
The agreement for other extrema is more qualitative, but still
speaks in favor of pursuing with the Fröhlich model.
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B. Polaron localization lengths based on a Gaussian ansatz

The localization of a polaron and its associated charge dis-
tribution are well-defined in the strong-coupling limit. In the
two coming sections, the generalized Fröhlich model will be
slightly simplified by considering directionally averaged di-
electric tensors (low-frequency and high-frequency), together
with the strong-coupling limit, while keeping details (e.g.,
anisotropy and possible flatness) of the electronic structure
at each of its extrema. In the present section, the expansion
of the electronic eigenenergy is assumed quadratic, hence,
represented by the effective mass tensor, while in the next
section, a quartic expansion will be used to model the behavior
of the CB around �.

An initial attempt to derive a localization length for a po-
laron was done by Landau and Pekar, in their seminal polaron
work [25,26]. They considered the strong-coupling limit. The
approach is based on the variational principle, whereby the
energy associated to a normalized trial wave function φ(r)
[or φ(k) in reciprocal space] combines an electronic kinetic
energy part and a coupled electron-phonon and phonon part.
Explicitly, when applied to the standard Fröhlich model (so,
isotropic electronic dispersion),

EP[φ] = Eel[φ] + Eepp[φ], (4)

where the electronic energy writes

Eel[φ] =
∫

dk
k2

2m∗ |φ(k)|2, (5)

while the electronic density, obtained from φ in real space,

ρ(r) = |φ(r)|2, (6)

induces a response of the polarizable medium, obtained math-
ematically by considering its Fourier transform

ρ(k) = 1

(2π )3/2

∫
drρ(r)eikr, (7)

and building the associated electron-phonon and phonon en-
ergy

Eepp[φ] = −
∫

dk
4π

2k2ε∗ ρ∗(k)ρ(k), (8)

with the dielectric constant

(ε∗)-1 = (ε∞)-1 − (ε0)-1. (9)

The electron wave function is frozen, as well as the
deformation of the polarizable medium. Hence, in this strong-
coupling scenario, one works in an adiabatic approximation,
in which the electron and phonon parts are explicitly corre-
lated, albeit frozen.

Different simple trial wave functions can be found in the
literature, giving analytical results. The convenient Gaussian
trial wave function used by Landau and Pekar [25,26,80]
writes

φ(r) =
(

1√
πaP

)3/2

exp

(
− r2

2a2
P

)
. (10)

Solving the minimization problem, the localization length
is obtained in terms of the electron effective mass m∗ and the

dielectric constant ε∗, defined in Eq. (9):

aP = 3
2

√
2π (m∗)-1ε∗. (11)

For many electronic band extrema in SnSe, the dispersion
is highly anisotropic, differing sometimes by more than one
order of magnitude along the three crystallographic directions.
Equation (5) needs to be generalized, following Ref. [51],
which gives

Eel[φ] =
∫

dk

(
k2

x

2m∗
x

+ k2
y

2m∗
y

+ k2
z

2m∗
z

)
|φ(k)|2. (12)

By contrast, as mentioned in Sec. VI, the dielectric tensor
ε∗ is only weakly anisotropic. Thus, we will keep the other
equations unchanged. The averaged value ε∗ = 46.49 will be
used in what follows.

Similarly, the trial wave function should allow for an ellip-
soidally shaped polaron [51],

φ(x, y, z) =
(

1

π3/2a3
P

)1/2

× exp

(
−1

2

(
x2

a2
Px

+ y2

a2
Py

+ z2

a2
Pz

))
, (13)

where aPx, aPy, and aPz are the polaron localization lengths
along the x, y, and z directions, and aP is the spherical average
radius of the polaron, defined as follows:

a3
P = aPxaPyaPz. (14)

As described in Ref. [51], this leads to solving numerically
a system of equations to find the three aPi values,

1

m∗
i

= − 2a3
Pi

ε∗(2π )1/2

∂ < a−1
Pd >4π

∂aPi
, (15)

with < a−1
Pd >4π being the angular average of the inverse of

localization lengths.
In determining the polaron radius, the coupled set of

Eq. (15) are solved for each extremum selected in the
electronic band structure for two treatments: PBEsol and
G0W0@PBEsol. The polaron formation energy is presented in
Table X, while the polaron localization lengths are presented
in Table XI.

The smallness of the polaron formation energy obtained
in this strong-coupling limit, compared to the one obtained
in the weak-coupling energy, signals the dominance of the
Fan-Migdal self-energy over the polaronic self-energy, in the
approach outlined recently by Lafuente-Bartolome et al. in
their unified approach to polaron and phonon-band structure
renormalization approach [39]. Both have to be taken into
account in such a formalism, while one or the other are present
in either the weak-coupling or the strong-coupling approach.

Although the formation energy is clearly dominated by the
Fan-Migdal self-energy, there is no localization induced by
such term per se. Localization only appears to be induced
linked to the polaron self-energy, hence our belief that the
strong-coupling approach will deliver a qualitatively correct
evaluation of the localization radius for the polarons attached
to the different band structure extrema.
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FIG. 6. Cross sections of the SnSe conduction band near the �

point for PBEsol functional with (a) optimized or (b) experimental
lattice parameters and atomic positions (PBEsol and PBEsol[exp]).
Black, red, and blue lines denote paths from � to X, Y, and Z points
of the Brillouin zone, respectively. The values on the horizontal
scale specify the fraction from � to X, Y, or Z, with respect to the
corresponding zone boundary.

Within this framework, the value closest to the large
polaron radius found experimentally appears in the
G0W0@PBEsol treatment of the CB minimum at the �

point along the b direction, roughly 65 Å.
Yet it is still a factor of nearly 4 higher than the experi-

mental value, 18.7 Å [23]. All other analyzed extrema present
a much larger polaron radius. This was expected, given their
relatively small effective mass, irrespective of the direction
considered. However, the CB states at or around � are not
at the CB global minimum, that, according to Table IV, is
located either at CB1 or at CB2. Still, the energy difference
between the CB global minimum and the CB at � is lower
than 0.15 eV in most theoretical methods, a rather small value,
that should not prevent the creation of such polarons. So, the
characterization of a hypothetical polaron, stemming from the
electronic stated around � cannot be ruled out, while the other
possibilities seem irrealistic.

As a conclusion, adopting a fixed Gaussian ansatz in the
strong-coupling limit delivers a rather simple message: the
small or even very small effective masses found for most
extrema cannot yield a polaron with extent on the order of
the ones found experimentally, with one noticeable exception
of a polaron created from the CB states at or around �. Still,
the smallest radius of such a polaron is found within a factor
of nearly 4 from the largest experimental value. This might
be ascribed to the inherent approximations in this theoretical
approach.

In this respect, in the next subsection, we use a much more
accurate technique, and take into account the peculiar shape
of the band dispersion in the � neighborhood.

C. Polaron wave functions based on a variational approach

As demonstrated in Ref. [53], the Gaussian wave function
is an excellent ansatz for the Fröhlich model in the strong-
coupling limit. However, the PBEsol dispersion of the SnSe
CB near the � point significantly deviates from the quadratic
behavior assumed in the Frohlich model (see Fig. 6). Hence,
a more careful approach is needed to characterize the polaron
formation in the vicinity of the � point.

To obtain the polaron formation energy EP and wave-
function φ, we minimize the variational polaron equation of

Ref. [53]:

EP(A, B) = 1

Np

∑
Gk

|AGk|2εGk + 1

Np

∑
Gq

|BGq|2ωLO

− 1

N2
p

∑
Gk

∑
G′k′

(A∗
GkAG′k′B∗

(G−G′+U)(k−k′−U)

× gFr(G − G′ + k − k′) + (c.c.)). (16)

The minimization is performed with respect to the electronic
coefficients AGk that define the polaronic wave function in the
basis of Bloch states,

φ(r) = 1

Np
√

	0

∑
Gk

AGkei(k+G)·r, (17)

with the vibrational coefficients BGq being coupled with AGk
through the expression

BGq = 1

Np

∑
Gk

A∗
(G′+G−U)(k+q+U)

gFr(G′ + q)

ωLO
AGk. (18)

In the equations above, a Born-von Karman supercell consist-
ing of Np primitive cells of volume 	0 hosts a polaron and
is defined by the size of a corresponding k mesh in reciprocal
space. Parameters of the system, required to initialize the min-
imization, are the electronic dispersion εGk,the LO phonon
mode energy ωLO and the Fröhlich electron-phonon matrix
elements gFr(q), which depend on the value of the dielectric
constant.

In SnSe, around �, the first-principles electronic dispersion
is highly sensitive to the calculation methodology. In Fig. 6,
one can see two distinct behaviors of the CB near the � point:
along the Y-�-Y direction, it either (a) exhibits two minima or
(b) is strikingly flat, while the dispersion along the other direc-
tions can be considered as parabolic. The double-well shape
is found for the PBEsol functional with full geometry relax-
ation, as well as for the D2 and D3(BJ) XC functionals with
their own geometries, and G0W0@PBEsol, while the other
considered methods lead to the second, flat-band scenario.
As shown in Table V, the heaviest effective masses in the
Y-�-Y direction are given either by PBEsol with experimental
lattice parameters and atomic positions (PBEsol[exp]) or by
G0W0, and these methods can be viewed as representatives
of the flat-band case. Hence, to characterize a polaron, we
consider both possible energy profiles: double well (PBEsol)
and flat band (PBEsol[exp] or G0W0@PBEsol). In any case, to
parametrize Eq. (16), we use the sum of the electronic bands
along three directions, as shown in Fig. 6:

ε(k) = εx(kx ) + εy(ky) + εz(kz ). (19)

As mentioned previously, the dielectric constant ε∗ is assumed
isotropic and has a value of 46.49 further on. The phonon
parameters are taken from the previously mentioned first-
principles values.

As a result, the characteristic of the polaron differs sig-
nificantly depending on the considered dispersion. While in
reciprocal space the flat-band polaronic wave function is an el-
lipsoid, the double-well profile reveals another shape that has
two distinct peaks at each of the minima, as shown in Fig. 7.
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FIG. 7. Cross section of the reciprocal space polaronic wave
function for the (a)–(c) flat-band PBEsol-exp and (d)–(f) double-well
PBEsol-relaxed electronic dispersion. In all panels, the third coordi-
nate is perpendicular to the plane and set to 0, except (c), where y is
at one of the two minima.

Fourier transform allows one to obtain the corresponding po-
laronic density in real space, illustrated in Fig. 8. The flat-band
scenario leads to a delocalized polaron, with PBEsol[exp]
showing less pronounced delocalization in the flat-band di-
rection than with G0W0 parametrization (see Supplemental
Material Fig. S5 [76]). The polaronic density obtained in
the double-well scenario exhibits distinct oscillations in the y
direction. The width of these oscillating peaks is much smaller
than the localization length of the PBEsol[exp] in the same
direction. Hence, in the case of PBEsol[exp] and PBEsol, the
polaron can be considered one-dimensional and is delocalized
in the x and z directions, which may correspond to the exper-
imentally found large one-dimensional polaron of Ref. [23].
To distinguish between the two cases, flat-band or double-
well potential, analysis of the characteristic dimensions and
formation energies of the possible polarons is provided in the
following subsection.

FIG. 8. Cross section of the real space polaronic density for the
(a)–(c) flat-band PBEsol-exp and (d)–(f) double-well PBEsol-relaxed
electronic dispersion. In all panels, the third coordinate is perpendic-
ular to the plane and set to 0.

D. Analysis of the polaronic wave functions

To characterize possible polarons, along with the afore-
mentioned variational methodology, we also utilize a trial
wave-function approach. While the polaron in the flat-band
scenario can be described by the ansatz of Eq. (13), the same
Gaussian shape cannot be used to approximate the polaron in
the double-well potential. On the contrary, one still can benefit
from an ad hoc trial wave function: from Figs. 7(d)–7(f), we
deduce that in reciprocal space it may be expressed as two
Gaussians, separated by �k from the origin in the ky direction,

φ(k) =C
(
e− 1

2 (a2
Pxk2

x +a2
Py (ky−�k)2+a2

Pzk2
z )

+ e− 1
2 (a2

Pxk2
x +a2

Py (ky+�k)2+a2
Pzk2

z )
)
, (20)

with C being the normalization constant.
Fourier transform allows one to obtain the wave function in

real space, which indeed has characteristic oscillations modu-
lated by the cosine factor:

φ(r) =
(

2

π3/2a3
P(1+e−�k2a2

y )

)1/2

e
− 1

2 ( x2

a2
Px

+ y2

a2
Py

+ z2

a2
Pz

)
cos (�k · y).

(21)

The electron-phonon energy to be minimized is then given
as the sum of electronic and vibrational plus electron-phonon
contribution, Eq. (4), with Eq. (5) [or Eq. (12) replaced by

Eel[φ(k)] =
∫

dkε(k)|φ(k)|2, (22)

where ε(k) has the form of Eq. (19). It should be noted that it
is possible to provide suitable polynomial expression for ε(k)
similar to Eq. (12) and hence get an analytical result for the
electronic energy term. However, since the fine features of the
dispersion affect the final result, we preserve them by interpo-
lating the bands on first-principles values in each direction.
A closed-form expression for the vibrational plus electron-
phonon term is not extracted, as in general the triple integral
in Eq. (8) cannot be evaluated analytically, but only reduced
to a double integral. Therefore, we deal with numerical inte-
gration and minimization, which can be easily performed. The
aforementioned formalism is further developed in Sec. III of
the Supplemental Material.

As expected, exact numerical solutions given by the vari-
ational framework result in lower values of Ep. The resulting
energies obtained with variational and ansatz approaches are
listed in Table XII, as well as optimized localization lengths
for the latter. PBEsol[exp] and G0W0 are approximated with
the standard ansatz given by Eq. (13), while for PBEsol we use
the expression given by Eq. (20). We also treat a special case
(PBEsol*) by putting a single Gaussian at one of the double-
well minima and expressing the wave function with only one
of the terms of Eq. (20). The listed value of aPy for PBEsol is
the width of the Gaussian envelope in Eq. (21). The actual
localization length �a is given by the width of individual
oscillations, which is determined by the �k oscillatory factor
in Eq. (21):

�ay = π

2
(�k)−1. (23)

Indeed, the double-well wave function has several zeros in
the y direction, that in ansatz method are separated by exactly
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TABLE XII. Polaron formation energy EP in and localization
lengths. Localization length are obtained with different trial wave
functions: PBEsol—ad hoc ansatz with two Gaussians centered at
each minima; PBEsol*—single Gaussian centered at one of the min-
ima; PBEsol[exp] and G0W0—standard Gaussian ansatz.

EP (meV) Localization length (Å)

Method Variational Ansatz aPx aPy aPz

PBEsol −0.65780 −0.623874 117.38 95.67 174.10
PBEsol* −0.623177 117.60 95.87 174.27
PBEsol[exp] −0.41774 −0.380217 132.03 42.53 366.51
G0W0@PBEsol −0.25635 −0.252171 181.22 128.82 451.78

2�ay = 29.40 Å. Additionally, the PBEsol* case gives more
insight on polaron formation in the double-well scenario.
Since a single Gaussian being centered at only one of the
minima gives almost the same value of Ep, albeit slightly
larger, we conclude that the actual polaron wave function
is indeed quite similar to a superposition of two Gaussians.
The polaron localization length is solely determined by the
separation of the peaks, and with �k → ∞ the wave function
tends to its Gaussian envelope.

In Fig. 9, two polarons with the lowest localization
lengths are compared: flat-band PBEsol[exp] and double-well
PBEsol. Trial wave functions approximate the variational ones
relatively well, with deviations arise as the distance increases.
Indeed, in the exact numerical solution for PBEsol, the first
peak near the origin coincides with the ansatz approach, while
the width of other oscillations slowly growths with the dis-
tance. We hypothesize that experiments might detect some
characteristic feature for such a polaron with approximately

FIG. 9. Cross section of the variational (filled area) and
ansatz (dashed lines) electronic density in the y direction for
(a) PBEsol[exp] and (b) PBEsol. Black dashed lines denote the result
from an optimized trial wave function, while the red line shows the
Gaussian envelope in the double-well case. The deviation between
the black dashed line and the filled area is rather small, although it
increases for larger distances.

the width of the first peak or its width at half maximum,
�ay = 14.70 Å. It is more localized than the one with the
flat-band scenario. Alternatively, the separation between the
zeros of the oscillating density might possibly be the charac-
teristic length observed experimentally, with a doubled value,
on the order of 3 nm. Given the uncertainty in the theoretical
estimate, either one or the other may correspond to the experi-
mentally observed one-dimensional polaron with localization
length of 18.70 Å [23]. The experimental feature hypothe-
sized to arise from a “small” polaron with a three-dimensional
character is not explained by our study: no characteristic
length smaller than 1.5 nm stems from it, casting some doubts
about the interpretation of experimental data.

VII. CONCLUSIONS

In this paper, we have addressed the subtle character
of the electronic structure of orthorhombic SnSe via var-
ious methodologies spanning from conventional KS-DFT
mean-field approximations to state-of-the-art many-body per-
turbation approaches within the G0W0 approximation for the
electron-electron interaction. We have analyzed the important
role played by the crystal structure in defining the topology
of the electronic band structure and the effective masses. The
effect is especially critical at the level of the effective masses
since it plays a central role in determining large polaron
properties. We have also analyzed the vibrational properties of
orthorhombic SnSe to identify the phonon modes contributing
to a potential polaron formation within the Fröhlich formal-
ism.

Linking the electronic and phonon structure, we charac-
terize the polaron energy by two different approaches: the
recently developed generalized Fröhlich model and the nona-
diabatic AHC formalism. We reason, based on the quantitative
agreement between the two methodologies, that the polaron is
of a Fröhlich type.

Based on the analyzed band extrema, we establish that the
minimum of the CB at the � point could potentially hold a
large polaron with a size in the range of the experimental find-
ings. We address this aspect following two approaches: a fixed
Gaussian ansatz and a variational approach both within the
Fröhlich formalism. When the electronic structure presents a
double-well minimum around �, we find an exotic large cylin-
drical one-dimensional polaron of a difefrent type. In such a
case, the oscillating electronic charge density of the polaron
presents a periodicity of 3 nm and width at half maximum
of 1.5 nm, which is comparable with the experimental value
of 1.87 nm. Finally, we hypothesize that such type of polaron
presenting an oscillatory behavior might be found in materials
with extended, shallow, double-well band extrema.

Data will be made available upon request.
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