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The one-dimensional configuration coordinate model (1D-CCM) is widely used for the analysis of photo-
luminescence in molecules and doped solids, and relies on a linear combination of the equilibrium nuclear
configurations of ground and excited states. It delivers an estimation of the energy barrier at which ground and
excited state curves cross, semiclassically linked to nonradiative transition rate and thermal quenching. To assess
its predictive power for the latter properties, we propose a new optimized configuration path (OCP) method in
which the ground-state and excited-state forces are mixed instead of their configurations. We also define another
one-parameter model thanks to a double energy parabola hypothesis (DEPH). We compare the OCP method and
the DEPH reference with the 1D-CCM for three paradigmatic 4 f − 5d phosphors Y3Al5O12:Ce, Lu2SiO5:Ce,
and YAlO3:Ce. We find that the OCP and DEPH methods yield similar results with geometries that have
significantly lower ground-state energies than the 1D-CCM for the same 4 f − 5d energy difference. However,
the OCP method suffers from the appearance of multiple local minima, rendering the clear determination of the
optimal geometry very difficult in practice. Still the OCP method allows one to quantify the deviations from the
1D-CCM, therefore increasing confidence in the lower bound obtained from the DEPH for the 4 f − 5d crossing
barrier, and its comparison with the energy of the autoionization thermal quenching mechanism. We expect the
OCP approach to be applicable to other luminescent materials or molecules.
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I. INTRODUCTION

Pioneering works to understand the electron-lattice cou-
pling in luminescent materials date back to Condon’s study of
diatomic molecules, nearly one hundred years ago, in which
he developed a one-dimensional configurational coordinate
model (1D-CCM) [1], as an extension of Frank’s work on the
dissociation of molecules by light absorption [2]. Seitz and
Mott used the proposed 1D-CCM to study light efficiency and
position of color centers in solids [3,4], and opened up the
field of qualitative analysis of luminescence. Later, quantita-
tive studies were conducted by Huang, Rhys, and Pekar in the
1950’s. They reduced the multi-dimensional configurational
coordinate problem to an effective 1D-CCM by assuming
that all relevant lattice nuclear coordinates shared a single
frequency at which the electronic system exchanged energy
by a weak coupling [5,6]. In that case, a single collective
displacement connecting the equilibrium ground-state geom-
etry and the equilibrium excited-state geometry is appropriate
to represent the luminescence phenomenon. Such 1D-CCM
is used in many different contexts to describe radiative and
nonradiative recombination [7–9].

A typical 1D-CCM for rare-earth doped phosphors, like
those used in commercial white-LED devices, is shown
in Fig. 1. The luminescent lineshape can be obtained by

*yongchao.jia@uclouvain.be

computing the Frank-Condon overlap within the 1D-CCM,
a methodology that has been used successfully for decades,
even in the context of first-principles approach to the lumines-
cence of solids [10–16]. Such 1D-CCM performs relatively
well for the determination of the luminescent line shape in
broad emission materials and gives close agreement with
experimental results [15,16].

In contrast to the study of luminescent line shape, the
performance of the 1D-CCM in predicting the nonradiative
recombination has not been the focus of much work, although
the computation of the nonradiative rate has been performed
within the 1D-CCM [17–19]. The 1D-CCM delivers a predic-
tion of the activation energy barrier at the crossing between
the ground-state and the excited-state curves, providing a
measure of the temperature dependence of the nonradiative
decay rate, a potentially important contribution to thermal
quenching in luminescent materials. Actually, we could not
find any theoretical validation of the 1D-CCM in the context
of luminescence efficiency, i.e., the ratio between radiative
and nonradiative recombination. Most studies rely on a known
experimental thermal quenching barrier and there are only a
handful works that theoretically predict it in rare-earth doped
phosphors, all based on the 1D-CCM [9,20–24].

In this work, we question the predictive power of the
1D-CCM for the activation energy barrier and show indeed
that deviations from the linear combination of equilibrium
ground-state and excited-state geometry allows one to de-
crease the ground-state energy at which some absorption
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FIG. 1. The one-dimensional configurational coordinate model
in Ce3+- or Eu2+-doped phosphors, that share 4 f − 5d excitation.
The generalized configuration coordinate Q results from the linear
combination of ground-state atomic positions (Qg) and excited state
ones (Qe). Total energies as a function of Q are reported for the
electronic ground state (labeled 4 f ), and for the electronic excited
state (labeled 5d), the absorption and emission occur between these
energies at Eg and Ee, respectively. The energy lost to the lattice after
light absorption defines the Frank-Condon shift EFC,e, and similarly
EFC,g is the energy lost to the lattice after light emission. Their sum
gives the Stokes shift. One can associate vibrational frequencies to
the ground and excited state curves, �g and �e. They are linked
to each spectrum shape through the so-called Huang-Rhys factor S,
the ratio between a Frank-Condon shift and the related vibrational
frequency. ZPL denotes the zero-phonon line, the direct transition
energy when no phonon is involved. Ef d is the classical activa-
tion barrier at atomic positions Qf d for nonradiative recombination
through 4 f − 5d crossing.

energy is observed. We demonstrate this for three paradig-
matic Ce3+-doped phosphors: Y3Al5O12:Ce(YAG:Ce), Lu2

SiO5:Ce(LSO:Ce), and YAlO3:Ce(YAP:Ce). These materials
are widely studied because of their commercial use in white
LEDs and as scintillators [20,25,26]. The unique 4 f 1 electron
configuration and the fast parity-allowed electric-dipole 4 f −
5d transition of the Ce3+ ions allows for the manufacturing of
luminescent centers in optical materials with broad-band char-
acter [21,27–30]. To design a commercial product with better
performance, full understanding of the physical mechanisms
governing luminescence efficiencies is required.

As we did in prior works [23,25,30,31] and following
Fig. 1, we might assume that both ground-state and excited-
state energies are parabolic with respect to some parameter
driving a one-dimensional path in the set of configurations.
This is an ideal situation, that is not met in real materials.
However, such hypothesis allows one to define a reference
behavior for the energies of the ground and excited states
from only four numbers: the energies of the electronic ground
and excited states, at the ground-state and excited-state ge-
ometries. This approach, denoted double energy parabola
hypothesis (DEPH), makes no assumption on the linearity of
the underlying configuration path and therefore goes beyond
the 1D-CCM.

To go beyond the parabolic approximation, we propose
a new method that we call the optimized configuration path
(OCP). This method finds the optimal configuration path such
that the atomic positions minimize the ground-state energy,
under the constraint of a fixed energy difference between
ground and excited states. This configuration path includes
the ground-state and excited-state geometries by construction
and also includes the geometry at which the crossing happens.
This trajectory within the configuration space is nonlinear,
as the constraint of linear combination of ground-state and
excited-state geometries has been relaxed. Still, only one
continuous parameter connects these geometries.

Nevertheless, we observe a practical difficulty in applying
the OCP methodology, due to the appearance of different
local minima of the energy functional when the energy dif-
ference between the electronic ground and the electronic
excited states drops below some value (decrease by about
0.3 eV with respect to the emission energy in the case of
the three materials investigated here). Indeed, we observe
that different geometries that are local minima of the OCP
functional can be obtained depending on the starting point for
the optimization of this energy functional. Thus the unique
trajectory corresponding to the global minimum is hard to
compute in practice, while including local minima yields
bifurcations of trajectories. We illustrate this problem for the
three materials. Generally speaking, this is a serious concern
for the practical usage of the OCP method, since global
minimization problems have to resort to a different class of
algorithms than local minimization problems (e.g., simulated
annealing [32] or Monte Carlo algorithms [33], that are much
more CPU-time-consuming than conjugate gradient [34] or
Broyden [35] algorithms, and do not guarantee finding the
sought minimum).

By comparing the 1D-CCM, the OCP and the DEPH
results, one is nevertheless able to quantify the role of the
curvature difference between the ground state and the excited
state. And, indeed, such curvature difference differs widely
in our three paradigmatic phosphors. We will also be able
to examine the anharmonicities of the different methods by
comparing the OCP and 1D-CCM results with the DEPH ones
for the three above-mentioned phosphors.

However, the local minimum problem apparently does not
change the assessment of 1D-CCM results when it comes to
associating a lowest ground-state energy with a fixed differ-
ence between ground and excited state. Indeed, in all three
materials, the total energies from OCP (even with different
local minima) are reasonably consistent with the results of
DEPH, which are lower than the result of 1D-CCM. On
such basis, we confirm our earlier findings that the 4 f −
5d crossover is not the main thermal quenching mechanism
in these phosphors [22,23,25]. We believe that such result
applies to all Ce3+-doped phosphors and possibly to most
rare-earth doped phosphors.

The paper is structured as follow. Section II focuses on the
theory: we introduce basic definitions, the one-dimensional
configuration coordinate model, the optimized configuration
path, the double energy parabola hypothesis, and perform
a Lagrange parametrization of the double energy parabola
hypothesis. The first-principles computational methodology
and parameters are described in Sec. III. In Sec. IV, the energy
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potential landscape for three phosphors is computed using
the OCP, the DEPH and the 1D-CCM and compared. We
conclude in Sec. V.

II. THEORY

A. Basic definitions

We denote the nuclear positions of the Born-Oppenheimer
equilibrium ground state Rκ,g and of the equilibrium excited
state Rκ,e where κ labels the different nuclei. We suppose
that the ground-state Born-Oppenheimer energy can be com-
puted from first principles for any arbitrary nuclear position
configuration {R}, and is denoted E = E [{R}]. Similarly the
excited-state Born-Oppenheimer energy is also a function
of the nuclear position configuration and is denoted E∗ =
E∗[{R}].

Using the definitions introduced in Fig. 1, we have

Eg =E [{Rg}], (1)

Ee =E [{Re}], (2)

E∗
g =E∗[{Rg}], (3)

E∗
e =E∗[{Re}], (4)

with the absorption and emission energies given by

Eabs =E∗
g − Eg, (5)

Eem =E∗
e − Ee, (6)

and the Frank-Condon shifts given by

EFC,e =E∗
g − E∗

e , (7)

EFC,g =Ee − Eg. (8)

Note that out of these four quantities, only three are indepen-
dent, as

Eabs = EFC,g + Eem + EFC,e. (9)

The Born-Oppenheimer equilibrium configurations are math-
ematically defined as

{Rg} = arg min E [{R}], (10)

{Re} = arg min E∗[{R}], (11)

supposing that E and E∗ are convex functions of their argu-
ment in the relevant neighborhood of the equilibrium config-
urations. The force on every nucleus, defined as the derivative
of the Born-Oppenheimer energy with respect to infinitesimal
displacements (for the ground or the excited state) vanishes,
since the equilibrium geometries minimize the corresponding
Born-Oppenheimer energy:

Fκ |{Rg} = − ∇κE |{Rg} = 0, (12)

F∗
κ |{Re} = − ∇κE |{Re} = 0. (13)

B. The one-dimensional configuration coordinate model

In the 1D-CCM, the equilibrium positions are combined
linearly, and are functions of the configuration coordinate Q
as follows:

Rκ (Q) = (Rκ,e − Rκ,g)
Q − Qg

Qe − Qg
+ Rκ,g. (14)

In the context of the determination of the Huang-Rhys factor
and luminescent spectrum shape, the coordinate Q is normal-
ized by including the mass of the atoms, see, e.g., Ref. [15]. In
the present context, we prefer to normalize it differently, and
we introduce the x coordinate, with

x = Q − Qg

Qe − Qg
, (15)

so that the 1D-CCM nuclei coordinates are

R1D
κ (x) = (Rκ,e − Rκ,g)x + Rκ,g, (16)

that is, for x = 0 one gets the ground-state equilib-
rium nuclear positions Rκ,g = R1D

κ (x = 0), while for x = 1
one gets the excited-state equilibrium nuclear positions
Rκ,e = R1D

κ (x = 1). For sake of simplicity, we have used the
superscript 1D instead of the full label 1D-CCM.

The 1D-CCM ground-state E1D and excited-state E∗1D

energy curves as a function of x are computed from

E1D(x) =E [{R1D(x)}], (17)

E∗1D(x) =E∗[{R1D(x)}]. (18)

For increasing positive x, the E1D(x) and E∗1D(x) curves
might cross. We define xc as the first value of x that fulfills

�E = E∗1D(x) − E1D(x) = 0 (19)

for increasing values of x. In particular, the energy barrier Eb

at the crossing �E = 0 is

Eb = E1D(xc) − E∗
e = E∗1D(xc) − E∗

e . (20)

When �E is sufficiently smaller than a typical phonon
frequency, there is a non-negligible likelihood of nonradiative
recombination through multiphonon emission. Struck and
Fonger [36–38] have explored in considerable details the
nonradiative recombination within the 1D-CCM.

However, due to quantum nonadiabatic effects, the relevant
energy difference governing nonradiative recombination is
slightly lower than the classical exact crossing. At some point,
the adiabatic and so-called diabatic curves will noticeably
differ, indicating that the matrix elements of the electron-
nuclei interaction become non-negligible. There is an ample
literature about (non)crossing effects, see, e.g., Refs. [39–41]
among others. To avoid such concern, we will analyze the
case of ground-state and excited-state energy differing by a
given, constrained, energy �E , and still consider the adiabatic
energies.

C. Optimized configuration path

The classical transition-state theory [42] reveals the im-
portance of the size of the energy barrier, governing to
a large extent the nonradiative recombination rate through
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the Arrhenius factor exp( −E f d

kBT ). We note, however, that
the complete picture of nonradiative recombination also in-
cludes a prefactor and quantum corrections [43]. In this
work, we choose to focus on finding a lower bound to E f d

only.
Mathematically, the problem of finding the lowest energy

E [{R}] at which the difference with E∗[{R}] is equal to some
fixed value �E , in the space of all configurations {R}, is
expressed as

EOCP(�E ) = min
{{R}|E∗[{R}]=E [{R}]+�E}

E [{R}], (21)

which yields naturally the �E -dependent optimized configu-
ration path,

{ROCP(�E )} = arg min
{{R}|E∗[{R}]=E [{R}]+�E}

E [{R}]. (22)

The same optimized configuration path would be obtained
by similarly optimizing the excited-state energy in the space
of constrained configurations. Indeed, their difference being
constant, the configuration that minimizes one also minimizes
the other.

To find such path in the configuration space, constrained
to have a specific energy difference, one can rely on the
Lagrange multiplier technique. The constrained minimization
in Eq. (21) is indeed equivalent to the unconstrained mini-
mization of

ẼOCP(�) = min
{R}

{E [{R}] + �
(
E∗[{R}] − E [{R}] − �E

)}
(23)

followed by the search for the value of the Lagrange multiplier
� that delivers the sought �E , as usual in the Lagrange
multiplier approach. In what follows, a function of � will be
denoted with a tilde, see the left-hand side of Eq. (23). Such
function can be back-transformed to a function of �E in the
zone where a one-to-one correspondence exists between these
quantities.

For � = 0, Eq. (23) reduces to the minimization of the
ground-state energy E [{R}], in the space of all configurations,
which yields simply the ground-state configuration. Thus the
latter belongs to the optimized constrained path, with �E =
Eabs.

For � = 1, the minimization of E∗[{R}] is performed
(apart the constant �E ), which delivers the configuration
{Re}, and yields �E = Eem, thus the excited-state config-
uration belongs to the optimized constrained path as well.
Still, this path in configuration space does not reduce to
the 1D-CCM set of configurations, as it also contains the
configuration at which the lowest crossing appears, which is
only exceptionally present in the 1D-CCM.

The configuration that minimizes Eq. (23) can be deter-
mined by computing the forces on the nuclei coordinates, at
fixed �. We define

F̃OCP
κ (�)|{R} = −(1 − �)∇κE |{R} − �∇κE∗|{R}, (24)

which yields the condition

0 = F̃OCP
κ (�)|{R̃OCP(�)} (25)

that defines the configuration path {R̃OCP(�)}. The ground-
state and excited-state forces are mixed instead of their con-
figurations like in the 1D-CCM. Alternatively, this path might
be backtransformed as a function of �E , giving the solution
of Eq. (22).

In Eq. (24), we see that the forces acting on the nuclei
configuration, at fixed �, are a simple linear combination of
the forces from the groundand excited states for this nuclei
configuration. The implementation of the search for the OCP
is thus rather easy: total energy calculations for the ground
and excited states must simply be coupled, delivering forces
as usual, while the optimization of the configuration at fixed
� can be done by combining the computed ground-state
and excited-state forces, then using standard optimization
algorithms, like Broyden or conjugate gradient [44,45].

D. Double energy parabola hypothesis

We now analyze the consequences of the hypothesis that
both the ground-state and excited-state curves are parabolic
(DEPH) for a given path of configurations. Such hypothesis
allows one to compute an approximate energy barrier for
crossing, based on the knowledge of the absorption and emis-
sion energies and the Frank-Condon energy shifts only.

In our earlier work on phosphors [23], such prediction was
mentioned to originate from a simplification of the 1D-CCM,
and was indeed considered in this context only. Actually,
there is no need to rely on the 1D-CCM to examine the
consequences of DEPH. On the contrary, the equivalence of
the results obtained for some configuration path to the results
obtained from the DEPH allows one to characterize the paths
for which nonparabolic effects are the smallest.

Let us consider a set of configurations {R(λ)}, parameter-
ized by some variable λ. Suppose that the positions of the nu-
clei are continuous as a function of λ, with Rκ,g = Rκ (λ = 0)
(the ground-state energy is minimal at this configuration) and
Rκ,e = Rκ (λ = 1) (the excited-state energy is minimal at this
configuration). If for such set of configurations, both energy
curves can be approximated by parabolas in a sufficiently
large range of values of λ, then one can obtain the crossing
energy barrier (provided the corresponding configurations are
in this range).

Indeed, the DEPH yields

E (λ) = λ2EFC,g + Eg, (26)

E∗(λ) = (1 − λ)2EFC,e + E∗
e . (27)

The difference between the two energy functions E∗(λ) −
E (λ) is

�E = λ2�C − 2λEFC,e + Eabs, (28)

where we have defined the change of curvature between the
ground and excited states

�C = EFC,e − EFC,g. (29)
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Equation (28) can be inverted (unless �E is bigger than
�CEabs − E2

FC,e) so that λ is obtained as a function of �E ,
in two equivalent formulas:

λ =EFC,e

�C

[
1 −

√
1 − �C(Eabs − �E )

E2
FC,e

]
(30)

=1 + EFC,g

�C

[
1 −

√
1 − �C(Eem − �E )

E2
FC,g

]
. (31)

The first expression shows that λ = 0 when �E = Eabs,
while the second one yields λ = 1 for �E = Eem. The
excited-state energy is then obtained as a function of �E ,
using Eqs. (27) and (31)

E∗(�E ) = E∗
e − EFC,e(Eem − �E )

�C

+ 2E2
FC,gEFC,e

�C2

[
1 −

√
1 − �C(Eem − �E )

E2
FC,g

]
,

(32)

which gives the energy barrier

Eb =E∗(�E = 0) − E∗
e (33)

=EFC,eEem

�C

[ 2E2
FC,g

�CEem

[
1 −

√
1 − �CEem

E2
FC,g

]
− 1

]
. (34)

In case �C = 0, the Franck-Condon shifts are identical
and Eq. (28) simplify to

λ = (Eabs − �E )

2EFC
= 1 + (Eem − �E )

2EFC
, (35)

leading to

E∗(�E ) = E∗
e + (Eem − �E )2

4EFC
, (36)

and the energy barrier

Eb = E2
em

4EFC
. (37)

Also, in this case,

E (�E ) = Eg + (Eabs − �E )2

4EFC
. (38)

In what follows, we will not only focus on the energy
barrier Eq. (34), but on functions of �E . In this respect,
we complete the set of equations by the expression for the
ground-state energy as a function of �E :

E (�E ) = Eg − EFC,g(Eabs − �E )

�C

+ 2E2
FC,eEFC,g

�C2

[
1 −

√
1 − �C(Eabs − �E )

E2
FC,e

]
, (39)

which can be linked coherently to the excited-state energy
Eq. (32), yielding correctly

E∗(�E ) = E (�E ) + �E . (40)

In Ref. [23], an alternative expression for the energy barrier
was obtained by solving Eq. (28) for 1/λ, namely,

Eb = EFC,g

[
1 − Eabs

EFC,g +
√

E2
FC,g − Eabs�C

]2

. (41)

This expression has the advantage not to diverge when
�C = 0, but the corresponding expressions for E∗(�E ) and
E (�E ) are more cumbersome.

E. Lagrange parametrization of the double energy
parabola hypothesis

In order to compare the results of the OCP with those from
the DEPH, we insert Eqs. (26) and (27) as ground-state and
excited-state energies in Eq. (23),

ẼDEPH(�) = min
λ

{E (λ)+�(E∗(λ) − E (λ) − �E )}, (42)

and obtain the relationship between λ and �,

λ = �

1 − �C(1 − �)/EFC,e
. (43)

When � = 0, this gives λ = 0 and when � = 1, λ = 1 as
well. The function �Ẽ (�) is obtained by combining Eqs. (28)
and (43),

�Ẽ (�) = Eabs − �
(EFC,g(2 − �) + EFC,e�)

(1 − �C(1 − �)/EFC,e )2
. (44)

This also delivers the ground and excited states from DEPH
as a function of �:

Ẽ (�) =Eg + EFC,g

(
�

1 − �C(1 − �)/EFC,e

)2

, (45)

Ẽ∗(�) =E∗
e + EFC,e

(
(1 − �)(1 − �C/EFC,e )

1 − �C(1 − �)/EFC,e

)2

. (46)

III. FIRST-PRINCIPLES CALCULATIONS

In our previous works [25,30,44,45], we already exam-
ined the three paradigmatic materials YAG:Ce, LSO:Ce, and
YAP:Ce, among others. We performed detailed calculations of
absorption energies, emission energies, and Franck-Condon
shifts, using the ABINIT software package [44,45]. In the
present work, we stick to the same computational and techni-
cal choices. For sake of completeness, let us mention the key
calculation parameters involved. The calculations were per-
formed within density functional theory (DFT) using the pro-
jector augmented wave(PAW) method. Exchange-correlation
(XC) effects were treated within the generalized gradient ap-
proximation (GGA). All of the PAW atomic data sets were di-
rectly taken from the ABINIT website. With these PAW atomic
data sets, we performed the structural relaxation and band
structure calculations. The convergence criteria have been set
to 10−5 Ha/Bohr (for residual forces) and 0.5 mHa/atom (for
the tolerance on the total energy). In these calculations, cutoff
kinetic energies of 35, 30, and 35 Ha for the plane-wave
basis set were used, and the Monkhorst-Pack sampling for
the same tolerance criteria were determined to be 4 × 4 × 4,
2 × 4 × 2, and 2 × 4 × 4, respectively, for YAG:Ce, LSO:Ce,
and YAP:Ce, respectively.
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The luminescence of Ce3+ ions has been simulated in
the supercell framework. The supercell sizes for YAG:Ce,
LSO:Ce, and YAP:Ce are 80, 64, and 80 atoms, respec-
tively, with Ce concentration of 8.33%, 6.67%, and 6.67%,
respectively. Density-functional theory (DFT) calculations
were performed with the PAW methodology and DFT + U
(U = 4.6 eV) to treat the 4 f orbitals of Ce. In the excited
state, we constrain the eigenfunctions with dominant Ce4 f

character to be unoccupied, while occupying the next en-
ergy state higher in energy, which has been identified as
being predominantly built from Ce5d orbitals for the three
paradigmatic materials. We refereed to this technique as a
constrained DFT approach in our earlier publication [25]
but the same term has been used in the quantum chemistry
literature to denote a technique where the amount of charge in
a given region of space is constrained [46–49]. The transition
energy was calculated through the �SCF method, that is,
relying on total energy differences of the different constrained
configurations.

The stability of the �SCF method is known to depend on
the investigated system and specific sought excitation state.
Indeed, it can fail if the energy ordering of the different
states varies with the SCF iteration. In our previous works
[25,30,44,45], with the electronic state at the ground-state
and excited-state geometries, this situation was never met.
However, the situation is different with the OCP method, see
the end of this section.

When the electronic one-electron eigenvalues come close
to be degenerate, the �SCF method can not be used anymore,
due to this problem. Our current implementation of the OCP
method fails in the case of degenerate eigenstates. However,
we do not think that the OCP method per se is invalidated, as
there are other ways to compute approximate excited state en-
ergies including near-degeneracy situations [49]. The present
work will be exemplified in the region far from crossing,
where nevertheless (i) important insights about the possible
barrier lowering is obtained, (ii) an estimation of the barrier
will be inferred thanks to extrapolation, and (iii) the EDPH
approach will be validated.

We compute the OCP as a function of �, obtain the
corresponding �E and the different quantities mentioned in
Sec. II. More precisely, for each �, we start from some
atomic geometry configuration, we compute the forces and
stresses of the doped supercell for ground and excited state
of the Ce3+ ion, and combine them in the OCP following
Eq. (24). Optimization on the basis of such forces and stresses
has been implemented in the ABINIT software v8.10 (see the
documentation: imgmov=6, the input variable mixesimgf
controls the � value). At the end, we obtain for this �, the
relaxed geometry, as well as the corresponding �E . There
is no intrinsic limitation for the excited state characterization
in the OCP methodology, thus we expect our approach to be
useful to study other broad-band luminescent materials, such
as the Eu2+-doped phosphors, as well as the autoionization
process for the thermal quenching behavior.

However, the �SCF approach is not always stable, due
to changing energy ordering of the orbitals during the SCF
cycle. For the three materials, we have observed such failure
whenever the �E value is below some threshold, depending
on the material. Such threshold even varies according to the

TABLE I. First-principles values for absorption and emission
energies, as well as Franck-Condon shifts, for three Ce3+-doped
phosphors. These values deliver an estimation of the energy barrier
Ef d for 4 f − 5d crossing thanks to the double energy parabola
hypothesis, Eq. (33). �C is the change of curvature, Eq. (29). All
values in eV.

Eabs Eem EFC,g EFC,e �C Ef d

Y3Al5O12:Ce 2.78 2.36 0.22 0.20 −0.02 2.78
Lu2SiO5:Ce 3.80 3.32 0.26 0.22 −0.04 4.40
YAlO3:Ce 4.14 3.56 0.38 0.20 −0.18 1.59

specific trajectory that is present in the OCP method, as will
be illustrated in the next section.

IV. RESULTS AND DISCUSSION

A. Comparing the 1D-CCM and the DEPH

As a first step, we compute the total energy of the electronic
ground and excited states at the relaxed ground-state (Qg) and
excited-state (Qe) geometries, see Sec. II A, then deduce the
E f d energy from the DEPH, according to Sec. II D. This is
presented in Table I. The smallest E f d energy is found for
YAP:Ce (1.59 eV), while the largest one is found for LSO:Ce
(4.40 eV). Even though these are relevant only for a semiclas-
sical estimation of the nonradiative recombination, especially
its temperature dependence, such large energy barrier would
prevent any relevant nonradiative recombination at room or
moderately high temperature. This was already mentioned
in Ref. [30], with the associated conclusion that the alter-
native autoionization mecanism was likely to dominate over
the 4 f − 5d crossing mechanism to explain the nonradiative
recombination.

With the DEPH, one obtains actually the full behavior of
the total energies (ground and excited states) as a function
of the underlying one-dimensional parameter, which can be
compared with the ones from the 1D-CCM. This is presented
in Fig. 2. While the DEPH functions are analytic, and can
thus be represented whatever the value of the one-dimensional
parameter, we meet instability problems with the 1D-CCM,
beyond some value of the mixing parameter x defined in
Eq. (15). These instability problems are due to the �SCF
method, and have been mentioned in Sec. III. This happens
around x = 4 for YAG:Ce, x = 3.5 for LSO:Ce, x = 5 for
YAP:Ce. Other techniques to predict the excited state energy,
e.g., the Bethe-Salpeter equation [50] might be more stable.
However, excited calculations with alternative methods are
usually considerably more expensive than �DFT ones.

The 1D-CCM and the DEPH results match well in the
YAG:Ce case, while the deviation of the 1D-CCM from the
DEPH results is noticeable for the LSO:Ce case, and even
larger for the YAP:Ce case. In the LSO:Ce, the 1D-CCM
energies are larger than the DEPH ones, thus clearly showing
an anharmonic behavior, while the crossing point apparently
happens at a lower value of x, but at nearly the same total
energy. For the YAP:Ce case, the ground-state energy is
similar in the 1D-CCM and DEPH cases, but there is consid-
erable deviation of the 1D-CCM from the DEPH case for the
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FIG. 2. The ground-state and excited-state total energies as a function of x, from the 1D-CCM method and from the DEPH, in three
Ce3+-doped phosphors: YAG:Ce, LSO:Ce, and YAP:Ce.

excited-state energy: the crossing does not happen even at
x = 5 in the 1D-CCM case, while it is predicted to occur
before x = 4 in the DEPH case. Also, E f d from the 1D-CCM
is much larger (above 5 eV) than from the DEPH for this
material.

One might thus be tempted to deduce that the DEPH
provides a lower bound to the E f d in these materials, that
is better predicted by the 1D-CCM. We will see that, in the
range of validity of the OCP, on the contrary, the DEPH has
more predictive power than the 1D-CCM, and that it provides
an upper bound of the energy barrier for our three materials
with respect to OCP. Actually, the hypothesis of linear mixing
of Qg and Qe happens to be a strong constraint to find the
configuration that provides the lowest ground-state energy for
a fixed absorption energy.

To end this section, we also provide in Fig. 3 the electronic
band structure of LSO:Ce in the excited state as a function of
x in the 1D-CCM. The 4 f manifold energy (below 2 eV for
x = 0) gradually increases with increasing x, while the energy
of the 5d band (around 4.8 eV for x = 0) gradually decreases.

B. Comparing the OCP with the 1D-CCM and the DEPH

The 1D-CCM and OCP first-principles ground- and
excited-state energies for YAG:Ce, LSO:Ce and YAP:Ce, as
a function of the �E variable, are shown in Fig. 4, and com-
pared with the DEPH from Eq. (39). Note that the behavior
of �E (horizontal axis) is opposite to the behavior of the x
variable of Figs. 1 or 2: the 4 f − 5d crossing is obtained on

the right side of Figs. 1 or 2, but on the left side of Fig. 4
(when �E=0). Moreover, in Fig. 4, we show the range of
energy differences down to the lowest energy where the �SCF
method fails to find the excited state in all the cases (1D-CCM
or OCP). The �SCF method is never stable at �E = 0.

One can easily distinguish the 1D-CCM and DEPH behav-
iors in Fig. 4. While both reasonably match in the YAG:Ce
case, the 1D-CCM points being slightly higher than the DEPH
curves, the 1D-CCM results are clearly larger than the DEPH
results for the LSO:Ce case, and even more so for the YAP:Ce
case. This is in line with the analysis of the previous section.

Turning now to the OCP results, the local minimum prob-
lem has to be accounted for in Fig. 4. Indeed, different local
minima can be found using different geometries as starting
point for a given value of �. We report the total energies
of configurations reached by starting a local optimization
algorithm from three different geometries, namely, Qg, Qe and
another, test, geometry (see the caption). The corresponding
results are indicated by different symbols in Fig. 4.

Taking the OCP results as a whole (without distinguishing
which starting point was used to generate them), one observe
the following, for the three materials. In the YAG:Ce case,
the OCP results closely follow the DEPH results, thus being
slightly lower than the 1D-CCM results. The latter is an
expected behavior, since the OCP searches for the lowest
ground-state energy for a given energy difference. In the
LSO:Ce case, the OCP results are also closer to the DEPH
results than the 1D-CCM results. Still, in this case, the OCP
results are lower than the DEPH, the deviation being on

FIG. 3. Electronic band structure of LSO:Ce in the excited state, with different x values for the linear combinations of Qg and Qe geometry
from 1D-CCM.
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FIG. 4. The ground-state (bottom) and excited-state (top) energy as a function of their difference �E , from the 1D-CCM, the OCP method
and the DEPH, in three Ce3+-doped phosphors: YAG:Ce (on the left), LSO:Ce (center), and YAP:Ce (on the right). The 4 f − 5d crossing
corresponds to �E = 0, which is never attained, see text, although clear trends appear for decreasing values of �E . The reference DEPH
continuous black line corresponds to Eq. (39) with three parameters (per material) determined by first-principles data. The violet full circles
are obtained from the one-dimensional configuration coordinate model. The other symbols show computed values from the OCP, including
possibly different local minima values for �E lower than some threshold: the blue empty triangles are obtained from OCP relaxations starting at
the ground-state geometry; the black empty squares are obtained from OCP relaxations starting at the excited-state geometry; the green empty
diamond are obtained from test OCP relaxations starting at the OCP geometries with � = 1.4, 1.3, and 1.4 for Y3Al5O12:Ce, Lu2SiO5:Ce, and
YAlO3:Ce, respectively. The arrow indicates the minimum energy point for the ground and excited states.

the same order of magnitude than the 1D-CCM one (but
of opposite sign). In the YAP:Ce case, we observe that the
correspondence between the OCP results and the DEPH ones
is excellent. In view of the strong deviation of the 1D-CCM
from the DEPH results, such an excellent agreement is rather
unexpected. We can only observe that this agreement between
the OCP and the DEPH implies that there is a path in
configuration space for which the behaviors of the ground-
state energy and the one of the excited-state energy are very
parabolic, while, at variance, the very path must be rather
nonlinear, since otherwise it would be in excellent agreement
with the 1D-CCM.

Of course, one cannot guarantee that the OCP global
minimum was reached, whatever the material, whatever the �

value. However, such local minima problem does not seem to
affect the outcome of the present study: for the three materials,
the OCP results reasonably agree with the DEPH, in the
following regions for �E , decreasing from Eabs: 2.8–1.4 eV
(YAG:Ce), 3.8–1.0 eV (LSO:Ce), and 4.1–1.0 eV (YAP:Ce).

We now focus on the three points obtained from the OCP
with initial Qg geometry for the LSO:Ce, in the �E region of
1.0–0.5 eV, Fig. 4. These points largely deviate from DEPH
results. Table II lists the typical OCP total energies and �E
in LSO:Ce. The problematic three points in LSO:Ce are from
� = 1.5, 1.6, and 1.7, using Qg geometry as starting point.
The band structures of LSO:Ce are shown in Fig. 5. With
Qe geometry as starting point, the obtained OCPs indicate a
much smaller geometry relaxation than that of Qe geometry.
As a results, the band structures of LSO:Ce with � = 0–1.5

from Qe geometry show a small change for the Ce states with
respect to the band edge, while the results of � = 1.5 from Qg

geometry clearly depict a large difference. The Ce5d state does
not appear inside the band gap in this case. The deviation from
the DEPH is thus due to the different nature of the electronic
state. Another minimum of the OCP functional is found, but
does not correspond to a 5d excited state. Hence, such OCP
result should not be included in the study of the 4 f − 5d
crossing mechanism.

The discussion of the OCP method is now complemented
by a comparison between the values obtained for the same
Lagrange parameter �, for different starting points. This is
shown in Fig. 6. At variance with the nice agreement between
OCP and DEPH in Fig. 4, the representation of the ground
and excited state between OCP and DEPH as a function of
� is more subtle to analyze. In the range of � between 0
and 1, all the OCP energy points agree, and match very well

TABLE II. OCP energies and �E in Lu2SiO5:Ce, for four differ-
ent � values, using Qe or Qg geometry as starting point. The energies
are quoted with respect to Egs at � = 0, and expressed in eV.

Egs Eex �E

� = 0, Qe 0.00 3.80 3.80
� = 0.5, Qe 0.02 3.67 3.65
� = 1.0, Qe 0.26 3.58 3.32
� = 1.5, Qe 0.33 3.61 3.28
� = 1.5, Qg 3.64 4.46 0.82
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FIG. 5. Electronic band structure of LSO:Ce in the excited state, for geometries deduced from the OCP method, for four different � values
(� = 0, 0.5, 1.0, and 1.5). Using the Qe geometry as input (four leftmost panels), a nearly flat level at 4.8 eV with predominant 5d character
can be identified. The 4 f state eigenenergies (around 2eV) increase slightly with �. If the OCP optimization at � = 1.5 is started from the Qg

geometry, another geometry is found, for which the electronic structure is quite different, see the rightmost panel.

the DEPH curve. However, the situation changes when the �

value is above 1, the points depend strongly on the starting
geometry used. For the three materials, the results from Qe and
DEPH widely differ, while the results from Qg and Qtest match
with DEPH in a limited range of �. This might seem odd, but
simply comes from the fact that the Lagrange parameter is a
mathematical auxiliary quantity, that has no physical meaning.
There is no obvious one-to-one correspondance between �

values from different configuration trajectories, even if they
deliver the same �E values.

C. Ruling out the 4 f − 5d crossing as thermal
quenching mechanism

Finally, we discuss the thermal quenching mechanism of
the three Ce3+-doped phosphors. In the present work, we have
not focused on the accurate comparison between the 4 f − 5d
crossover and auto-ionization models for thermal quenching
[22,25], but on the description, validation, and testing of the
OCP method, and on the size of the 4 f − 5d energy barrier.
Indeed, the obtained results provide valuable information
already at the level of the agreement between OCP and DEPH
results. Such agreement shown in Fig. 4, validates the DEPH,
and can then be extrapolated using the latter hypothesis. Thus
the energy barrier for the 4 f − 5d crossover from Eqs. (33)
or (34) is indeed meaningful, and is much larger than the

experimental thermal quenching barrier of 0.81 eV (YAG:Ce),
0.32 eV(LSO:Ce), and 1.20 eV(YAP:Ce) [51,52], as listed in
Table I. This conclusion confirms our previous prediction of
the irrelevance of the 4 f − 5d thermal quenching behavior of
Ce3+-doped phosphors [25]. The probable thermal quenching
mechanism may be the autoionization of an electron or the one
of a hole. However, a solid assessment of such autoionization
mechanism is left for a future study.

We note that free carrier (hole) nonradiative recombination
rates in semiconductors have been computed on the basis
of the 1D-CCM hypothesis for other materials, with good
agreement with experiment [19]. We expect that such cal-
culation can also be conducted for auto-ionization process
in white LED phosphors, even when this hypothesis is not
true anymore, and the barrier might be significantly lower,
as shown in the present work. However, the methodology
for doing such calculation is to be established. The analysis
of nonradiative rates should also include the discussion of
symmetry related issues. These are present in matrix elements
of the nonradiative 5d − 4 f transition, driven by electron-
phonon coupling, but are not addressed in the present work.

V. CONCLUSION

In this work, we propose a new methodology to ex-
plore the configuration space beyond the one-dimensional

FIG. 6. The ground-state and excited-state total energies as a function of �, from the OCP method and from the DEPH, in three Ce3+

-doped phosphors: YAG:Ce, LSO:Ce, and YAP:Ce. The DEPH continuous lines correspond to Eqs. (45) and (46) with three parameters (per
material) determined by first-principles data (i.e., they are not fitted to the OPC method points).
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configuration model (1D-CCM). The latter focuses on linear
configuration changes going from the equilibrium ground-
state configuration to the equilibrium excited-state configura-
tion. In the new methodology, a Lagrange multiplier approach
defines an optimal configuration path (OCP) in the configura-
tion space, that includes both equilibrium configurations, but
also extents to the ground-state–excited-state crossing point,
when it exists. The ground-state and excited-state forces are
mixed instead of their configurations like in the 1D-CCM. The
consequences of a double energy parabola hypothesis (DEPH)
have also been worked out, valid for any configuration
space trajectory that includes the equilibrium configurations.
Three paradigmatic phosphors, Y3Al5O12:Ce, Lu2SiO5:Ce,
and YAlO3:Ce were chosen to test the new method. In these
phosphors, the luminescent mechanism is due to 4 f − 5d ex-
citation. One of the proposed thermal quenching mechanisms
involves 4 f − 5d crossing. The resulting energy landscape is
a function of the difference between ground-state and excited-
state energies and was compared between OCP and DEPH.
An agreement between both methods has been found, in the
range of Lagrange parameters for which a distinct 5d excited
state exists. This validates the DEPH for the Ce3+-doped
phosphors. By contrast, we observe a larger over-estimation
energy barrier of 4 f − 5d crossing from the 1D-CCM

approach. The OCP approach succeeds to find configurations
with lower energies for the same energy difference than the
1D-CCM. The 4 f − 5d crossing are excluded as the thermal
quenching mechanism of white LED phosphors in the three
materials that we have investigated.
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