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The knowledge of effective masses is a key ingredient to analyze numerous properties of semiconductors,
like carrier mobilities, (magneto)transport properties, or band extrema characteristics yielding carrier densities
and density of states. Currently, these masses are usually calculated using finite-difference estimation of density
functional theory (DFT) electronic band curvatures. However, finite differences require an additional convergence
study and are prone to numerical noise. Moreover, the concept of effective mass breaks down at degenerate band
extrema. We assess the former limitation by developing a method that allows to obtain the Hessian of DFT bands
directly, using density functional perturbation theory. Then, we solve the latter issue by adapting the concept of
“transport equivalent effective mass” to the k · p̂ framework. The numerical noise inherent to finite-difference
methods is thus eliminated, along with the associated convergence study. The resulting method is therefore more
general, more robust, and simpler to use, which makes it especially appropriate for high-throughput computing.
After validating the developed techniques, we apply them to the study of silicon, graphane, and arsenic. The
formalism is implemented into the ABINIT software and supports the norm-conserving pseudopotential approach,
the projector augmented-wave method, and the inclusion of spin-orbit coupling. The derived expressions also
apply to the ultrasoft pseudopotential method.
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I. INTRODUCTION

Accurate and precise ab initio effective masses are desirable
for the description of, e.g., transport properties, optoelectronic
properties, cyclotron frequencies, and Landau levels [1–4].
In particular, this topic has recently seen renewed interest
motivated by optoelectronics [5–11] and thermoelectric ap-
plications [12,13].

Effective masses enter the above quantities as a description
of the band dispersion around an extrema. They appear within
the context of the k · p̂ theory, which is a second-order
perturbation expansion of eigenenergies with respect to the
electronic wave vector k, assuming a Hamiltonian with local
potential V (r,r′) = V (r − r′). In this framework, they are
defined as the inverse second-order expansion coefficient.
Thus, for nondegenerate bands, the effective masses are inverse
curvatures of bands in one dimension and inverse Hessian of
bands in three dimensions.

In the first-principle context, these second-order derivatives
of eigenenergies are usually obtained through finite-difference
calculations [5,8,9,12,13] or integrations over the Brillouin
zone [7,14] of density functional theory (DFT) results. Such
calculations require a convergence on the finite-difference pa-
rameter (or the k-point grid density) and are prone to numerical
noise. These extra convergences lead to additional work and
possible precision issues. Moreover, since DFT eigenvalues
show limited agreement with experimental eigenenergies
(see, e.g., Sec. 7.4 of Ref. [15]), their use raises accuracy
issues. However, while these accuracy concerns have been
investigated using many-body perturbation theory [5,8,9,13],
the precision issues have yet to be addressed. Thus, within this
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work, we focus on the latter problem, i.e., the calculation of
precise DFT effective masses.

We note that circumventing the use of finite differences
is already possible using Wannier functions [16]. However,
the issues of additional work and precision remain to some
extent. Indeed, the Wannier function optimization procedure
can get stuck in a local minima and, to prevent this, the user
needs to choose the starting functions with some care. Thus,
a method avoiding any such task and the associated precision
issues remains desirable.

Another difficulty in the calculation of effective masses
is the treatment of degeneracies. Indeed, subtleties arise
when one considers the k · p̂ framework in the context of
degenerate perturbation theory [17–20]. In one dimension,
the perturbation coefficients become matrices (derivatives of
Hamiltonian matrix elements within the degenerate subspace)
instead of scalars. Still, obtaining the effective masses remains
a simple matter of diagonalizing the second-order matrix and
attributing the inverse eigenvalues to the effective masses.
However, in three dimensions, the second-order expansion
coefficient becomes a matrix of tensors (i.e., the Hessian of
the Hamiltonian in the degenerate subspace), as first noted
by Luttinger and Kohn [17]. Since it is not possible to
diagonalize such a matrix of tensors, it would appear that
simple individual quantities cannot be attributed to degenerate
bands for describing their dispersion at second order.

Dresselhaus, Kip, and Kittel [18] assessed this issue for
the top valence band of crystals with diamond structure.
Starting with symmetry group arguments to justify the results
of Luttinger and Kohn [17], they added spin-orbit coupling
and obtained a simple formula that describes degenerate band
dispersions individually within the k · p̂ framework.1 While it

1See Eq. (63) of Ref. [18] or Eq. (82) of this work.
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successfully describes the complex directional dependence of
the band curvature for these degenerate bands, it is limited to
electronic states belonging to a specific symmetry group and
to lattices with cubic symmetry. Moreover, the determination
of, e.g., transport properties from these parameters is less
conventional than from effective mass tensors. A more general
and convenient formalism would thus be welcome.

Mecholsky and co-workers [21] recently proposed such
a formalism for the specialized case of transport tensor
calculations. They first justify rigorously the breakdown of
the concept of effective mass tensor for degenerate bands
and argue that degenerate band curvatures should instead be
described as a function of spherical angles f (θ,φ). Then,
they derive the relation between f (θ,φ) and transport tensors,
assuming a parabolic band extremum. Finally, they define a
“transport equivalent effective mass” tensor that generates the
same contribution to transport tensors than f (θ,φ). This tensor
has the benefit of being well defined for parabolic band extrema
in any material and being straightforward to use for transport
properties calculations; however, it does not describe band
dispersions anymore.

In this work, we first eliminate the necessity of carrying
out finite-difference differentiation of eigenenergies to obtain
effective masses. To do so, we derive analytical expressions
for the second-order derivative of nondegenerate eigenenergies
within the density functional perturbation theory (DFPT)
framework [22,23], which has already been used successfully
to compute various derivatives with respect to the electronic
wave vector k in the past [24–27]. More specifically, in
Sec. II, we first derive the relation between the effective
mass tensor and the derivatives of the Hamiltonian. Then,
we differentiate the relevant contributions of the Hamiltonian
expressed in a plane-wave basis set. We start with the modified
kinetic energy used to smooth the total energy dependence on
primitive cell size [28,29]. Then, we proceed to the nonlocal
potential involved in the norm-conserving pseudopotential
(NCPP) [30], projector augmented-wave (PAW) [31], and
ultrasoft pseudopotential (USPP) [32] methods. Finally, we
consider the spin-orbit coupling contribution at the end of the
section.

Also, since this work targets particularly the high-
throughput design of materials with optimized transport
properties [7,12], we adapt the “transport equivalent effective
mass” formalism of Mecholsky and co-workers [21] to the
DFPT context for the description of degenerate bands in
Sec. III. To do so, we first generalize the formalism of Luttinger
and Kohn [17] for the description of degenerate states in the
k · p̂ framework2 to the NCPP and PAW contexts. Then, we
bridge the gap between this generalized formalism and the
“transport equivalent effective mass” formalism.

We validate in Sec. IV our implementation within the
ABINIT software [29,33] by comparison with finite-difference
calculations. Then, we apply it to a semiconductor (silicon),
a two-dimensional (2D) material (graphane), and a semimetal
(α-arsenic).

Atomic units are used throughout.

2More specifically, we generalize their Eq. (IV.9).

II. NONDEGENERATE CASE

A. Effective mass in the DFPT framework

Within density functional theory (DFT), Schrödinger’s
equation for periodic systems is

Ĥ |ψnk〉 =
(

p̂2

2
+ V̂

)
|ψnk〉 = εnk |ψnk〉 , (1)

where Ĥ is the Hamiltonian, |ψnk〉 and εnk are its eigenstates
and eigenenergies, n is the band index, k is Bloch’s wave
vector, p̂ = −i∇̂ is the momentum operator, and V̂ is a local
potential

〈r| V̂ |r′〉 = V (r)δ(r,r′). (2)

Using Bloch’s theorem, the wave function can be expressed as
the product of a crystal periodic function |unk〉 and a phase

|ψnk〉 = eik·r̂ |unk〉 . (3)

Equation (1) then becomes

Ĥk |unk〉 =
(

k2 + 2k · p̂ + p̂2

2
+ V̂

)
|unk〉

= εnk |unk〉 , (4)

where we have defined k-dependent operators Ôk as

Ôk � e−ik·r̂Ôeik·r̂, (5)

and where the eigenstates are orthonormalized

〈unk|un′k〉 = δnn′ . (6)

We now consider the situation where band n is nondegen-
erate at k and where |unk〉 and εnk are known. The Taylor
expansion of the band dispersion around k yields

εnk+δk = εnk +
∑

α

εα
nkδkα + 1

2

∑
αβ

δkαε
αβ

nk δkβ + O(δk3),

(7)
where Greek letters α,β,γ, . . . stand for Cartesian directions
{x,y,z} and where derivatives of any quantity X with respect
to a Cartesian component of the wave vector k are noted:

Xα � ∂X

∂kα

; Xαβ � ∂2X

∂kα∂kβ

. (8)

Within perturbation theory, we wish to obtain derivatives of
observables from derivatives of the Hamiltonian. Thus, we first
project Eq. (4) on 〈unk|

εnk = 〈unk| Ĥk |unk〉 , (9)

and then differentiate with respect to kα , which yields the first
derivative appearing in Eq. (7):

εα
nk = 〈unk| Ĥ α

k |unk〉 + ( 〈uα
nk

∣∣ Ĥk |unk〉 + c.c.
)

= 〈unk| Ĥ α
k |unk〉 + εnk

( 〈
uα

nk

∣∣unk〉 + c.c.
)

= 〈unk| Ĥ α
k |unk〉 . (10)

The last two relations have been obtained in the spirit of the
Hellmann-Feynman force theorem [15,34], using respectively
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Eq. (4) and the derivative of the normalization condition
[Eq. (6)]: ( 〈

uα
nk

∣∣unk〉 + c.c.
) = 0, (11)

where c.c. stands for the complex conjugate of the previous
term. The second-order derivative thus reads as3

ε
αβ

nk = 〈unk| Ĥ αβ

k |unk〉 + ( 〈uβ

nk

∣∣ Ĥ α
k |unk〉 + c.c.

)
. (12)

Defining the following complementary projectors

P̂k � |unk〉 〈unk| ; Q̂k � 1 − P̂k, (13)

we realize that |P̂ku
β

nk〉 does not contribute to ε
αβ

nk :

ε
αβ

nk = 〈unk| Ĥ αβ

k |unk〉 + ( 〈Q̂ku
β

nk

∣∣ Ĥ α
k |unk〉 + c.c.

)
+ ( 〈uβ

nk

∣∣unk〉 〈unk| Ĥ α
k |unk〉 + c.c.

)
= 〈unk| Ĥ αβ

k |unk〉 + ( 〈Q̂ku
β

nk

∣∣ Ĥ α
k |unk〉 + c.c.

)
(14)

since (〈uβ

nk|unk〉 〈unk| Ĥ α
k |unk〉 + c.c.) = εα

nk(〈uβ

nk|unk〉 +
c.c.) = 0, following Eqs. (10) and (11).

Now, |uα
nk〉 still has to be expressed in terms of derivatives

of the Hamiltonian. To do so, we differentiate Eq. (4) with
respect to k:

Ĥ α
k |unk〉 + Ĥk

∣∣uα
nk

〉 = εα
nk |unk〉 + εnk

∣∣uα
nk

〉
⇒ (Ĥk − εnk)

∣∣uα
nk

〉 = −(Ĥ α
k − εα

nk

) |unk〉 , (15)

and apply Q̂k to the left

(Ĥk − εnk)
∣∣Q̂ku

α
nk

〉 = −Q̂kĤ
α
k |unk〉 , (16)

which allows to deduce |Q̂ku
α
nk〉 from Ĥ α

k and unperturbed
quantities.

Directly solving Eq. (16) using linear algebra techniques
such as conjugate gradients [35] can be unstable because the
left-hand side operator Ĥk − εnk is not, in general, positive
definite [36]. It is more practical to invert the operator Ĥk − εnk
in Eq. (16) then use Eqs. (4) and (13) to obtain the usual
sum-over-state expression

∣∣Q̂ku
α
nk

〉 = ∑
n′ �=n

|un′k〉 〈un′k| Ĥ α
k |unk〉

εnk − εn′k
. (17)

Substituting Eq. (17) in Eq. (14) gives

ε
αβ

nk = 〈unk| Ĥ αβ

k |unk〉

+
⎛
⎝∑

n′ �=n

〈unk| Ĥ β

k |un′k〉 〈un′k| Ĥ α
k |unk〉

εnk − εn′k
+ c.c.

⎞
⎠. (18)

While the above expression is numerically easier to handle
than Eq. (16), it has the downside of being much less efficient.
Indeed, Eq. (17) exhibits a notoriously slow convergence with
the number of states included in the summation [37]. However,
it is possible to combine the technical ease of Eq. (17) with

3While Eq. (12) does not look symmetric with respect to αβ at first
glance, using Eqs. (13) and (17) along with the fact that |P̂kunk〉 does
not contribute to ε

αβ

nk [see Eq. (14) and associated discussion] reveals
that the expression is indeed symmetric.

the efficiency of Eq. (16) by using the former to obtain
the contribution of the active space (i.e., bands up to the
highest one N for which eigenenergies derivatives are desired)
to |Q̂ku

α
nk〉 and the latter to obtain the contribution of the

complementary subspace (band index above N ) to |Q̂ku
α
nk〉.

Indeed, this strategy guarantees the left-hand side operator of
Eq. (16) to be positive definite (thus allowing the use of, e.g.,
conjugated gradients), while minimizing the number of bands
treated using Eq. (17).

Defining the projector

Q̂Nk �
∑
n′>N

|un′k〉 〈un′k| , (19)

we can write the second-order eigenenergies in the form
described above

ε
αβ

nk = 〈unk| Ĥ αβ

k |unk〉 + ( 〈Q̂Nku
β

nk

∣∣ Ĥ α
k |unk〉 + c.c.

)

+
⎛
⎝ N∑

n′ �=n

〈unk| Ĥ β

k |un′k〉 〈un′k| Ĥ α
k |unk〉

εnk − εn′k
+ c.c.

⎞
⎠, (20)

with Q̂Nk |uα
nk〉 given by the projection of Eq. (15) on bands

above N :

(Ĥk − εnk)
∣∣Q̂Nku

α
nk

〉 = −Q̂NkĤ
α
k |unk〉 . (21)

Once ε
αβ

nk is known, one can obtain the effective mass from
the usual expression [1–3][

M−1
nk

]
αβ

� ε
αβ

nk (22)

for nondegenerate εnk.
In the case of a Hamiltonian with a local potential, as

described in Eqs. (2) and (4), the perturbed Hamiltonian
reduces to

Ĥ α
k = (k + p̂)α; Ĥ

αβ

k = δαβ. (23)

For practical reasons, reduced coordinates are often used
internally by DFT codes instead of Cartesian coordinates.
We therefore provide in Appendix A the relation between
derivatives with respect to k in both coordinate systems.

B. Derivatives of kinetic energy operator with cutoff smearing

To avoid discontinuities in the total energy with respect
to primitive cell size, one can modify the kinetic energy to
ensure that the number of available degrees of freedom for
energy minimization varies continuously with cell size [28]
(see Appendix B). In the ABINIT software, this kinetic energy
reads as [see Eqs. (B2) and (B3)]

〈G| T̂k |G′〉 = 1
2 (k + G)2δGG′ p(x), (24)

where p(x) is a function that is one for most of the plane waves,
but diverges when 1

2 (k + G)2 becomes close to the plane-wave
kinetic energy cutoff Ec. Its accurate formulation is given in
Appendix B. The quantity x is equal to

x �
Ec − 1

2 (k + G)2

Es

, (25)
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where the parameter Es is the energy range around the cutoff
energy Ec where the occupations start to be forced towards 0,
i.e., Es can be interpreted as a smearing of the cutoff energy.

The present method implements the derivatives of this
modified kinetic energy

〈G| T̂ α
k |G′〉 =

(
p(x) − 1

2
(k + G)2 p′(x)

Es

)
(k + G)αδGG′ ,

(26)

〈G| T̂ αβ

k |G′〉 =
(

p(x) − 1

2
(k + G)2 p′(x)

Es

)
δαβδGG′

+
(

1

2
(k + G)2 p′′(x)

E2
s

− 2
p′(x)

Es

)
× (k + G)α(k + G)βδGG′ , (27)

where p′(x) stands for the derivative of p(x) with respect to
x. Their reduced coordinate version can then be obtained by
using the reverse of Eqs. (A5) and (A6).

C. Pseudopotentials and derivatives of associated
nonlocal operators

The potential V (r) appearing in a DFT Hamiltonian
involves the Coulomb potential generated by the nuclei of
the simulated system. It therefore has sharp features, which
are cumbersome to represent accurately with a plane-wave
basis set. Numerous methods have been developed to alle-
viate this problem, among which two are supported in the
present implementation: the norm-conserving pseudopotential
(NCPP) [30] and projector augmented-wave (PAW) [31,38]
methods. We derive the relevant expressions in the PAW
framework since it generalizes the NCPP framework [31].
We then obtain the NCPP expressions by carrying out the
appropriate simplifications.

Since the relationship between all-electron wave func-
tions |ψnk〉 and pseudo-wave functions |ψ̃nk〉 [Eq. (C5)] has
the same form in the ultrasoft pseudopotential formalism
(USPP) [27,32,38–40] and the PAW formalism, it results
that the present section applies to both PAW and USPP (see
Ref. [27] for a more detailed discussion of this). This also
allows us to build upon existing DFPT developments within the
USPP framework [27,38–40]. We offer a short PAW reminder
in Appendix C to put Eqs. (28)–(33) below into context.

In PAW, Eq. (4) becomes [see Eq. (C8)]

ˆ̃Hk |ũnk〉 = εnk
ˆ̃1k |ũnk〉 , (28)

where [see Eqs. (C10), (C11), and (C12)]

ˆ̃Hk = Ĥk + D̂k

= Ĥk +
∑
Rij

e−ik·r̂ |p̃Ri〉 DRij 〈p̃Rj | eik·r̂, (29)

ˆ̃1k = 1 +
∑
Rij

e−ik·r̂ |p̃Ri〉 SRij 〈p̃Rj | eik·r̂, (30)

and where 〈p̃Ri |, DRij , and SRij are defined in Eqs. (C3), (C13),
and (C14), respectively.

The relations required to carry out the differentiation of the
nonlocal part of the Hamiltonian D̂k are [see Eqs. (C19), (C20),
and (C22)]

〈G| D̂k |G′〉 =
∑
Rij

〈K|p̄Ri〉DRij 〈p̄Rj |K′〉 , (31)

〈K|p̄Ri〉 = 4πili Ylimi
(K̂)P̃Ri(K)e−iG·R, (32)

P̃Ri(K) =
∫ sc

0
ds s P̃Ri(s)jli (Ks), (33)

where K, s, Ylm, jl(ks), sc, P̃Ri(s), P̃Ri(K), and 〈K|p̄Ri〉 are
defined in Appendix C.4

Since the DRij have no dependence on k, the derivatives of
〈K|p̄Ri〉 suffice to obtain those of 〈G| D̂k |G′〉. Thus,

〈G| D̂α
k |G′〉 =

∑
Rij

〈K|p̄Ri〉α DRij 〈p̄Rj |K′〉

+ 〈K|p̄Ri〉 DRij 〈p̄Rj |K′〉α , (34)

〈G| D̂αβ

k |G′〉 =
∑
Rij

〈K|p̄Ri〉αβ DRij 〈p̄Rj |K′〉

+ 〈K|p̄Ri〉 DRij 〈p̄Rj |K′〉αβ

+ (〈K|p̄Ri〉α DRij 〈p̄Rj |K′〉β
+α ↔ β), (35)

where α ↔ β stands for the transpose of the previous term
(with respect to α and β), where

〈K|p̄Ri〉α = 4πili e−iG·R(Yα
limi

(K̂)P̃Ri(K) + Ylimi
(K̂)P̃ α

Ri(K)
)
,

(36)

〈K|p̄Ri〉αβ = 4πili e−iG·R(Yαβ

limi
(K̂)P̃Ri(K) + Ylimi

(K̂)P̃ αβ

Ri (K)

+ (Yα
limi

(K̂)P̃ β

Ri(K) + α ↔ β
))

, (37)

with Yα
lm(K̂) [Yαβ

lm (K̂)] the Cartesian component α [αβ] of the
gradient [Hessian] of spherical harmonics Ylm, and where

P̃ α
Ri(K) =

∫ sc

0
ds s P̃Ri(s)j ′

li
(Ks) s

Kα

K
, (38)

P̃
αβ

Ri (K) =
∫ sc

0
ds s P̃Ri(s)

[
j ′′
li

(Ks) s2 Kα

K

Kβ

K

+ j ′
li
(Ks)

K
s

(
δαβ − Kα

K

Kβ

K

)]
, (39)

with j ′
l (x) and j ′′

l (x) the first and second derivatives of
spherical Bessel functions with respect to their argument x,
respectively. The calculation of the derivatives of 〈G| ˆ̃1k |G′〉

4For convenience, we still summarize the definitions here: K �
k + G, K̂ is the unit vector in the direction of K, s � r − R, Ylm

are the spherical harmonics, jl(ks) are spherical Bessel functions,
sc is the radius of the PAW augmentation regions [see Eq. (C17)],
P̃Ri(s) is defined in Eq. (C16) [see also Eq. (C19)], P̃Ri(K) is defined
in Eq. (C20), and 〈K|p̄Ri〉 differs from 〈K|p̃Ri〉 only through the
substitution K → G in Eq. (C19) [see Eqs. (C19)–(C23)].
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is conceptually identical to that of 〈G| D̂k |G′〉 and the final
result is identical to Eqs. (34) and (35), with the substitution
DRij → SRij . Also, to obtain the NCPP version of this section,

one simply has to substitute ˆ̃1k → 1 (SRij → 0).
The implementation of the first-order perturbed quantities

ˆ̃Hα
k and ˆ̃1α

k [as per Eqs. (34), (36), (38), and their analogs

for ˆ̃1k] in ABINIT was already done by Audouze and co-
workers [38]. Therefore, we only had to implement the second-
order quantities ˆ̃Hαβ

k and ˆ̃1αβ

k [as per Eqs. (35), (37), (39) and

their analogs for ˆ̃1k] in the code.

D. Spin-orbit coupling

A simple, approximate way to take into account spin-orbit
coupling (SOC) within the PAW framework is to calculate
the coupling only in the PAW augmentation regions, which is
what is done in the ABINIT software [29,33]. The hypotheses
underlying this approximation, and its practical validity, have
been discussed in Ref. [41]. Note that since it involves the
PAW augmentation regions, it cannot be applied to the NCPP
and USPP methods.

Within this approximation, the PAW Hamiltonian of
Eq. (29) becomes

ˆ̃Hk = Ĥk +
∑

Rijσσ ′
e−ik·r̂ |p̃Riσ 〉 (DRij δσσ ′ + DSO

Rijσσ ′
)

× 〈p̃Rjσ ′ | eik·r̂, (40)

where σ denotes the spin component of the wave function
acted upon by the projector and where DSO

Rijσσ ′ are the matrix
elements of the spin-orbit Hamiltonian between all-electron
partial waves |φRiσ 〉 [41].

We note that Eq. (40) has the same k dependence
as the nonlocal operators studied in Sec. II C. Therefore,
since we already implemented the corresponding derivatives
[Eqs. (34)–(39)] and since the ground-state spin-orbit Hamil-
tonian (i.e., DSO

Rijσσ ′) was already available in the ABINIT soft-
ware, we added SOC support to our effective mass implemen-
tation by introducing spinors |ψ̃nk〉 → |ψ̃nkσ 〉 in Secs. II A–
II C and substituting DRij δσσ ′ → DRij δσσ ′ + DSO

Rijσσ ′ . For
NCPP, the equations that allow to treat the SOC within DFPT
have been presented in Ref. [42] and applied in the case of
phonons. The present formalism might easily be generalized
to this case, although this has not been part of this work.

III. DEGENERATE CASE AND TRANSPORT EQUIVALENT
EFFECTIVE MASSES

A. Effective mass tensor and degeneracy

In degenerate perturbation theory, the corrections to observ-
ables Ô at successive orders (i) with respect to a variable x are
calculated O

(i)
nn′k = ∂i 〈un′k| Ôk |unk〉 /∂xi until one finds an

order at which the degenerescence is lifted O
(i)
nn′k �= C

(i)
k δnn′ , n

and n′ labeling states within the degenerate subspace and C
(i)
k

being a proportionality constant. Thus, Sec. II A applies if there
is no degenerescence at second order, i.e., if the degeneracy is
lifted at zeroth or first order. We now consider the case where
the degeneracy is maintained at zeroth and first order (e.g., a

degenerate band extrema), which is a case often encountered
in important technological materials, like the III-V or II-VI
semiconductors. Equation (7) can then be generalized to [see
Eq. (IV.9) of Ref. [17]]

εnn′k+δk = ε{d}kδnn′ +
∑

α

εα
{d}kδnn′δkα

+ 1

2

∑
αβ

δkαε
αβ

nn′kδkβ + O(δk3),

n,n′ ∈ {d} (41)

where {d} represents the degenerate subspace and with εnk =
ε{d}k and εα

nk = εα
{d}k ∀ n ∈ {d}. In such cases, after obtaining

the ε
αβ

nn′k matrix within the degenerate subspace, one must
diagonalize it to find the relevant eigenstates, eigenenergies,
and the associated effective masses.

The first step is therefore to generalize ε
αβ

nk to ε
αβ

nn′k. We
will also consider in this section the more general case of
PAW (where ˆ̃1k is present, see Sec. II C), from which the
norm-conserving expressions can be obtained by substituting
ˆ̃1k → 1. Moreover, as discussed at the beginning of Sec. II C,
the equations derived in this section for PAW also apply to the
USPP method within the parallel gauge (see Refs. [23,38,43]
for more details on this gauge). This section thus generalizes
Eqs. (20) and (21) to both the degenerate case and the PAW
(USPP) formalism(s).

We will systematically express ε{d}k as εnk+εn′k
2 and εα

{d}k
as

εα
nk+εα

n′k
2 in order to be explicitly symmetric in n,n′ and to

facilitate the comparison with other PAW expressions within
the parallel gauge [see, e.g., Eq. (78) of Ref. [38]].

We obtain analytically the derivatives of εnn′k from the
derivatives of the Hamiltonian and overlap operator, starting
from

εnn′k = 〈ũn′k| ˆ̃Hk |ũnk〉 (42)

and differentiating with respect to kα:

εα
nn′k = 〈ũα

n′k

∣∣ ˆ̃Hk |ũnk〉 + 〈ũn′k| ˆ̃Hα
k |ũnk〉 + 〈ũn′k| ˆ̃Hk

∣∣ũα
nk

〉
.

(43)

Using Eq. (28) and evaluating at the degenerate point k yields

εα
nn′k = εnk + εn′k

2

( 〈
ũα

n′k

∣∣ ˆ̃1k |ũnk〉 + 〈ũn′k| ˆ̃1k
∣∣ũα

nk

〉 )
+ 〈ũn′k| ˆ̃Hα

k |ũnk〉 . (44)

Using the derivative of the PAW version of the orthonormal-
ization condition [from Eqs. (C5), (C9), (3), and (5)]

δnn′ = 〈ψn′k|ψnk〉 = 〈ũn′k| ˆ̃1k |ũnk〉 (45)

⇒ 0 = 〈ũα
n′k

∣∣ ˆ̃1k |ũnk〉 + 〈ũn′k| ˆ̃1α
k |ũnk〉 + 〈ũn′k| ˆ̃1k

∣∣ũα
nk

〉
,

(46)

Eq. (44) becomes

εα
nn′k = 〈ũn′k| ˆ̃Hα

k − εnk + εn′k

2
ˆ̃1α

k |ũnk〉 . (47)
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We now proceed to the second-order derivative, starting from Eq. (43). Differentiating with respect to kβ yields

ε
αβ

nn′k = 〈ũn′k| ˆ̃Hαβ

k |ũnk〉 + (〈ũαβ

n′k

∣∣ ˆ̃Hk|ũnk〉+ 〈ũn′k| ˆ̃Hk
∣∣ũαβ

nk

〉)+ (〈ũα
n′k

∣∣ ˆ̃Hβ

k |ũnk〉 + 〈ũα
n′k

∣∣ ˆ̃Hk
∣∣ũβ

nk

〉+ 〈ũn′k| ˆ̃Hα
k

∣∣ũβ

nk

〉)+ α ↔ β.

(48)

Using Eq. (28) and the second-order derivative of the orthonormalization condition [Eq. (45)]

〈ũn′k| ˆ̃1αβ

k |ũnk〉 + ( 〈ũαβ

n′k

∣∣ ˆ̃1k |ũnk〉 + 〈ũn′k| ˆ̃1k
∣∣ũαβ

nk

〉 )+ ( 〈ũα
n′k

∣∣ ˆ̃1β

k |ũnk〉 + 〈ũα
n′k

∣∣ ˆ̃1k
∣∣ũβ

nk

〉+ 〈ũn′k| ˆ̃1α
k

∣∣ũβ

nk

〉 )+ α ↔ β = 0 (49)

as well as evaluating at the degenerate point k leads to

ε
αβ

nn′k = 〈ũn′k| ˆ̃Hαβ

k − εnk + εn′k

2
ˆ̃1αβ

k |ũnk〉 +
( 〈

ũα
n′k

∣∣ ˆ̃Hβ

k − εnk + εn′k

2
ˆ̃1β

k |ũnk〉 + 〈ũα
n′k

∣∣ ˆ̃Hk − εnk + εn′k

2
ˆ̃1k
∣∣ũβ

nk

〉

+ 〈ũn′k| ˆ̃Hα
k − εnk + εn′k

2
ˆ̃1α

k

∣∣ũβ

nk

〉 )+ α ↔ β. (50)

Since the analytical derivatives of ˆ̃Hk and ˆ̃1k are available (see Sec. II C), the only task left is to find |ũα
nk〉 or, more precisely,

to generalize Eqs. (20) and (21) to the degenerate case and the PAW formalism. To handle the degeneracy, we separate the
components of |ũα

nk〉 lying in the degenerate subspace {d} from the rest:∣∣ũα
nk

〉 = ˆ̃Pk
∣∣ũα

nk

〉+ ˆ̃Qk
∣∣ũα

nk

〉
, (51)

with
ˆ̃Pk �

∑
n′∈{d}

|ũn′k〉 〈ũn′k| ˆ̃1k, (52)

ˆ̃Qk �
∑

n′ /∈{d}
|ũn′k〉 〈ũn′k| ˆ̃1k. (53)

Substituting Eq. (51) in Eq. (50) and carrying out some algebra presented in Appendix D, we obtain [see Eq. (D4)]

ε
αβ

nn′k = 〈ũn′k| ˆ̃Hαβ

k − εnk + εn′k

2
ˆ̃1αβ

k |ũnk〉 +
( 〈

ˆ̃Qkũ
α
n′k − 1

2
δũα

n′k

∣∣∣∣ ˆ̃Hβ

k − εnk + εn′k

2
ˆ̃1β

k |ũnk〉

+ 〈ũn′k| ˆ̃Hα
k − εnk + εn′k

2
ˆ̃1α

k

∣∣∣∣ ˆ̃Qkũ
β

nk − 1

2
δũ

β

nk

〉
+
〈

ˆ̃Qkũ
α
n′k − 1

2
δũα

n′k

∣∣∣∣ ˆ̃Hk − εnk + εn′k

2
ˆ̃1k

∣∣∣∣ ˆ̃Qkũ
β

nk − 1

2
ũ

β

nk

〉 )
+ α ↔ β,

(54)

where we have defined [see Eq. (D3)]

∣∣δũα
nk

〉
�
∑

n′∈{d}
|ũn′k〉 〈ũn′k| ˆ̃1α

k |ũnk〉 . (55)

We are now left with the task of finding | ˆ̃Qkũ
α
nk〉 within

PAW. To do so, we first differentiate Eq. (28):

ˆ̃Hα
k |ũnk〉 + ˆ̃Hk

∣∣ũα
nk

〉
= εα

nk
ˆ̃1k |ũnk〉 + εnk

ˆ̃1α
k |ũnk〉 + εnk

ˆ̃1k
∣∣ũα

nk

〉
. (56)

Rearranging the terms and applying
∑

n′ /∈{d} |ũn′k〉 〈ũn′k| on
both sides yields

∑
n′ /∈{d}

|ũn′k〉 〈ũn′k| ˆ̃Hk − εnk
ˆ̃1k
∣∣ũα

nk

〉

= −
∑

n′ /∈{d}
|ũn′k〉 〈ũn′k| ˆ̃Hα

k − εnk
ˆ̃1α

k |ũnk〉 , (57)

where we have used the orthonormality condition of Eq. (45).
Finally, using Eq. (28), dividing by εn′k − εnk, and using
Eq. (52) yields

ˆ̃Qk
∣∣ũα

nk

〉 = −
∑

n′ /∈{d}

|ũn′k〉 〈ũn′k| ˆ̃Hα
k − εnk

ˆ̃1α
k |ũnk〉

εn′k − εnk
. (58)

For reasons that have already been mentioned in the paragraph
after Eq. (18), we calculate the contribution to ˆ̃Qk |ũα

nk〉
stemming from the subspace generated by the bands explicitly
treated in the calculation (the active subspace n � N ) using
a sum-over-states approach while we solve a linear equation
to obtain the contribution stemming from the complementary
subspace

ˆ̃QNk =
∑
n>N

|ũnk〉 〈ũnk| ˆ̃1k. (59)

We thus split ˆ̃Qk |ũα
nk〉 into these two contributions and add

the − 1
2 |δũα

nk〉 contribution required to calculate Eq. (54).
Also, since it is more convenient to calculate and store
the symmetrized matrix elements of ˆ̃Hα

k − εnk
ˆ̃1α

k (i.e., 〈ũn′k|
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ˆ̃Hα
k − εnk+εn′k

2
ˆ̃1α

k |ũnk〉), we reexpress the part of Eq. (58) that
stems from the active subspace (n � N ) so that it uses these
symmetric matrix elements. We obtain

ˆ̃Qk
∣∣ũα

nk

〉− 1

2

∣∣δũα
nk

〉

= −
N∑

n′ /∈{d}

|ũn′k〉 〈ũn′k| ˆ̃Hα
k − εnk+εn′k

2
ˆ̃1α

k |ũnk〉
εn′k − εnk

+ ∣∣ ˆ̃QNkũ
α
nk

〉− 1

2

∣∣δũα
Nnk

〉
, (60)

where we have defined

∣∣δũα
Nnk

〉
�

N∑
n′

|ũn′k〉 〈ũn′k| ˆ̃1α
k |ũnk〉 (61)

[following the notation introduced in Eq. (42) of Ref. [38],
with an additional N index] and

∣∣ ˆ̃QNkũ
α
nk

〉 = −
∑
n′>N

|ũn′k〉 〈ũn′k| ˆ̃Hα
k − εnk

ˆ̃1α
k |ũnk〉

εn′k − εnk
. (62)

To obtain the last contribution from a linear equation problem,
we start from Eq. (62), use Eq. (59), multiply by εn′k − εnk,
then use Eq. (28) and the conjugate transpose of Eq. (59):

ˆ̃Q†
Nk( ˆ̃Hk − εnk

ˆ̃1k)
∣∣ ˆ̃QNkũ

α
nk

〉 = − ˆ̃Q†
Nk

( ˆ̃Hα
k − εnk

ˆ̃1α
k

) |ũnk〉 .

(63)

Now, substituting Eq. (60) into Eq. (54) and simplifying
using Eqs. (59), (61), (28), and (45) yields

ε
αβ

nn′k = 〈ũn′k| ˆ̃Hαβ

k − εnk + εn′k

2
ˆ̃1αβ

k |ũnk〉 +
⎛
⎝ 〈 ˆ̃QNkũ

α
n′k + δũα

Nn′k

∣∣ ˆ̃Hk − εnk + εn′k

2
ˆ̃1k
∣∣ ˆ̃QNkũ

β

nk + δũ
β

Nnk

〉

+ 〈 ˆ̃QNkũ
α
n′k + δũα

Nn′k

∣∣ ˆ̃Hβ

k − εnk + εn′k

2
ˆ̃1β

k |ũnk〉 + 〈ũn′k| ˆ̃Hα
k − εnk + εn′k

2
ˆ̃1α

k

∣∣ ˆ̃QNkũ
β

nk + δũ
β

Nnk

〉

+
N∑

n′′ /∈{d}
〈ũn′k| ˆ̃Hα

k − εn′k + εn′′k

2
ˆ̃1α

k |ũn′′k〉 1

εnk − εn′′k
〈ũn′′k| ˆ̃Hβ

k − εn′′k + εnk

2
ˆ̃1β

k |ũnk〉
⎞
⎠+ α ↔ β. (64)

Equations (64) and (63) are the extension of Eqs. (20) and (21) to degeneracy and PAW (USPP) that we were seeking.
By substituting ˆ̃1k → 1 in Eq. (64), we recover the NCPP expression for degenerate states

ε
αβ

nn′k = 〈un′k| Ĥ αβ

k |unk〉 +
⎛
⎝ 〈Q̂Nku

α
n′k

∣∣ Ĥk − εnk + εn′k

2

∣∣Q̂Nku
β

nk

〉+ 〈Q̂Nku
α
n′k

∣∣ Ĥ β

k |unk〉 + 〈un′k| Ĥ α
k

∣∣Q̂Nku
β

nk

〉

+
N∑

n′′ /∈{d}
〈un′k| Ĥ α

k
|un′′k〉 〈un′′k|
εnk − εn′′k

Ĥ
β

k |unk〉
⎞
⎠+ α ↔ β, (65)

where |Q̂Nku
α
nk〉 is given by Eq. (21). The preceding expression can be simplified using Eqs. (62) and (4) to yield

ε
αβ

nn′k = 〈un′k| Ĥ αβ

k |unk〉 + 〈un′k| Ĥ α
k

∣∣Q̂Nku
β

nk

〉+ 〈Q̂Nku
β

n′k

∣∣ Ĥ α
k |unk〉 +

⎛
⎝ N∑

n′′ /∈{d}

〈un′k| Ĥ α
k |un′′k〉 〈un′′k| Ĥ β

k |unk〉
εnk − εn′′k

+ α ↔ β

⎞
⎠,

(66)

which simplifies to Eq. (20) when degeneracy is lifted at zeroth
order.

B. Transport equivalent effective mass from degenerate
perturbation theory

However, deducing transport properties from ε
αβ

nn′k as per
Eqs. (63) and (64) is more involved than in the nondegenerate
case, where we simply had [M−1

nk ]αβ � ε
αβ

nk [Eq. (22)]. It
is indeed not possible to obtain effective mass tensors that
describe the dispersion of the individual bands: this would
involve diagonalizing ε

αβ

nn′k with respect to nn′, but each matrix
element in this case is a tensor εnn′k (with [εnn′k]αβ � ε

αβ

nn′k)
and it is not in general possible to diagonalize a matrix
of tensors. It is, however, still possible to circumvent this

complication by associating ε
αβ

nn′k to a set of Ndeg “transport
equivalent mass” tensors [21] M̄nk, which generate the same

contribution to transport properties as the less intuitive ε
αβ

nn′k
does. To make this association, we begin by transforming the
tensorial matrix elements into scalar quantities. This is easily
done by picking a direction (θ,φ) in spherical coordinates
along which we describe the band’s dispersion

εnn′k+q = ε{d}k + 1

2

∑
αβ

qαε
αβ

nn′kqβ

= ε{d}k + q2

2

∑
αβ

q̂α(θ,φ)εαβ

nn′kq̂β(θ,φ)

� ε{d}k + q2

2
fnn′k(θ,φ), (67)
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where we have supposed that the degenerate point k is also
a band extrema εα

nn′k = 0, where q represents a position in
the Brillouin zone with respect to the band extrema k, and
where we have defined the curvature fnn′k(θ,φ) of the matrix
elements εnn′k at the band extrema along the direction (θ,φ).
We now deal with an angular-dependent matrix of scalars
fnn′k(θ,φ), which can be diagonalized for each combination
of (θ,φ) considered in the calculation∑

n′
fnn′k(θ,φ) |νn′k(θ,φ)〉 = fnk(θ,φ) |νnk(θ,φ)〉 . (68)

The resulting eigenvalues fnk(θ,φ) and eigenvectors
|νnk(θ,φ)〉 yield the diagonalized version of Eq. (67),

εnk+q = ε{d}k + q2

2
fnk(θ,φ) (69)

� ε{d}k + q2

2

1

mnk(θ,φ)
, (70)

where we have defined the angular-dependent effective mass
mnk(θ,φ).

Once these angular-dependent quantities are available for
each band in the degenerate set, it becomes possible to apply
the idea of Ref. [21]. The latter associates to fnk(θ,φ) a
“transport equivalent mass” tensor M̄nk that generate the same
contribution to transport properties. This association supposes
that the relaxation time approximation to Boltzmann’s trans-
port equation [2,3] holds. It furthermore supposes that the
relaxation time depends on the energy only and that this
dependence can be factored out of the tensor [i.e., a relaxation
time of the form Unτnk(ε)]. It also requires that M̄nk be
calculated at a band extrema (εα

nn′k = 0), which is why we
have already supposed that the degenerate point k is also a
band extrema in Eq. (67). For convenience, we summarize
in Appendix E the derivation of this association, generalized
to an energy-dependent relaxation time tensor τ nk(ε) and
specialized to the case of conductivity σ for concision. Since
the 2D case presents some peculiarities with respect to the
3D case, we also extend the concept of transport equivalent
effective mass to the 2D case in Appendix F.

The prescription to obtain M̄nk from fnk(θ,φ) begins with
the calculation of the angular dependence of the electronic
velocity [see Eq. (29) of Ref. [21] or Eq. (E6) of this work]

v̄nk(q̂) �

⎛
⎜⎜⎝

2fnk(θ,φ) sin(θ ) cos(φ) + ∂fnk
∂θ

cos(θ ) cos(φ) − ∂fnk
∂φ

sin(φ)
sin(θ)

2fnk(θ,φ) sin(θ ) sin(φ) + ∂fnk
∂θ

cos(θ ) sin(φ) + ∂fnk
∂φ

cos(φ)
sin(θ)

2fnk(θ,φ) cos(θ ) − ∂fnk
∂θ

sin(θ )

⎞
⎟⎟⎠. (71)

Then, one can deduce from v̄nk(q̂) and fnk(θ,φ) a ten-
sorial quantity Cnk representing the angular contribution
of extrema k of band n to transport properties (e.g., σ )
[see Eqs. (E9), (E10), and (E11), which are analogous to
Eqs. (34), (35), and (36) of Ref. [21]]

Cnk =
∫ 2π

0
dφ

∫ π

0
dθ sin(θ )

v̄nk(θ,φ)v̄T
nk(θ,φ)

2|fnk(θ,φ)|5/2
. (72)

In the present implementation, we use Gauss-Legendre
quadrature to numerically integrate with respect to θ and φ.
Finally, one has to rotate the Cartesian axes to diagonalize this
tensor

UT
nkCnkUnk �

⎛
⎜⎝

Cnkx 0 0

0 Cnky 0

0 0 Cnkz

⎞
⎟⎠, (73)

where Unk is the desired rotation, then deduce the components
of M̄nk in the rotated system [using Eq. (38) of Ref. [21] or
Eq. (E15) of this work] and rotate back to the original Cartesian
axes

M̄nk =
(

3

8π

)2

Unk

⎛
⎜⎝

CnkyCnkz 0 0

0 CnkxCnkz 0

0 0 CnkxCnky

⎞
⎟⎠UT

nk.

(74)

Note that the partial derivatives with respect to
spherical angles of fnk(θ,φ) can easily be obtained

analytically:

fnk(θ,φ) =
∑

n′n′′∈{d}
〈νnk(θ,φ)|un′k〉 fn′n′′k(θ,φ) 〈un′′k|νnk(θ,φ)〉

� 〈νnk(θ,φ)| f̂k(θ,φ) |νnk(θ,φ)〉 (75)

⇒ ∂fnk

∂θ

= ∂ 〈νnk|
∂θ

f̂k |νnk〉 + 〈νnk| ∂f̂k

∂θ
|νnk〉+ 〈νnk| f̂k

∂ |νnk〉
∂θ

= 〈νnk| ∂f̂k

∂θ
|νnk〉 +fnk

�����∂ 〈νnk|νnk〉
∂θ

,

=
∑

n′n′′∈{d}
〈νnk(θ,φ)|un′k〉 ∂fn′n′′k(θ,φ)

∂θ
〈un′′k|νnk(θ,φ)〉,

(76)

with [see Eq. (67)]

∂fnn′k(θ,φ)

∂θ
=
∑
αβ

∂q̂α(θ,φ)

∂θ
ε

αβ

nn′kq̂β(θ,φ)

+ q̂α(θ,φ)εαβ

nn′k
∂q̂β(θ,φ)

∂θ
, (77)

and with q̂T = (sin θ cos φ, sin θ sin φ, cos θ ). The analogous
expressions for φ derivatives are easily obtained by substitut-
ing ∂θ → ∂φ.
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It is also interesting to note that Eq. (72) diverges in a 2D
system, i.e., a system where fnk(θ,φ) → 0 for some directions.
This problem is assessed in Appendix F.

IV. RESULTS

A. Numerical validation by direct comparison of DFPT against
finite-difference effective masses in the case of silicon

To check our implementation, we assessed its agreement
with finite-difference calculations. Finite-difference deriva-
tives of the form εαα

nk were computed using second-order
derivative formulas of orders 2 and 8 calculated on a regularly
spaced grid from Ref. [44]:

∂2X

∂h2

∣∣∣∣
hi

= Xhi+1 − 2Xhi
+ Xhi−1

�h2
+ O(�h2) (78)

and

∂2X

∂h2

∣∣∣∣
hi

=
(−1

560
Xhi+4 + 8

315
Xhi+3 − 1

5
Xhi+2 + 8

5
Xhi+1

− 205

72
Xhi

+ 8

5
Xhi−1 − 1

5
Xhi−2 + 8

315
Xhi−3

− 1

560
Xhi−4

)/
�h2 + O(�h8), (79)

where X stands for any function of the independent variable
h computed on a regular grid of spacing �h, with its points
labeled by the index i and where O(�hn) denotes the order
n of the error. Also, derivatives of the form ε

αβ

nk where α �= β

were obtained by substituting the expression for the first-order
derivative along the first direction α into the expression for
the first-order derivative along the second direction β. The
first-order derivative formulas used were those of Ref. [44] for
precision orders 2 and 8 with a regularly spaced grid

∂X

∂h

∣∣∣∣
hi

=
1
2Xhi+1 − 1

2Xhi−1

�h
+ O(�h2) (80)

and

∂X

∂h

∣∣∣∣
hi

=
(−1

280
Xhi+4 + 4

105
Xhi+3 − 1

5
Xhi+2 + 4

5
Xhi+1

− 4

5
Xhi−1 + 1

5
Xhi−2 − 4

105
Xhi−3 + 1

280
Xhi−4

)/
�h

+O(�h8). (81)

The resulting expressions for ε
αβ

nki
(where α �= β) at precision

orders 2 and 8 require 4 and 64 evaluations of εnki
, respectively.

In both DFPT and finite-difference calculations, the PAW
formalism was used along with spin-orbit coupling within the
PAW augmentation regions [29,41] (see Sec. II D). A cutoff
energy of 20 Ha for the plane-wave basis and 40 Ha for the
PAW double grid along with a 6×6×6 Monkhorst-Pack grid
for k-point integrations were used to ensure that the calculated
effective masses were converged to four significant digits. The
local-density approximation of Perdew and Wang [45] was
used, for coherence with available effective mass calculations
in the literature. The cell parameter was fully relaxed, yielding
5.4015 Å.

TABLE I. Comparison of effective masses for the two nondegen-
erate valence bands and the first conduction band of silicon at �. Due
to the cubic symmetry, the effective mass tensors are proportional
to the identity, so that only one scalar is reported. We use order
2 and order 8 finite differences as well as DFPT to compute the
masses. The agreement between the finite-difference methods and
DFPT is provided (DFPT-FD 2 and DFPT-FD 8, respectively). The
bold numbers indicate decimals that vary between methods. Results
are provided in atomic units (me = 1).

Band �1v Split-off �′
25v Split-off �15c

FD order 2 1.161 530 65 −0.222 589 10 0.385 388 13
FD order 8 1.161 530 63 −0.222 588 25 0.385 387 92
DFPT 1.161 530 54 −0.222 588 29 0.385 387 87
DFPT-FD 2 −1E-7 8E-7 −3E-7
DFPT-FD 8 −9E-8 −5E-8 −5E-8

Direct comparison of tensorial effective masses can only be
done for nondegenerate bands since the tensorial formalism
becomes inappropriate for degenerate states (see Sec. III).
Thus, we compare in Table I the values provided by the two
methods for the effective mass of the first three nondegenerate
bands of silicon at � (�1v , split-off �′

25v , and split-off �15c).
Since the � point exhibit cubic symmetry, the effective mass
tensors become proportional to the identity at this point, so
that only one scalar needs to be reported in this case.

Also, for degenerate bands, it is still possible to obtain scalar
effective masses along specific directions (see Sec. III B).
Thus, in Table II, we compare the values provided by the
two methods for the scalar effective masses of the top valence
bands of silicon at � in the Cartesian directions (100), (111),
and (110).

TABLE II. Comparison of effective masses for the two degenerate
valence bands of silicon at � (�′

25v), usually referred to as “light hole”
and “heavy hole” bands. We provide scalar effective masses along
the Cartesian directions (100), (111), and (110) since the concept of
effective mass tensor is not suitable for degenerate bands. We use
order-2 and order-8 finite differences as well as DFPT to compute the
masses. The agreement between the finite-difference methods and
DFPT is provided (DFPT-FD 2 and DFPT-FD 8, respectively). The
bold numbers indicate decimals that vary between methods. Results
are provided in atomic units (me = 1).

Direction (100) (111) (110)

Light hole
FD order 2 −0.188 254 38 −0.129 744 50 −0.136 677 68
FD order 8 −0.188 252 32 −0.129 739 62 −0.136 672 64
DFPT −0.188 252 26 −0.129 739 40 −0.136 672 54
DFPT-FD 2 2E-6 5E-6 5E-6
DFPT-FD 8 6E-8 2E-7 1E-7

Heavy hole
FD order 2 −0.253 934 62 −0.648 381 27 −0.517 232 33
FD order 8 −0.253 933 45 −0.648 381 48 −0.517 248 27
DFPT −0.253 933 47 −0.648 381 69 −0.517 249 81
DFPT-FD 2 1E-6 −4E-7 −2E-5
DFPT-FD 8 −2E-8 −2E-7 −2E-6
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FIG. 1. Convergence study with respect to the finite-difference
parameter for the effective mass of the first conduction band of silicon
at �. The converged value mi is taken to be the one where |mi+1 − mi |
+ |mi − mi−1| is smallest, the index i labeling the successive
calculations in the convergence study. Only the absolute difference
between the calculated values and this converged value is shown
for clarity. Note that this places the converged value outside the
logarithmic scale (0 = 10−∞).

Finally, to assess the quality of the finite differences, we
also compare the results obtained using order-2 and order-8
finite differences.

The results in Tables I and II show good agreement between
DFPT and order-8 finite differences (agreement in the range
10−8–10−6). Furthermore, we observe that the finite-difference
results converge (with increasing order) towards the DFPT
results. This observation suggests that the difference between
DFPT and order-8 finite differences can be attributed to the
numerical precision of the latter method.

To further support this attribution, it is interesting to study
the convergence behavior of the finite-difference calculations
with respect to the finite-difference parameter. We show such
a convergence study in Fig. 1 for the first conduction band of
silicon at �.

We first note that the order-8 finite-difference results around
the converged value vary by an amount similar to the agreement
between finite difference and DFPT, which further supports the
attribution of the discrepancies to the finite-difference method.

Also, we note the characteristic V shape of the convergence.
Indeed, there is an optimal value of the finite-difference
parameter that yields the best compromise between numerical
noise and sampling of the band close to the extrema (where it
is parabolic). Thus, finite-difference calculations of effective
masses require this supplementary convergence study. In
contrast, DFPT is devoid of a parameter analogous to the
finite-difference parameter and thus does not require such a
convergence study.

B. Effective mass for selected materials

1. Silicon

Now that our implementation has been validated, we
compare our results for silicon to those available in the
literature. Our calculations use the parameters specified in
the first paragraph of Sec. IV A, along with 500 points
Gauss-Legendre quadrature integration for the computation

of the transport effective mass tensor [see Eq. (72)] and the
spherically averaged effective mass. The conduction band
minima were determined to be at 0.422 52 (0.422 53) on the
� − X path with (without) SOC and the effective mass was
calculated at this point.

For the nondegenerate bands, we simply compare the
effective mass tensor with other results in the literature. In
the degenerate case, the literature tends to focus on scalar
effective mass along the standard Cartesian directions (100) ‖
� − X, (111) ‖ � − L, and (110) ‖ � − K; the comparison is
therefore based on these results.

However, these comparisons do not validate the implemen-
tation of the transport equivalent formalism (see Sec. III B).
Thus, we also provide results for this quantity and compare
them to the only others results currently available (Ref. [21]).

Finally, we also assess the importance of taking into account
the SOC in effective mass calculations by also providing PAW
results without SOC. The results are provided in Table III.

Let us first assess the impact of SOC. As expected, the
conduction band is almost not influenced by the inclusion of
SOC. However, this is not the case for the valence bands. Close
examination of the split-off band immediately suggests that
this qualitative change of behavior is related to the degeneracy
of the bands. Indeed, the split-off band is not degenerate when
SOC is included, which allows its description by an effective
mass tensor. The cubic symmetry of the � point then makes this
tensor proportional to the identity, which makes the split-off
effective mass spherically symmetric.

In contrast, neglecting SOC makes the split-off band
degenerate with the two other valence bands, which prevents
its description by an effective mass tensor and thus requires the
formalism of Sec. III B. Moreover, increasing the degenerate
subspace dimension from 2 to 3 adds two off-diagonal coupling
terms in fnn′k [see Eq. (68)], which breaks the spherical
symmetry of the mass and causes the qualitative changes
observed in Table III.

This attribution can be more formally proven by (un-
physically) treating the split-off band in a SOC calculation
as degenerate with the two other valence bands within the
formalism of Sec. III B. Since our implementation decides
whether two bands are degenerate or not using a numerical
threshold on their eigenenergy difference, we carried out the
preceding test by increasing this threshold to a value above
the spin-orbit splitting. We thus obtained transport equivalent
effective masses of 0.1335, 0.5708, and 10.58, in very good
agreement with the values obtained without SOC (respectively,
0.1336, 0.5715, and 10.60; see Table III), which demonstrates
the validity of our interpretation.

Yet, this analysis does not settle whether both results
are correct and really reflect the curvature of the valence
band extrema. For the results with SOC, we have already
demonstrated in Table II that the DFPT results were indeed
correct (i.e., that they agreed very well with finite-difference
calculations). Carrying out the same test for the valence bands
without SOC (see Table IV) reveals the same agreement, which
proves that the qualitative change of behavior of the effective
masses predicted by our implementation is correct.

To explain this fact, we plot the valence bands with and
without SOC around the � point in the (111) and the (110)
directions in Fig. 2. Examining, e.g., the light hole band
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TABLE III. Effective masses of silicon at the valence band maximum (VBM) (�′
25v) and the conduction band minimum (CBM) (located

at 0.42252X with SOC and 0.42253X without SOC). When degenerate, transport equivalent and spherically averaged effective masses are
given, along with effective masses along standard Cartesian directions. When nondegenerate, the effective mass tensor is given. At �, the cubic
symmetry makes the tensor proportional to the identity, so that only one scalar needs to be reported. On the � − X path, Cartesian coordinates
diagonalize the tensor and the 2 directions perpendicular to the path are identical, so that only two scalars need to be reported (the diagonal
components of the tensor ‖ and ⊥ to � − X). Results are provided in atomic units (me = 1).

This work Theory Experiment

Band No SOC SOC [21] [46] [47] [48]

Split-off
Eff. mass 0.2226 0.22
Trans. eqv. 0.1336 0.2226
Sph. avg. 0.1101 0.2226
(100) 0.1671 0.2226
(111) 0.0938 0.2226
(110) 0.1054 0.2226

Light hole
Trans. eqv. 0.5715 0.1559 0.1731
Sph. avg. 0.3026 0.1431 0.1531
(100) 0.2578 0.1882 0.18 0.171
(111) 0.6495 0.1297 0.13 0.160
(110) 0.2578 0.1367 0.14 0.163

Heavy hole
Trans. eqv. 10.60 0.7294 1.1567
Sph. avg. 0.7405 0.4416 0.5322
(100) 0.2578 0.2540 0.26 0.46
(111) 0.6495 0.6484 0.67 0.56
(110) 2.703 0.5173 0.54 0.53

CBM
‖ to � − X 0.9455 0.9455 0.96 0.9163
⊥ to � − X 0.1875 0.1876 0.16 0.1905

(middle one) with SOC in the (111) direction reveals a change
of regime in the effective mass around the SOC energy
splitting. Indeed, it can be seen that the curvature is relatively

TABLE IV. Comparison of effective masses for the three degen-
erate valence bands of silicon (without SOC) at �. We provide scalar
effective masses along the Cartesian directions (100), (111), and (110)
since the concept of effective mass tensor is not suitable for degenerate
bands. We use order-8 finite differences and DFPT to compute the
masses. The agreement between the finite-difference methods and
DFPT is provided. The bold numbers indicate decimals that vary
between methods. Results are provided in atomic units (me = 1).

Direction (100) (111) (110)

Band 2
FD order 8 −0.167 180 44 −0.093 807 82 −0.105 369 00
DFPT −0.167 180 40 −0.093 807 80 −0.105 368 95
DFPT-FD 8 −4E-8 −3E-8 −5E-8

Band 3
FD order 8 −0.257 803 79 −0.649 497 22 −0.257 803 80
DFPT −0.257 803 82 −0.649 497 35 −0.257 803 82
DFPT-FD 8 3E-8 1E-7 2E-8

Band 4
FD order 8 −0.257 803 82 −0.649 497 16 −2.702 563 30
DFPT −0.257 803 82 −0.649 497 35 −2.702 563 84
DFPT-FD 8 4E-9 2E-7 5E-7

high at �, but then changes rather rapidly and settles to a lower
value around 0.10L–0.15L. This suggests that the effective
mass evolves from the SOC value at low energy to the non-SOC
value at higher energies (with respect to the SOC splitting).
This behavior is not surprising since one would expect that

0.15K ΓΓΓ 0.15L
−0.30

−0.25

−0.20
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−0.10
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0.00

E
ne

rg
y

(e
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)

PAW w/o SOC

PAW with SOC

FIG. 2. PAW calculation of the valence bands of silicon around �

in the directions (110) ‖ K and (111) ‖ L, with and without SOC. For
the light hole band (middle band) in direction L with SOC, we see
that the effective mass has a change of regime around the spin-orbit
energy splitting. After this change of regime, the effective mass of
the band with SOC tends to the mass of the band without SOC.

205147-11



J. LAFLAMME JANSSEN et al. PHYSICAL REVIEW B 93, 205147 (2016)

treating the split-off band as degenerate with the two other
valence bands would become a good approximation at energies
where the SOC splitting becomes negligible. However, in the
case of silicon, this occurs relatively far from the � point, so
that the validity of the quadratic expansion of the eigenenergies
becomes questionable. Thus, we postpone further analysis
of this question to the next section, where a material with
much smaller SOC splitting of the valence bands is studied
(graphane) (see in particular Fig. 4).

Since we have established the critical role of SOC in the
proper description of the effective masses at degenerate band

extrema, we now compare our results including SOC with
results from the literature (Table III), which all include SOC.
As could be expected, the agreement with Ref. [46] (DFT
results) is good and globally better than with Refs. [47,48]
(experimental results). However, the agreement of the transport
equivalent effective mass with Ref. [21] is surprisingly
poor.

To assess this issue, we first replaced fnk(θ,φ) [see Eq. (68)]
in our implementation by the fit used in Ref. [21] [see
their Eq. (16), or Eq. (63) of Ref. [18] for the original
version]:

fnk(θ,φ) = Ank ±
√

B2
nk + C2

nk sin2(θ )(cos2(θ ) + sin2(θ ) sin2(φ) cos2(φ)), (82)

where the parameters Ank, Bnk, and Cnk are independent of
n for a given pair of degenerate bands (it is only the ± sign
that distinguishes the two bands). Using the values obtained
by Ref. [21] for the parameters of the top valence band of
silicon at � (A = 4.204 49,B = 0.378 191, and C = 5.309)
yields, to all significant digits provided, a transport equivalent
effective mass identical to theirs. We also checked that
analytic and finite-difference differentiation of fnk(θ,φ) [in
Eq. (71)] yielded the same results, both for our implementation
fnk(θ,φ) [see Eq. (68)] and that of Eq. (82). Therefore, the
discrepancy does not stem from the implementation of the
transport effective mass formalism [from Eq. (68) to the end
of Sec. III B].

Thus, two possibilities remain: either Eq. (82) does not fit
well fnk(θ,φ) or the underlying results for fnk(θ,φ) differ.
To discriminate between the two, we fitted Eq. (82) to our
own results and calculated the transport equivalent effective
mass tensor from this fit. The parameters we obtained (A =
−4.625 03, B = 0.686 991, and C = 5.205 17) yield a tensor
identical (10−5 difference) to the one we obtained directly with
our implementation. Thus, the discrepancy between the results
of Ref. [21] and the present study can be traced back to the
numerical results obtained for fnk(θ,φ).

This is in line with the explanation given in Ref. [21] for
the poor agreement between their fit and their DFT values
for fnk(θ,φ), i.e., the nonparabolicity of the bands introduced
errors in their finite-difference calculations of fnk(θ,φ).
Indeed, it is known that coupling between bands (which causes
the band warping of degenerate states) can also cause strong
nonparabolicity of the bands [19,49]. Provided that such strong
nonparabolicity occur for a substantial portion of the directions
(θ,φ), finite-difference methods would become unsuitable for
computing fnk(θ,φ) in a calculation of M̄nk. This would
explain the poor agreement between our results and those of
Ref. [21] as well as why Eq. (82) fit perfectly our results while
it is not the case for that of Ref. [21]. It also illustrates the
convenience and reliability of direct (DFPT) calculations of
fnk(θ,φ) with respect to finite-difference computations.

2. Graphane

Graphane has emerged in recent years as a new two-
dimensional material with promising properties [50–52].
However, the effective masses in this material have received

little attention. Indeed, to the author’s knowledge, only the
effective mass of the conduction band has been roughly
assessed [53]. We thus decided to investigate this topic from
our first-principles framework.

The grafting of one hydrogen per carbon atom on graphene
to produce graphane can be done following many different
patterns [52]. However, we focus here on the most stable one:
the so-called “chair” configuration, where two hydrogen atoms
attached to neighboring carbon atoms are located on opposite
sides of the graphene sheet. This form of graphane has the
same primitive cell as graphene, barring the addition of the two
hydrogen atoms and a slight distortion of the carbon-carbon
bonds. Thus, it also features the same Brillouin zone. However,
in the case of graphane, the valence band maximum and the
conduction band minimum occur at �. Moreover, the valence
band is doubly degenerate.

In our simulations, we used both PAW with SOC (as
presented in Sec. II D) and NCPP without SOC (to validate
it since it is not used elsewhere in this work). To ensure
convergence (effective masses precise to three significant
digits), the NCPP simulations were carried out using a cutoff
energy of 40 Ha for the plane-wave basis while, for the PAW
case, a cutoff energy of 20 Ha for the plane-wave basis and 40
Ha for the PAW double grid were used. Also, in both cases, an
8×8×1 k-point grid, an interlayer spacing of 22.5 Å, and the
local-density approximation of Perdew and Wang [45] were
used. Moreover, in each case, the structure was fully relaxed.

The hexagonal structure of graphane is described by two
primitive vectors of equal lengths with a 120◦ angle between
them, with the atoms placed at positions (0,0) (one carbon
and one hydrogen) and ( 1

3 , 2
3 ) (the other carbon and hydrogen).

Moreover, by symmetry, all the C-C bonds and C-H bonds have
the same length. This leaves only three quantities to be reported
to define the structure of graphane: the primitive vector length
a, the C-C bond length, and the C-H bond length. Our NCPP
structural relaxation yielded a = 2.495 Å, C-C = 1.509 Å, and
C-H = 1.110 Å, while PAW yielded a = 2.504 Å, C-C =
1.515 Å, and C-H = 1.117 Å. The latter result compares
very well with the other PAW LDA result reported in the
literature [52,54] (a = 2.504 Å, C-C = 1.537 Å, and C-H =
1.110 Å).

Since graphane is a 2D material, the 3D formalism for the
“transport equivalent” effective mass presented in Sec. III B
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TABLE V. Effective masses for the conduction band minimum
(CBM) and the twofold-degenerate valence band maximum (VBM)
of “chair” graphane. The light hole (lh) and heavy hole (hh) bands
designate, respectively, the lower and upper bands in the inset of
Fig. 3. Results were obtained using NCPP calculations without SOC
(labeled NCPP) as well as PAW calculations with SOC (labeled
PAW). To explain the large difference between these calculations,
we treated the valence bands as degenerate in a PAW calculation
with SOC (labeled PAW+deg). We also carried out finite-difference
calculations (order 8) and obtained their difference with respect
to DFPT calculations (labeled �@NCPP and �@PAW) using the
methodology of Sec. IV A. Also, since the � point exhibits hexagonal
symmetry, the tensors at this point are proportional to the identity, so
that effective masses can be reported using a single number. Finally,
degenerate bands are handled using the formalism of Appendix F
since the formalism of Appendix E becomes unstable for 2D
materials. Results are provided in atomic units (me = 1).

Band NCPP �@NCPP PAW �@PAW PAW+deg

VBM, lh −0.271 −4E-7 −0.373 8E-8 −0.267
VBM, hh −0.616 1E-6 −0.372 8E-8 −0.613
CBM 1.012 2E-7 1.012 5E-8 1.012

and Appendix E becomes numerically unstable. We discuss
this issue and adapt the formalism of Appendix E to the 2D
case in Appendix F. Thus, it is with the latter formalism that we
handled the degenerate valence band extremum in graphane.

Since the � point exhibits hexagonal symmetry, the tensors
at this point are proportional to the identity, which leaves only
one quantity per band to be reported. We summarize these
results in Table V. Also, for the degenerate 2D case, a scaling
factor of the transport tensor cnk needs to be taken into account
[see Eq. (F15)]. However, since it is found to be 1.000 for the
valence band of graphane, it is omitted from Table V.

We observe good agreement between all results for the
conduction effective mass. Moreover, our results agree well
with Ref. [53], which reports an effective mass of 1 for the
conduction band of graphane using first-principles calcula-
tions. However, the comparison is more complex in the case
of the valence bands.

The first issue is that valence bands are degenerate in the
NCPP calculations, while the PAW calculations with SOC lift
the degeneracy by 8.71 meV (see Fig. 3). Thus, the nature of the
effective masses is not the same for NCPP and PAW with SOC:
the former are transport equivalent effective masses while
the latter are plain effective masses. Still, examination of the
angular-dependent effective masses mnk(θ,φ) [see Eq. (70)]
for both degenerate valence bands in the NCPP calculations
reveals that they exhibit spherical symmetry (i.e., there is no
warping). In this case, transport equivalent effective masses
coincide with plain effective masses, so that direct comparison
between NCPP and PAW with SOC results is possible.

Yet, as in the case of silicon, the results with and without
SOC strongly differ. In Table V, we prove that this difference
can be attributed to the extra coupling term present in fnn′k [see
Eq. (68)] when the bands are considered degenerate. We do so
by increasing the numerical threshold for degeneracy to a value
above the SOC splitting in the PAW (with SOC) calculation
(see the PAW+deg column). As expected, the results obtained
are in very good agreement with the NCPP ones.

K ΓΓΓ M K

−20

−15

−10

−5

0

5

10

15

E
ne

rg
y

(e
V

)

PAW w/o SOC

PAW with SOC

Fermi energy
0.05K ΓΓΓ 0.05M

−0.05

0.00

FIG. 3. Band structure of graphane within the PAW formalism,
with and without SOC. The inset shows the 8.71-meV spin-orbit
splitting of the valence bands.

We then prove that both results (NCPP and PAW with SOC)
really reflect the curvature of the bands at � by comparing them
with finite-difference calculations, using the methodology of
Sec. IV A. For clarity, only the difference between DFPT
and finite-difference results is reported in Table V. The good
agreement confirms both the accuracy of NCPP and PAW
with SOC effective masses (and validates our NCPP DFPT
implementation).

In the case of silicon, observation of the band structure
suggested that the effective masses with SOC evolve towards
the values without SOC when moving away from the band
extrema. However, such an observation is more difficult to
make in the case of graphane. Indeed, direct examination of
the band structure (Fig. 3) does not allow to see much besides
a rigid shift of a valence band when SOC in included. Thus, to
more precisely investigate the issue, we calculated the scalar
effective masses in the � − M direction at different points
along the � − M line, with and without SOC. The results are
presented in Fig. 4.

The results confirm what was suggested in the case of
silicon: the masses with SOC evolve towards the masses
without SOC, with a transition that occurs around k = 0.02M,
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FIG. 4. PAW calculations of scalar effective masses of graphane
in the � − M direction at different points on the � − M line, with
(red squares) and without (blue dots) SOC.
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TABLE VI. DFPT effective masses for the electron pocket of α-As at L = (0.5,0,0) from the present implementation and comparison with
the literature. PAW results with and without SOC are provided (labeled SOC and no SOC, respectively). To assess the nonparabolicity of the
band extrema generating the electron pockets, we also compute effective masses (with SOC) along the effective mass principal axes by fitting a
parabola to the band extremum and the point of the Fermi surface lying on the axis (the resulting masses are labeled FD@εF ). The convention
for the tilt angle is the same as in Refs. [57,59–61]. Results are provided in atomic units (me = 1).

This work Experiment

No SOC SOC FD@εF Theory [57] [61] [60] [59]

m1 −0.0448 −0.0709 0.0867 0.11 0.134 0.121 0.163
m2 0.00462 0.00421 0.0311 0.038 0.140 0.138 0.105
m3 1.30 1.10 1.40 0.94 1.350 1.18 2.11
Tilt 84.4◦ 84.9◦ 80◦ 84.5◦ 83.6◦ 86.4◦

which coincides with an energy scale that is comparable
to the SOC energy splitting. Indeed, for PAW calculations
with SOC, εlhk − εlh� = 9.5 meV and εhhk − εhh� = 7.6 meV,
where lh and hh stand for light hole and heavy hole band,
respectively (i.e., the lower and upper bands in the inset of
Fig. 3). This observation suggests that it would be pertinent to
take into account a relevant magnitude of k or εnk around the
band extrema (e.g., the doping level, gate voltage, ...) when
computing effective masses. A possible solution would be to
merge the formalism of Kane models [19] into the formalism
of Sec. III.

3. Arsenic

α-arsenic (or gray arsenic) is a semimetal with the A7
crystal structure [55]. The latter structure has a trigonal
primitive cell with two atoms per cell. The Brillouin zone
of α-As is described in Sec. II and Appendix A of Ref. [56]. It
features a nondegenerate ellipsoidal electron pocket at L and a
nondegenerate hole pocket of complex shape around T [57,58].

The fact that an effective mass at a nondegenerate band
extrema is a tensor [see, e.g., Eq. (22)] implies that the angle-
dependent effective mass mnk(θ,φ) should be an ellipsoid.
Consequently, the effective mass formalism is inappropriate
for the description of the hole pockets in α-As since they
are far from an ellipsoidal shape. We therefore focus on the
electron pockets, which originate from the L1 band.

In the literature on α-As effective masses [56,57,59–61],
Cartesian directions in the reciprocal space are conventionally
chosen to be the “trigonal” axis [(1 1 1) in reduced coordinates]
for the z direction and the “binary” axis [(0 1 -1) in reduced
coordinates] for the x axis, which leaves y (the “bisectrix”
axis) to be ẑ×x̂.

One of the principal axes of the effective mass ellipsoid m1

lies along the binary axis x, which leaves the two other m2

and m3 to be in the yz plane [56,57,59–61]. The orientation
of the largest of these two principal effective masses m3 is
conventionally described in terms of the “tilt” angle it forms
with the z axis. Positive angles denote a rotation from the z

axis towards the y axis. We use the same convention here.
In our calculations, the PAW formalism was used with and

without SOC (see Sec. II D). A cutoff energy of 30 Ha for
the plane-wave basis and 60 Ha for the PAW double grid
along with a 30×30×30 k-point grid were used to ensure
fully converged calculations (effective masses precise to 3
significant digits). Also, the local-density approximation of
Perdew and Wang [45] was used and the structure was fully

relaxed. The trigonal primitive vector was found to be 3.9783 Å
long with 56.441◦ angles between each of them and the atomic
positions were found to be 0.2305(1,1,1) and 0.76947(1,1,1)
in reduced coordinates.

We compare our results for m1, m2, m3, and the tilt angle
with results from the literature in Table VI. To further assess
the nonparabolicity of the band, we also compute three scalar
effective masses (with SOC) from the band extrema and
the points of the Fermi surface lying on the effective mass
principal axes.

We immediately note the disagreement between the DFPT
and the other results for m1 and m2. In particular, the disagree-
ment between our DFPT results and our scalar effective masses
(FD@εF ) directs suspicion towards band nonparabolicity. To
assess this, we plot the band structure with and without SOC
around L along these directions in Fig. 5. Indeed, both band
structures are clearly nonparabolic along these two directions
and, in particular, have a curvature along m1 that change
sign at a finite wave vector k. This is in line with the strong
nonparabolicity also observed by Ref. [56].

We also note that, for our scalar effective masses (FD@εF ),
the agreement with other theoretical results (Ref. [57]) is
reasonably good. Indeed, the agreement is as good as could

← m1 0.01 L 0.01 0.02→ m2

Distance from L (in L )

−0.10

−0.05

0.00

0.05

0.10

E
ne

rg
y

(e
V

)

PAW w/o SOC

PAW with SOC

FIG. 5. Band structure of α-As with and without SOC around
L in the directions of the two DFPT effective mass principal axes
that exhibit strong nonparabolicity (m1 and m2). We observe a strong
nonparabolicity in the m2 direction. Also, the m1 direction looks
reasonably parabolic without SOC, but changes sign due to a band
crossing at finite wave vector. When SOC is included, the m1 direction
exhibits strong nonparabolicity due to an avoided crossing.
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be expected, given that Ref. [57] uses an empirical pseu-
dopotential approach that our DFPT effective mass principal
axes are likely to be slightly different from the Fermi surface
principal axes and that the Fermi surface deviates slightly from
an ellipsoid [61,62].

On the other hand, we observe that DFPT agrees with the
scalar effective mass results (FD@εF ) for m3, which suggests
that the effective mass is parabolic in this direction. In this
case (as well as for the tilt angle, which is incidentally defined
with respect to m3), we also observe good overall agreement
with experimental [59–61] and theoretical [57] results.

We conclude from this that effective masses [as defined in
Eq. (22), i.e., in the k · p̂ and DFPT sense] are a dangerous
concept to use in metals, even if they have as little charge
carriers as α-As. Indeed, in the present case, the range where
a quadratic expansion reliably describes the band dispersion
is much smaller than the electron pockets. However, it is
possible that some coupling between the bands in Fig. 5 would
explain the strong nonparabolicities observed. Thus, including
the formalism of Kane models [19] into the formalism of
Sec. III may enhance the description of α-As (and semimetals
in general).

V. CONCLUSION

Up to now, effective masses were usually calculated
using finite-difference estimation of density functional theory
(DFT) electronic band curvatures [5,7–9,12–14]. The only
option available to circumvent their use relies on Wannier
functions [16]. However, finite differences require additional
convergence studies and can lead to precision issues while
Wannier functions require careful selection of the starting
functions. In contrast, the present DFPT-based method allows
to obtain DFT effective masses with high precision without
any such additional work. It is therefore more suitable for,
e.g., high-throughput material design.

Moreover, it is known that the concept of effective mass
breaks down at degenerate band extrema due to the non-
analyticity of the band structure at such a point. While this
issue is usually addressed with a fitting procedure that aims
at accurately describing the band structure at this point [18],
it would be more convenient to directly determine a metric of
the performance of the material in a design context. Since the
most appropriate metric is usually some transport tensor, the
concept of “transport equivalent mass tensor” [21] becomes
quite suitable for our objective and has been integrated in our
DFPT-based method. This concept allows one to compute an
effective-mass-like tensor which gives the right contribution
to transport tensors when used, even if the band extremum
cannot be described by a tensor. This makes our method more
general and even simpler to use.

The developed techniques were validated by comparison
with finite-difference calculations and excellent agreement
was observed. Then, applying our method to the study of
silicon, graphane, and arsenic, we found results coherent with
previous studies, thus further validating our method. Actually,
the agreement with Ref. [21] was, at first sight, not very good,
as seen in Sec. IV B 1, but a careful analysis pointed to the
superiority of the DFPT versus finite-difference approach to
extract a transport equivalent effective mass.

Still, our simulations (especially in the case of graphane)
suggest that neither the nondegenerate formalism of Sec. II
nor the degenerate formalism of Sec. III is suitable when the
energy scale relevant to the problem (e.g., doping level, gate
voltage, . . .) is comparable to the energy separation between
the band of interest and its closest neighbor. Thus, it would
be interesting to merge the formalism developed by Kane [19]
into the formalism of Sec. III in future developments.

Also, a substantial difference between DFT and experimen-
tal results remains. Provided that recent studies have exposed
the substantial impact of electron-electron interactions on the
calculated effective masses [5,8], it becomes interesting to
investigate approximate schemes to include these interactions
in the calculations. Furthermore, it would be interesting to
investigate the impact of electron-phonon interaction not only
on the band gap [37,63–69], but also on the effective masses.

ACKNOWLEDGMENTS

This work was supported by the FRQNT through a
postdoctoral research fellowship (J.L.J.) as well as the Fonds
de la Recherche Scientifique–FNRS through Scientific Stay
Grant No. 2014/V 6/5/010-IB (J.L.J.), a FRIA fellowship
(S.P.), and a FNRS fellowship (Y.G.). Also, we would like
to thank Y. Pouillon and J.-M. Beuken for their valuable
technical support and help with the test and build system
of ABINIT. Computational resources have been provided by
the supercomputing facilities of the Université catholique de
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APPENDIX A: DERIVATIVES IN
REDUCED COORDINATES

Defining {a1,a2,a3} as the real-space and {b1,b2,b3} as
the reciprocal-space primitive vectors, with aα · bβ = 2πδαβ ,
noting vectors in reduced coordinates as v̆, and defining

[A]αβ � [aβ]α; [B]αβ � [bβ]α, (A1)

we have

r = Ar̆; k = Bk̆; AT B = 2π1, (A2)

from which we deduce the inverse transformation

k̆ = 1

2π
AT k. (A3)

We can now deduce using Eq. (A3) the transformation that
links derivatives with respect to Cartesian components of k
(noted Xα) to derivatives with respect to reduced coordinates
(noted X̆α)

δX =
∑

α

Xα[δk]α =
∑

α

X̆α[δk̆]α (A4)

⇒ Xα =
∑

β

[A]αβ

2π
X̆β. (A5)
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Similarly for second-order derivatives, we obtain

Xαβ =
∑
γ δ

[A]αγ

2π
X̆γ δ [AT ]δβ

2π
, (A6)

and can thus retrieve, e.g., ε
αβ

nk from ε̆
αβ

nk .

APPENDIX B: KINETIC ENERGY
WITH CUTOFF SMEARING

A known issue when optimizing the primitive cell size
in a plane-wave implementation of DFT are the spurious
discontinuous drops in total energy that occur when increasing
the cell size. Indeed, dilating the real-space lattice contracts
the reciprocal-space one. This contraction increases discon-
tinuously the number of plane waves located inside a sphere
defined by the cutoff energy Ec. This discontinuous increase
of the size of the plane-wave basis set translates into a
discontinuous increase of the number of degrees of freedom
available for the minimization of the total energy, which causes
discontinuous drops when increasing the cell size.

A possible solution to this problem is to force the effective
number of degrees of freedom to increase continuously as
the cell size increases. A numerical way to achieve this was
first proposed in Ref. [28] and involves modifying the kinetic
energy close to Ec so that it smoothly becomes large

〈G| T̂k |G′〉

= δGG′

{
1

2
(k + G)2 + A

[
1 + erf

( 1
2 (k + G)2 − Ec

Es

)]}
,

(B1)

where erf(x) is the error function and where Es and A are
adjustable parameters. Thus, the weights of the plane waves
become smoothly small close to Ec and the change in the
number of degrees of freedom with varying cell size can be
made more continuous. This idea not only makes the total
energy smoother with respect to cell size but also provides, as
a side effect, a very good approximation of Pulay stress [70]
within the kinetic energy term [28].

Within ABINIT, the implementation of this idea takes a
slightly different form. Rather than becoming smoothly large
at Ec, the kinetic energy rises asymptotically to infinity (see
Fig. 6), so that the change in the number of degrees of freedom
with varying cell size becomes completely continuous. The
mathematical formulation of this idea takes the form

〈G| T̂k |G′〉 = 1
2 (k + G)2δGG′ p(x), (B2)

where

x �
Ec − 1

2 (k + G)2

Es

, (B3)

and where p(x) → +∞ as x → 0+. The deviation from the
physical expression 1

2 (k + G)2 starts at Ec − Es , i.e., p(x)
starts deviating from 1 below x = 1. The parameter Es is
therefore the energy range around the cutoff energy Ec where
the occupations start to be forced towards 0, i.e., Es can be
interpreted as a smearing of the cutoff energy.

To avoid numerical issues, p(x) is chosen so the first-
and second-order derivatives of the kinetic energy remain
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0.5(k+G)2/Ec
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c
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Modified kinetic energy
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Deviation onset Ec−Es

FIG. 6. Within ABINIT, the kinetic energy rises asymptotically
to infinity so that the change in the number of degrees of freedom
with varying cell size is continuous. The onset of the deviation from
the physical expression 1

2 (k + G)2 occurs at the energy Ec − Es .
The first- and second-order derivatives of the kinetic energy remain
continuous at this onset.

continuous at the onset of this deviation, that is, just above
the plane-wave kinetic energy Ec − Es . Moreover, its inverse
approaches quadratically zero at Ec. Among the possible
functions with this behavior, the following specific form for
p(x) was chosen and implemented within ABINIT:

p(x) �
{

1 if 1 < x,

1
x2{3+x[1+x(−6+3x)]} if 0 < x � 1.

(B4)

Together, Eqs. (B2), (B3), and (B4) define the modified kinetic
energy implemented within ABINIT and form the starting point
from which its derivatives [Eqs. (26) and (27)] are obtained.

APPENDIX C: PAW REMINDER

The basic idea of PAW is to transform the eigenfunctions
|ψnk〉 of the Hamiltonian Ĥ into “pseudo”-wave functions
|ψ̃nk〉, which are smoother and thus accurately described by a
smaller plane-wave basis. Since the sharp features of the wave
function usually occur near the nucleus, the transformation
only needs to differ from identity within an “augmentation”
region �R around each nucleus position R within the primitive
cell. Within these augmentation regions, an orthonormal basis
{|φRi〉} that contains the sharp components of the wave
functions |ψnk〉 is chosen, where the index i labels the
functions |φRi〉 belonging to a given atomic site R. The
transformation can then be defined as the replacement of
these components {|φRi〉} of the wave functions |ψnk〉 by
those of another orthonormal basis {|φ̃Ri〉}, which are smoother
inside the augmentation region �R and identical outside. More
formally, this idea translates into

|ψ̃nk〉 = |ψnk〉 +
∑
Ri

(|φ̃Ri〉 − |φRi〉) 〈φRi |ψnk〉 . (C1)

At the end of the calculation, we can recover the full wave
functions with the inverse transformation

|ψnk〉 = |ψ̃nk〉 +
∑
Ri

(|φRi〉 − |φ̃Ri〉) 〈φ̃Ri |ψ̃nk〉 . (C2)
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In the PAW method, the orthonormality constraint imposed
to the bases {|φRi〉} and {|φ̃Ri〉} is relaxed into a completeness
constraint. This gives additional degrees of freedom to make
the basis {|φ̃Ri〉} even smoother. However, this implies that
〈φ̃Ri |φ̃Rj 〉 = IRij is not in general the identity matrix δij and
thus

∑
i |φ̃Ri〉 〈φ̃Ri | is not the identity operator.

To solve this issue, we introduce the projectors |p̃Ri〉,
defined by

〈p̃Ri |φ̃Rj 〉 � δij , (C3)

which allows to express the identity as
∑

i |φ̃Ri〉 〈p̃Ri | and thus
Eq. (C2) becomes

|ψnk〉 = |ψ̃nk〉 +
∑
Ri

(|φRi〉 − |φ̃Ri〉) 〈p̃Ri |ψ̃nk〉 (C4)

� τ̂ |ψ̃nk〉 , (C5)

where τ̂ is a linear, but not unitary, transformation.
For PAW to be computationally advantageous, the |ψ̃nk〉

(and not the |ψnk〉) must be the variational parameter used
in the calculation. Ideally, one should avoid using the |ψnk〉
whenever possible, and thus directly deduce the desired
observables O from the |ψ̃nk〉:

Onk = 〈ψnk| Ô |ψnk〉
= 〈ψ̃nk| τ̂ †Ôτ̂ |ψ̃nk〉
� 〈ψ̃nk| ˆ̃O |ψ̃nk〉 , (C6)

where the transformed operator ˆ̃O takes the form

ˆ̃O =
(

1+
∑
Ri

|p̃Ri〉 (〈φRi | − 〈φ̃Ri |)
)

Ô

×
⎛
⎝1+

∑
R′j

(|φR′j 〉− |φ̃R′j 〉) 〈p̃R′j |
⎞
⎠

= Ô+
∑
Rij

|p̃Ri〉 (〈φRi | Ô |φRj 〉− 〈φ̃Ri | Ô |φ̃Rj 〉) 〈p̃Rj | .

(C7)

The last relation is valid only for semilocal operators Ô (that
is, operators which depend only locally on the value and
derivatives with respect to r of the wave functions). Moreover,
it supposes that the bases {|φRi〉} and {|φ̃Ri〉} are complete and
that the augmentation regions �R do not overlap. However,
in practical calculations, small bases usually suffice to achieve
good accuracy and a small overlap of the augmentation regions
can be tolerated without substantial loss of precision.

In the case of periodic solids, we wish to use the |ũnk〉
(instead of the |ψ̃nk〉) directly as the variational parameter. To
do so, we must transform Schrödinger’s equation [Eq. (4)] to
its PAW version. Starting from Eq. (1), then using Eqs. (C5)
and (C6) and, finally, applying Eqs. (3) and (5) to the PAW
quantities, we obtain

Ĥ |ψnk〉 = εnk |ψnk〉
⇒ ˆ̃H |ψ̃nk〉 = εnk

ˆ̃1 |ψ̃nk〉
⇒ ˆ̃Hk |ũnk〉 = εnk

ˆ̃1k |ũnk〉 , (C8)

where we have defined the overlap operator

ˆ̃1 � τ̂ †τ̂ , (C9)

and where the k-dependent operators ˆ̃Hk and ˆ̃1k have the
following form, following Eq. (C7):

ˆ̃Hk = Ĥk +
∑
Rij

e−ik·r̂ |p̃Ri〉 DRij 〈p̃Rj | eik·r̂ (C10)

� Ĥk + D̂k, (C11)

ˆ̃1k = 1 +
∑
Rij

e−ik·r̂ |p̃Ri〉 SRij 〈p̃Rj | eik·r̂, (C12)

with

DRij � (〈φRi | Ĥ |φRj 〉 − 〈φ̃Ri | Ĥ |φ̃Rj 〉), (C13)

SRij � (〈φRi |φRj 〉 − 〈φ̃Ri |φ̃Rj 〉). (C14)

As stated by Eqs. (20) and (21) for the norm-conserving
case and as we demonstrate in Sec. III [see Eqs. (64) and (63)]
for the PAW case, we need the first- and second-order
derivatives of ˆ̃Hk and ˆ̃1k to compute the effective masses. From
Eqs. (C13) and (C14), and the fact that we use a plane-wave
basis set, this means that we need expressions for 〈G| D̂k |G′〉
and 〈G| ˆ̃1k |G′〉. We obtain

〈G| D̂k |G′〉 =
∑
Rij

〈G| e−ik·r̂ |p̃Ri〉 DRij 〈p̃Rj | eik·r̂ |G′〉

=
∑
Rij

〈k + G|p̃Ri〉 DRij 〈p̃Rj |k + G′〉 . (C15)

Since the projectors |p̃Ri〉 stem from Schrödinger’s equation
with a spherical potential [31], they can be expressed as the
product of their radial part times spherical harmonics [38]

〈r|p̃Ri〉 � P̃Ri(s)

s
Ylimi

(ŝ), (C16)

where we have defined P̃Ri(s), where s � r − R and where
Ylm are the spherical harmonics. Thus, we can calculate
〈k + G|p̃Ri〉:

〈k + G|p̃Ri〉

=
∫ sc

0
ds s2 P̃Ri(s)

s

∫
d ŝ Ylimi

(ŝ)e−i(k+G)·(s+R), (C17)

where sc is the radius of the augmentation regions �R and ŝ is
the normalized version of s. This can be simplified, using the
identity

eik·s = 4π

∞∑
l=0

iljl(ks)
l∑

m=−l

Ylm(ŝ)Ylm(q̂), (C18)

where jl(ks) are spherical Bessel functions. Equation (C17)
thus becomes

〈K|p̃Ri〉 = 4πili e−iK·RYlimi
(K̂)
∫ sc

0
ds s P̃Ri(s)jli (Ks)

(C19)

� 4πili e−iK·RYlimi
(K̂)P̃Ri(K) (C20)

� 4πili e−iK·RP̄Ri(K), (C21)
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where K � k + G. Substituting Eq. (C21) into Eq. (C15) gives

〈G| D̂k |G′〉 =
∑
Rij

4πili P̄Ri(K)e−i(�k+G)·RDRij e
i(�k+G′)·RP̄ ∗

Rj (K′)4π (ilj )∗ =
∑
Rij

〈K|p̄Ri〉DRij 〈p̄Rj |K′〉 , (C22)

where we have defined

〈K|p̄Ri〉 � 4πili P̄Ri(K)e−iG·R. (C23)

Together, Eqs. (C19)–(C22) form the starting point for the calculation of the derivatives of the nonlocal part of the Hamiltonian
D̂k in Sec. II C.

APPENDIX D: DERIVATION OF EQ. (54) FROM EQ. (50)

Substituting Eq. (51) in Eq. (50), using Eq. (52), simplifying using Eq. (28), using Eq. (47), and invoking the degeneracy at
first order (εα

nn′k = εα
{d}kδnn′ ) yields

ε
αβ

nn′k = 〈ũn′k| ˆ̃Hαβ

k − εnk + εn′k

2
ˆ̃1αβ

k |ũnk〉 +
( 〈 ˆ̃Qkũ

α
n′k

∣∣ ˆ̃Hβ

k − εnk + εn′k

2
ˆ̃1β

k |ũnk〉 + 〈 ˆ̃Qkũ
α
n′k

∣∣ ˆ̃Hk − εnk + εn′k

2
ˆ̃1k
∣∣ ˆ̃Qkũ

β

nk

〉

+ 〈ũn′k| ˆ̃Hα
k − εnk + εn′k

2
ˆ̃1α

k

∣∣ ˆ̃Qkũ
β

nk

〉+ 〈ũα
n′k| ˆ̃1k |ũnk〉 ε

β

{d}k + εα
{d}k 〈ũn′k| ˆ̃1k

∣∣ũβ

nk

〉 )+ α ↔ β. (D1)

It is more convenient to reformulate the two last term within parenthesis so that they can be merged with the first and
third terms within parenthesis. To do so, we rearrange the terms included in α ↔ β and invoke the degeneracy to first order
ε

β

nk = ε
β

n′k ∀ n,n′ ∈ {d}, so that Eq. (46) can be used, and obtain( 〈
ũα

n′k

∣∣ ˆ̃1k |ũnk〉 ε
β

nk + εα
n′k 〈ũn′k| ˆ̃1k

∣∣ũβ

nk

〉 )+ α ↔ β

= −1

2

( 〈ũn′k| ˆ̃1α
k |ũnk〉 ε

β

nk + εα
n′k 〈ũn′k| ˆ̃1β

k |ũnk〉
)+ α ↔ β

= −1

2

( 〈
δũα

n′k

∣∣ ˆ̃Hβ

k − εnk + εn′k

2
ˆ̃1β

k |ũnk〉 + 〈ũn′k| ˆ̃Hα
k − εnk + εn′k

2
ˆ̃1α

k

∣∣δũβ

nk

〉 )+ α ↔ β, (D2)

where we have defined ∣∣δũα
nk

〉
�
∑

n′∈{d}
|ũn′k〉 〈ũn′k| ˆ̃1α

k |ũnk〉 , (D3)

and where we have used εα
nn′k = εα

{d}kδnn′ , Eq. (47), and Eq. (52) for the last equality of Eq. (D2). Substituting this result in
Eq. (D1) and using the fact that we can add any component within the degenerate subspace to the wave functions of the second
term within parenthesis of this equation [since they do not contribute to the final result as per Eq. (28)], we obtain

ε
αβ

nn′k = 〈ũn′k| ˆ̃Hαβ

k − εnk + εn′k

2
ˆ̃1αβ

k |ũnk〉 +
( 〈

ˆ̃Qkũ
α
n′k − 1

2
δũα

n′k

∣∣∣∣ ˆ̃Hβ

k − εnk + εn′k

2
ˆ̃1β

k |ũnk〉

+ 〈ũn′k| ˆ̃Hα
k − εnk + εn′k

2
ˆ̃1α

k

∣∣∣∣ ˆ̃Qkũ
β

nk − 1

2
δũ

β

nk

〉
+
〈

ˆ̃Qkũ
α
n′k − 1

2
δũα

n′k

∣∣∣∣ ˆ̃Hk − εnk + εn′k

2
ˆ̃1k

∣∣∣∣ ˆ̃Qkũ
β

nk − 1

2
δũ

β

nk

〉 )
+ α ↔ β.

(D4)

Equation (D4) is the intermediate point [see Eq. (54)] from
which the final expression for ε

αβ

nn′k [Eq. (64)] is obtained in
Sec. III A.

APPENDIX E: TRANSPORT EQUIVALENT EFFECTIVE
MASS TENSOR M̄nk FROM BAND CURVATURE fnk(θ,φ)

We summarize in this Appendix the idea of Ref. [21],
which associates to fnk(θ,φ) a transport equivalent mass
tensors M̄nk that generates the same contribution to transport

properties. The association holds within the relaxation time
approximation to Boltzmann’s transport equation [2,3] with
an energy-dependent relaxation time of the form τ nk(ε) =
Unτnk(ε), i.e., where the energy dependence can be factored
out of the tensor. It also requires that M̄nk be calculated at a
band extrema (εα

nn′k = 0). In this Appendix, we generalize the
original demonstration to an energy-dependent relaxation time
τ nk(ε) (where the energy dependence may not be factored out
of the tensor) but specialize to the case of conductivity σ for
concision.

205147-18



PRECISE EFFECTIVE MASSES FROM DENSITY . . . PHYSICAL REVIEW B 93, 205147 (2016)

With these assumptions, Boltzmann’s transport equation becomes

gnk = f (T ,εnk − μ) − ∂f

∂ε

∣∣∣∣
εnk

(τ nk(εnk)vnk) ·
(

−eE − ∇μ − εnk − μ

T
∇T

)
, (E1)

with T the temperature, μ the chemical potential, f (T ,ε − μ) the Fermi-Dirac distribution, vnk the electronic velocity, −e the
electronic charge, E the electric field, and gnk the (out-of-equilibrium) occupation numbers of the electrons. We can then calculate
the resulting current density

j = −e 2
∑

n

∫
dk
8π3

vnkgnk, (E2)

then deduce the conductivity

σ = ∂j
∂E

= −e2
∑

n

∫
dk
4π3

∂f

∂ε

∣∣∣∣
εnk

vnkvT
nkτ

T
nk(εnk). (E3)

Since we are at band extrema (located at k), we have a dispersion of the form

εnk+q = εnk + fnk(θ,φ)
q2

2
. (E4)

We can now obtain vnk from the band curvature fnk(θ,φ):

vnk = ∂εnk

∂k
= q

2
v̄nk(q̂), (E5)

where q̂ is the unit vector along the direction θ,φ in spherical coordinates and where the quantity v̄nk(q̂) takes the following form
in Cartesian coordinates:

v̄nk(q̂) �

⎛
⎜⎜⎝

2fnk(θ,φ) sin(θ ) cos(φ) + ∂fnk
∂θ

cos(θ ) cos(φ) − ∂fnk
∂φ

sin(φ)
sin(θ)

2fnk(θ,φ) sin(θ ) sin(φ) + ∂fnk
∂θ

cos(θ ) sin(φ) + ∂fnk
∂φ

cos(φ)
sin(θ)

2fnk(θ,φ) cos(θ ) − ∂fnk
∂θ

sin(θ )

⎞
⎟⎟⎠. (E6)

Supposing that the parabolic dispersion of the bands holds
wherever ∂f

∂ε
is non-negligible, the conductivity σ takes the

following form:

σ = −e2
∑

n

∫
dk
4π3

∂f

∂ε

∣∣∣∣
εnk

q

2
v̄nk(q̂)

q

2
v̄T

nk(q̂)τ T
nk(εnk), (E7)

which, using the substitution

ε � εnk + sign(εnk − μ)|fnk(θ,φ)|q
2

2
, (E8)

can be split into a product

σ =
∑

n

∑
k

CnkKnk, (E9)

where the sum over k runs over the different extrema of band
n. This product distinguishes the integral over the energy ε:

Knk � −e2

23/2π3
sign(εnk − μ)

×
∫ sign(εnk−μ)∞

εnk

dε|ε − εnk|3/2 ∂f

∂ε
τ T

nk(ε) (E10)

and the integral over the spherical angles (θ,φ):

Cnk �
∫ 2π

0
dφ

∫ π

0
dθ sin(θ )

v̄nk(θ,φ)v̄T
nk(θ,φ)

2|fnk(θ,φ)|5/2
. (E11)

When fnk(θ,φ) is an ellipsoid, i.e., when the band disper-
sion can be described by an effective mass tensor Mnk, and if
we choose the Cartesian axes to be along the ellipsoid principal
axes

Mnk =

⎛
⎜⎝

mnkx 0 0

0 mnky 0

0 0 mnkz

⎞
⎟⎠, (E12)

then we have the relation

fnk(θ,φ) = q̂T (θ,φ)Mnkq̂(θ,φ). (E13)

Calculating fnk(θ,φ) in terms of mnkx,mnky,mnkz,θ, and φ,
substituting in v̄nk(θ,φ) [Eq. (E6)], then into Cnk [Eq. (E11)],
and finally carrying out analytically the integration over θ,φ

yields

[Cnk]ij = 8π

3

√
mnkxmnkymnkz

mnki

δij , (E14)

which allows to deduce mnki from Cnk:

mnki = [Cnk]jj [Cnk]kk

(8π/3)2
, i �= j �= k �= i. (E15)
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APPENDIX F: TRANSPORT EQUIVALENT
EFFECTIVE MASS TENSOR M̄nk FROM BAND

CURVATURE fnk(θ,φ) in 2D

When mnkz → ∞, we observe from Eq. (E14) that the x

and y matrix elements of Cnk diverge. Thus, the procedure
to find M̄nk described in Appendix E becomes numerically
unstable for 2D systems. To solve this issue, we adapt the
formalism of Appendix E to the 2D context.

The conductivity σ then becomes

σ 2D =
∑

n

∑
k

C2D
nk K2D

nk , (F1)

with the energy part

K2D
nk � −e2

2π2

∫ ±∞

εnk

±dε|ε − εnk|∂f
∂ε

τ 2D T
nk (ε) (F2)

and the angular part

C2D
nk �

∫ 2π

0
dφ

v̄nk(φ)v̄T
nk(φ)

2|fnk(φ)|2 , (F3)

where

v̄nk(φ) �
(

2fnk(φ) cos(φ) − ∂fnk
∂φ

sin(φ)

2fnk(φ) sin(φ) + ∂fnk
∂φ

cos(φ)

)
, (F4)

and where σ 2D and τ 2D
nk (ε) are 2D tensors.

When fnk(φ) is an ellipse, i.e., when the band dispersion
can be described by an effective mass tensor M2D

nk , and if we
choose the Cartesian axes to be along the principal axes

M2D
nk =

(
mnkx 0

0 mnky

)
, (F5)

then we have the relation

fnk(φ) = q̂T (φ)M2D
nk q̂(φ). (F6)

We deduce from Eqs. (F3) and (F4) the tensor C2D
nk resulting

from Eqs. (F5) and (F6):

[
C2D

nk

]
ij

= 2π

√
mnkxmnky

mnki

δij . (F7)

A distinct feature of Eq. (F7) with respect to the 3D case
[Eq. (E14)] is that C2D

nk is determined from the ratio of mnkx

and mnky only and is not influenced by their magnitude.
It is easier to get an intuitive understanding of this fact if

we consider a one-band system with a minimum at � with
M = m∗1, τ = τ1 ⇒ σ = σ1, and work at a constant Fermi
energy with respect to the extremum (minimum or maximum).
We then have

σ = ne2τ

m∗ , (F8)

with

n � −
∫

dk
(2π )D

∂f

∂ε
∝ (m∗)D/2, (F9)

with D the dimensionality of the system considered. We see
that for the specific case of 2D systems, a cancellation occurs
between the carrier density n and the effective mass m∗ in
Eq. (F8). Therefore, m∗ does not influence the conductivity σ

in 2D or, in the more general case of Eq. (F3), rescaling fnk(φ)
(or, equivalently, M̄2D

nk ) does not influence C2D
nk . Thus, the scale

of M̄2D
nk can be set arbitrarily.

Reciprocally, M̄2D
nk does not influence the scale of C2D

nk , as
per Eq. (F7). This feature of 2D tensorial effective masses
does not hold true for general (i.e., warped) fnk(φ). There is
therefore one degree of freedom of C2D

nk (its scale) that M̄2D
nk

fails to determine. Care must therefore be taken when one
computes transport quantities from M̄2D

nk in 2D. Once C2D
nk has

been diagonalized, one must extract its scaling cnk:

U2D T
nk C2D

nk U2D
nk =

(
Cnkx 0

0 Cnky

)

= 2πcnk

⎛
⎝
√

Cnkx

Cnky
0

0
√

Cnky

Cnkx

⎞
⎠ (F10)

and preserve this information. Then, substituting cnk → 1 into
Eq. (F10) gives a form of C2D

nk compatible with a tensorial
effective mass, which allows direct comparison with Eq. (F7):

√
Cnky

Cnkx

=
√

mnkx

mnky

, (F11)

which still leaves the scale of M̄2D
nk undetermined.

Within this implementation, we choose to set the average
curvature associated with M̄2D

nk [through Eq. (F6)] to the
average curvature of the associated band extrema f̄ 2D

nk :

1

2

(
1

mnkx

+ 1

mnky

)
= f̄ 2D

nk � 1

2π

∫ 2π

0
dφ fnk(φ), (F12)

so that we recover M̄2D
nk = M2D

nk when there is no warping (i.e.,
when the effective mass can be described by a tensor). This
allows to set specific values for mnkx and mnky :

mnkx = 1

2f̄ 2D
nk

(
1 + Cnky

Cnkx

)
, (F13)

mnky = mnkx

Cnkx

Cnky

. (F14)

As discussed above Eq. (F10), when these values are used to
obtain a transport quantity, one must remember to multiply the
final result by the scaling factor cnk obtained in Eq. (F10):

cnk �
√

CnkxCnky

2π
(F15)

since tensorial M̄2D
nk are unable to account for it. For instance,

rather than using Eq. (F7), which applies only to tensorial
effective masses (i.e., to nonwarped bands), one should
substitute Eq. (F11) into (F10):

U2D T
nk C2D

nk U2D
nk = 2πcnk

⎛
⎝
√

mnky

mnkx
0

0
√

mnkx

mnky

⎞
⎠. (F16)
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Martin, C. Martins, M. J. T. Oliveira, S. Poncé, Y. Pouillon,
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