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The electron–phonon interaction plays a crucial role in many fields of physics and chemistry.
Nevertheless, its actual calculation by means of modern many–body perturbation theory is weak-
ened by the use of model Hamiltonians that are based on parameters difficult to extract from the
experiments. Such shortcoming can be bypassed by using density–functional theory to evaluate
the electron–phonon scattering amplitudes, phonon frequencies and electronic bare energies. In this
work, we discuss how a consistent many–body diagrammatic expansion can be constructed on top of
density–functional theory. In that context, the role played by screening and self–consistency when
all the components of the electron–nucleus and nucleus–nucleus interactions are taken into account
is paramount. A way to avoid overscreening is notably presented. Finally, we derive cancellations
rules as well as internal consistency constraints in order to draw a clear, sound and practical scheme
to merge many–body perturbation and density–functional theory.

PACS numbers: 71.38.-k,71.15.Mb, 71.15.-m

In physics and chemistry the interaction between elec-
tronic and vibrational degrees of freedom is at the ori-
gin of a multitude of phenomena. Focusing on solid
state physics, this coupling usually determines the elec-
trical and thermal conductivity of metals as well as car-
rier lifetime in doped semiconductors1. It also induces
the transition to a superconducting phase in many solids
and nanostructures2. The electron–nucleus coupling also
plays a role in the renormalization of electronic bands3,
carriers mobility in organic devices4 and dissociation at
the donor/acceptor interface in organic photovoltaic5.
This coupling can naturally interact with other couplings
like the magnetic field leading, for example, to the spin-
Seebeck effect6.

This effect is nowadays the subject of an intense re-
search activity for its crucial role in new emerging fields
of experimental and theoretical physics. The electron–
nucleus coupling plays a crucial role in the relaxation
and dissipation of photo–excited carriers in pump and
probe experiments7,8. Similarly, modern Angle–Resolved
Photoemission Spectra (ARPES) experiments have re-
cently disclosed the complex and temperature depen-
dent structures appearing in the spectral functions of
several oxides9. These structures quite remarkably re-
semble similar structures predicted to exist in conjugated
polymers10,11 pointing to a strong effect whose physical
origin is still not completely clear.

From the theoretical point of view, the most up–
to–date scheme to calculate and predict the ground–
and excited–state properties of a wide range of mate-
rials is based on the merging of Density–Functional–
Theory (DFT)12 with Many–Body Perturbation The-
ory (MBPT)13.

DFT is a broadly used ab-initio ground–state theory,

that allows to calculate exactly electronic density and
total energy without adjustable parameter. The merg-
ing of DFT with perturbation theory gives the so-called
Density-Functional Perturbation Theory14–16 (DFPT).
The DFPT is a powerful computational tool for the direct
treatment of phonons.

However, the DFT computation of excited electronic
states properties like the bandgap energies is a known
problematic topic12. As a result, MBPT is nowadays the
preferred alternative to DFT for that purpose. It is based
on the accurate treatment of correlation effects by means
of the Green’s function formalism. MBPT is formally
correct and leads to a close agreement with experiment17

but is extremely computationally demanding. A natu-
ral way to solve this issue is to merge the quick DFT
calculation with the accurate MBPT one. The latter
method is often referred to as ab-initio Many-Body Per-
turbation Theory13 (ai–MBPT). In this method, DFT
provides a suitable single–particle basis for the MBPT
scheme. This methods has been applied successfully to
correct the well–known band–gap underestimation prob-
lem of DFT18,19.

Although the ai–MBPTaims at calculating the excited
state properties with an unprecedent precision, it is com-
monly applied by neglecting the effect of lattice vibra-
tions. Even today, most of the ai–MBPT results are com-
pared with finite-temperature experimental data20. Such
comparison is not even well motivated at zero tempera-
ture as the lattice vibrations induce a zero–point motion
effect that can be sizeable10,11,21,22, e.g. on the order of
0.4–0.6 eV for the direct and indirect band gaps of dia-
mond23,24. This represent a clear motivation to develop a
coherent ab–initio theory in which the electron–phonon
interaction is rigorously included on top of ai–MBPT.
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The need for such theory is exemplified by the very
fragmented historical development of the ab–initio ap-
proach to the temperature dependence of the electronic
structure due to the electron–phonon interaction. From
the fifties to the late eighties, a coherent ab–initio frame-
work was still not devised and the electron–phonon in-
teraction was initially investigated and computed in a
semi-empirical context by Fan25,26. His theory had no
adjustable parameters and was based on the first-order
perturbed Hamiltonian. During the same period, An-
tonćık27, followed by others28–30, developed empirical
Debye-Waller (DW) corrections to the nuclear potential.
Only in 1976, Allen and Heine31 rigorously unified the
Fan and DW corrections in a common framework. Their
approach, combined with the use of a semi-empirical
model, allows for a re-writing of the problem in terms of
first-order derivatives of an effective potential only. Cal-
culations of the electron–phonon renormalization effects
were then led by Cardona and coworkers3,32–34, including
Allen. The resulting approach is now called the Allen-
Heine-Cardona (AHC) theory.

In 1989, the first ab–initio calculation of the temper-
ature dependence of the gap was attempted, by King-
Smith et al35, based on DFPT. Starting from there, sev-
eral first–principle calculations have been done, relying
mainly on three types of formalisms: (i) time averaging
of bandgap obtained using first principles molecular dy-
namics simulations36–40; (ii) frozen phonons (FP) calcu-
lations24,41–45 and (iii) the AHC approach implemented
in a full ab–initio framework by using DFT and DFPT
as a reference system22–24,45,46.

All these approaches are based on an adiabatic and
static treatment of the electron–phonon interaction. This
limitation was overcome by using the dynamical version
of MBPT by Marini et al10,11,47 who focused on retarda-
tion effects.

Since then, there have been an increasing number of
studies in which the electron–phonon interaction is fully
included in the computation of the electronic structure,
well beyond DFT. Still, several basic questions remain.
In particular, the use of an electron–phonon interaction
whose strength is computed from DFT, in a formalism
that goes beyond DFT, e.g. the ai–MBPTapproach,
leads to several ambiguities due to the simultaneous in-
clusion of different levels of correlation at the MBPT and
DFT/DFPT level.

Indeed, the DFPT electron–phonon interaction is nat-
urally screened as it is computed from the derivative of
the self–consistent Kohn-Sham potential with respect to
atomic displacements. This screening is taken as it is
in the MBPT part of the ai–MBPT scheme, although
it is well known that the diagrammatic technique also
predicts the screening of the electron–phonon interaction
consistently with the kind of correlation included in the
self–energy48,49. It has in fact been shown that the size
of the zero-point motion renormalization is significantly
larger in the MBPT than in the DFPT approaches24.

Another important issue of the ai–MBPTapproach is

the lack of a diagrammatic interpretation of the screen-
ing of the Debye–Waller term. This screening arises quite
naturally in the DFPT45 and AHC approaches31. It is
easy to show that it comes from the DFT self–consistent
screened ionic potential. Instead, in the pure MBPT
treatment of electrons and nuclei, this diagram is un–
screened. The Debye–Waller diagram is however usually
taken as screened without justification in most practical
application because of the DFPT basis.

In addition, a non–rigid nuclei correction to the Debye–
Waller contribution45 is predicted to exist within the
DFPT approach. However, this term is notably absent
from the standard derivation of the electron–phonon the-
ory based on the MBPT.

The last issue is even more fundamental. Most of the
electron–phonon interaction treatments that appears in
textbooks, see e.g. Refs. [48–50], are based on the study
of the homogeneous electronic gas (jellium). At variance
with any realistic material, the jellium model is based
on a drastic approximation: the ions are replaced by a
jelly of positive charge, in contrast with realistic mate-
rials where the nuclei and their mutual interaction must
be taken explicitly into account. This is correctly done in
DFT and DFPT but not in the MBPT approach derived
from the jellium model.

This paper aims at answering all these questions by de-
vising a coherent, formal and accurate approach to merge
the MBPT scheme with DFT and DFPT. We present a
consistent electron–phonon interaction theory based on
the MBPT formalism, insisting specifically on the con-
nection between the MBPT and AHC approaches. This
work is inspired by the seminal works of Allen51 and van
Leeuwen52, going further by including the full description
of the atomic potential into account.

The merging procedure will lead to the natural defini-
tion of a series of practical rules and advices about how
to perform electron–phonon calculations on top of DFT
without double counting problems. These series of rules
are well justified within the ai–MBPT scheme that, in
its practical form used in material science calculations,
can be seen as a collection of prescriptions only partially
based on a solid theoretical ground and rather inspired
by the succesfull comparison with the experiments of sev-
eral different materials. This a posteriori validation rep-
resents and important part of the ai–MBPTapproach.

The structure of the paper is as follows. Section I
presents the total Hamiltonian and introduces the no-
tation. In section II, we draw a parallel between the
electron–electron and the electron–phonon self–energies
to show what is the source of the problems that arise in
the merging of MBPT with DFT and DFPT. Section III
properly defines the reference Hamiltonian to be used as
a zero–th order in the many–body expansion. In Sec-
tion IV, the different interaction terms are described, in-
cluding the contributions from the nuclei–nuclei interac-
tion. In Section V, we perform the formal diagrammatic
summations at different level of approximations: Hartree,
Hartree–Fock and GW . We use the different levels of cor-
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relation of these self–energies to discuss the different role
played by self–consistency diagrams and how the screen-
ing of the interaction terms arises. At the same time we
derive cancellation rules that highlight the crucial role
played by the nuclei–nuclei interaction.
Finally, Section VI reviews the DFPT approach to the

electron–phonon coupling in order, in Section VII, to
compare the different properties of the DFT and of the
Many–Body approach. We provide, in a practical and
schematic way, a series of formal properties of the Many–
Body expansion performed on top of the DFT reference
Hamiltonian. We discuss, from a diagrammatic perspec-
tive, the physical origin of the Debye–Waller terms be-
yond the screened rigid–ion contribution (Section VIIC)
and a practical approach to calculate iteratively the n–
th order derivatives of the DFT self–consistent potential
(Section VIID and Appendix B). Atomic (Hartree) units
are used throughout the article.

I. THE TOTAL HAMILTONIAN

We start from the generic form of the total Hamilto-

nian of the system, that we divide in its electronic Ĥe, nu-

clear Ĥn (R) and electron–nucleus (e–n) Ŵe−n (R) con-
tributions,

Ĥ (R) = Ĥe + Ĥn (R) + Ŵe−n (R) , (1)

where R is a generic notation that represents a depen-
dence on the positions of the nuclei.
The electronic and nuclear parts are divided in a ki-

netic T̂ and interaction part Ŵ :

Ĥe = T̂e + Ŵe−e, (2)

Ĥn (R) = T̂n + Ŵn−n (R) . (3)

Note that the nuclear kinetic energy depends on the nu-
clear momenta, and not on the actual positions of the
nuclei. In the above definitions, the operators are bare

(un–dressed). The analysis of the dressing of Ŵe−n that
arises as a consequence of the electronic correlations is
one of the key objective of this work. Indeed, in the
Many–Body (MB) approach, this dressing appears in the
perturbative expansion in the form of electron–hole pair
excitations and therefore, cannot be introduced a priori

in the definition of the Hamiltonian.
The explicit expression for the bare (e–n) interaction

term is

Ŵe−n (R) =

−
∑

ls,i

Zs

|r̂i − R̂ls|
= −

∑

ls,i

Zsv
(
r̂i − R̂ls

)
, (4)

where R̂ls is the nuclear position operator for the nucleus
s inside the cell l (the cell is located at position Rl), Zs

is the corresponding charge, r̂i is the electronic position

operator of the electron i and v (r− r′) = |r − r′|−1 is
the bare Coulomb potential. Similarly,

Ŵn−n (R) =
1

2

∑′

ls,l′s′
ZsZs′v

(
R̂ls − R̂l′s′

)
, (5)

Ŵe−e =
1

2

∑′

ij
v (r̂i − r̂j) , (6)

with
∑′

ij =
∑

i6=j .

We now use the notation O (R), or equivalently O
(
R
)
,

to indicate a quantity or an operator that is evaluated
with the nuclei frozen in their equilibrium crystallo-
graphic positions (R). We expand the Hamiltonian as
a Taylor series up to second order in the nuclear dis-
placements,

Ĥ (R) ≈ Ĥ
(
R
)
+
∑

lsα

∂Rlsα
H (R)∆R̂lsα

+
1

2

∑

lsα,l′s′β

∂2RlsαRl′s′β
H (R)∆R̂lsα∆R̂l′s′β , (7)

where α and β are Cartesian coordinates and

∆R̂lsα ≡
(
R̂lsα −Rlsα1̂

)
. (8)

The equilibrium crystallographic positions R are de-
fined, in the present context, as the positions minimizing
the expectation energy of the Born-Oppenheimer Hamil-
tonian (with fully correlated electrons), i.e. all the con-
tributions to the total Hamiltonian, except the nuclear
kinetic energy,

ĤBO (R) = Ĥe + Ŵn−n (R) + Ŵe−n (R) . (9)

Those positions are equivalently defined by the condition
that the expectation of the Born-Oppenheimer force FRls

acting on the nucleus located at position Rls is zero

FRls
≡ −∂Rls

〈ĤBO (R)〉
∣∣∣
Rls=Rls

= 0 ∀{l, s}. (10)

The average in Eq. (10) is done on the exact elec-
tronic ground state of the Born-Oppenheimer Hamilto-
nian. Still, the present theory will go beyond the Born-
Oppenheimer approximation by considering fluctuations
around the equilibrium positions.

II. THE PROBLEM

The problem we aim at solving is how to treat the ef-
fect of the two last terms in the right–hand side of Eq. (7)
and how to do it by merging the MB approach, well-

established for the treatment of ĤBO

(
R
)
, with a DFT

description of the reference electronic and nuclear sys-
tems.
When Ĥ (R) ≈ ĤBO

(
R
)
the Hamiltonian represents

indeed a purely electronic problem, for which the MB
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approach is well-established in the literature13,49,50,53.
It relies on the definition of an electronic self–energy
Σ (r, r′;ω) that is a complex and non–local function in
frequency and space. Σ can be approximated by follow-
ing different strategies available in the literature (like the
well–known GW approximation54). For periodic solids,
once the self–energy is known, the calculation of the cor-
rection to an energy level |nk〉 can be obtained by solving
the corresponding Dyson equation (n is a band index and
k the corresponding wavevector).
Usually, the MB methodology starts from an

independent–particle (IP) electronic Hamiltonian that
includes only the kinetic electronic operator and the
electron-nucleus operator,

ĤIP

(
R
)
≡ T̂e + Ŵe−n

(
R
)
. (11)

The analysis of the correlated electronic Hamiltonian,

Ĥcorr

(
R
)
= ĤIP

(
R
)
+ Ŵe−e, (12)

is addressed through the diagrammatic expansion. A
simple approximation to the solution of the Dyson Equa-
tion that fully captures the role played by correlation
effects is the on–the–mass–shell approximation where:

ǫnk ≈ ǫ
(0)
nk + 0〈nk|Σ

(
r, r′; ǫ

(0)
nk

)
|nk〉0, (13)

where |nk〉0 and ǫ
(0)
nk are the n–th single–particle eigen-

state and eigenenergy of the independent–particle (IP)

Hamiltonian ĤIP

(
R
)
.

In the present context, where we must consider dif-
ferent configurations of nuclei, and determine also the
equilibrium geometry through Eq. (10), the initial cor-
relation present in the reference system for the diagram-
matic expansion must be carefully analyzed. Adding the

nucleus-nucleus energy to ĤIP (R) gives

Ĥ0 (R) ≡ T̂e + Ŵe−n (R) + Ŵn−n (R) , (14)

namely, the Born-Oppenheimer Hamiltonian without

electron–electron interaction operator Ŵe−e. This ini-

tial Hamiltonian Ĥ0 do not include electron–electron cor-
relations, and can be used as the starting point of a
MB approach to the electronic problem. However, using
this Hamiltonian instead of the true Born-Oppenheimer
Hamiltonian means that no electronic correlation en-
ergy contribution appears in the total energy and in the
definition of the equilibrium nuclear positions through
Eq. (10). This would lead to a completely irrealistic de-
scription of the starting nuclear geometry and vibrational
frequencies. Indeed, e.g. the latter could be imaginary,
and this would lead to unusual technical problems with
the canonical transformation from the displacement op-
erator to the phonon creation and annihilation operators.
Thus, the extension of the electronic–only MB approach
to the case where nuclear displacements are considered
cannot use such a starting point.

As DFT provides a treatment of energy and forces
that include the electron–electron interaction, it yields
a better starting point than Eq. (14). DFT is an exact
mean–field theory in the sense that all electronic corre-
lation effects are embodied in a mean–field exchange–
correlation (xc) potential Vxc [ρ] (r̂) which replaces the

full electron–electron interaction operator Ŵe−e, and de-
pends on the ground-state density ρ. The bracket [ ] in

V̂xc denotes a functional dependence.
By adding to Vxc [ρ] (r̂) the Hartree potential,

VH [ρ] (r̂), we get the total DFT potential:

VHxc [ρ] (r̂) =
∑

i

VH [ρ] (r̂i) + Vxc [ρ] (r̂i) , (15)

with

VH [ρ] (r̂) =

∫
dr′v (r̂− r′) ρ (r′) . (16)

DFT is exact in the sense that the corresponding Kohn–
Sham (KS) Hamiltonian

ĤKS (R) = T̂e + V̂Hxc [ρ] + Ŵe−n (R) , (17)

provides, when the nuclear positions are given, a set of
electronic eigenvectors whose corresponding density is

the exact ground state density of ĤBO (R) (Hohenberg–
Kohn theorem12).

The Hohenberg–Kohn theorem also states that V̂Hxc[ρ]
and the ground–state energy are functional of the exact
electronic density ρ. It follows that, once the correct
exchange-correlation functional is used, DFT gives the
exact equilibrium nuclear positions through Eq. (10).

In practice, an exact expression for V̂Hxc is not known
and several approximations for it have been proposed
in the literature12. In any case, even the simple local–
density approximation (LDA)55,56, provides quite reason-
able structural properties. Thus DFT represents a con-
crete and accurate reference Hamiltonian to be used as
zero–th order for a diagrammatic expansion that will al-
low vibrational degrees of freedom to be included. For-
mally, at the equilibrium geometry, one decomposes the
correlated Hamiltonian as

Ĥcorr

(
R
)
= ĤKS

(
R
)
+ Ŵe−e − V̂Hxc[ρ]. (18)

At this point, the perturbative expansion is performed

in terms of Ŵe−e − V̂Hxc instead of Ŵe−e. This is the
theoretical basis of the standard ai–MBPT scheme13.

If DFT is used as a reference non–interacting system
Eq. (13) does not hold anymore. Its extension can be
shown to be

ǫnk ≈ ǫKS
nk + KS〈nk|

[
Σxc

(
r, r′; ǫKS

nk

)

−Vxc [ρ] (r̂)] |nk〉KS , (19)

where |nk〉KS is the n–th single–particle eigenstate of

ĤKS with energy ǫKS
nk . Note that in Eq. (19) only the
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Σxc and Vxc terms appears as the Hartree terms in Σ and
VHxc cancels out.
Eq. (19) reveals the simplicity of the ai–MBPT

scheme. The accuracy and universality of DFT avoids
the use of ad–hoc parameters and the prize to pay (at
least in the electronic case) is to simply subtract from
the self–energy the xc potential. This simplicity repre-
sents one of the key reasons for the wide–spread use of
ai–MBPT .
At this point, one would be tempted to follow the

same strategy in the electron–phonon case by adding to

Eq. (18), the nuclear Hamiltonian, Ĥn, and the contri-

butions from Ŵe−n that are linear and quadratic in the
atomic displacements. This is, however, formally not cor-
rect. Indeed, when the nuclei are allowed to be displaced
from their equilibrium configuration, the DFT (or more
directly, DFPT) will be expanded in a Taylor series,

ĤKS (R) ≈ ĤKS

(
R
)
+∆ĤKS (R), (20)

with, however,

∆ĤKS (R) 6= Ĥ (R)− Ĥ
(
R
)
. (21)

This is due to the fact that, in ∆ĤKS (R), the electron-
phonon interaction terms are statically screened by the
electronic dielectric function while in the Taylor expan-
sion Eq. (7) they are bare, unscreened. In other words,
the ground state density ρ present in Eq. (17) actually de-
pends implicitly on the nuclear coordinates. In practice,

this means that the effect of V̂Hxc [ρ] does not appear
only as an additive term in the Dyson equation but it

screens the interaction potentials Ŵe−n and Ŵn−n.
An additional problem, partially connected to the po-

tential double counting of correlation when DFT is used
as the reference Hamiltonian, is due to the fact that
most of the electron-phonon theory has been devised in
the jellium model where the nuclei appear only as static
and frozen positive charges. As a consequence, strong
approximations on the perturbative expansion are used
in textbooks. This is inconsistent with the microscopic
description of the nuclear lattice and indeed represents
the most critical shortcoming of the commonly applied
approaches. In all the aforementioned applications of

the ai–MBPT schemes (AHC and beyond) Ŵn−n is ne-

glected and Ŵe−n is screened by hand directly in the
initial Hamiltonian.
From these simple arguments we can argue that, al-

though ai–MBPT is a well-established scheme13, its ex-
tension to the electron-phonon problem is still far from
being formally defined.
We would like to apply the MBPT technique to

the perturbative expansion of Eq. (7) where the non–
interacting Kohn–Sham Hamiltonian and its derivatives
as calculated by DFT and DFPT are used.
We propose to apply the standard diagrammatic

MBPT on the total bare Hamiltonian, given by Eqs. (7),
explicitly taking into account all interaction terms. We

will then examine the properties of the ∆ĤKS operator
in order to draw a clear and formal comparison between
ai–MBPT and DFPT.
In this way, we aim at creating a consistent framework

where the role played by screening and self–consistency
is clearly evidenced even when all the components of
the electron–nucleus and nucleus–nucleus interactions are
taken into account.

III. THE REFERENCE,

INDEPENDENT–PARTICLE HAMILTONIAN

As it emerges from the discussion of the previous sec-
tion, the choice of the non–interacting Hamiltonian to be
used as a reference for the perturbative expansion rep-
resents the connection with DFT and thus provides the
ab–initio basis for the entire theoretical derivation. This
is particularly important for the definition of the phonon
modes. Therefore, we start by introducing a splitting of
the total Hamiltonian in an independent particle part (for
independent electrons as well as independent phonons)
plus interaction terms,

Ĥ (R) = Ĥ0 (R) + ∆Ĥ (R) . (22)

Eq.(22) is more suited than Eq. (7) to the MB treatment.
The reference independent–particle Hamiltonian is

Ĥ0 (R) = T̂e + T̂n + Ŵe−n

(
R
)

+ Ŵn−n(R) + ∆Ŵ ref
n−n (R) , (23)

where Ŵe−n and Ŵn−n are evaluated at the equilib-
rium geometry. We have introduced a reference nucleus–

nucleus interaction ∆Ŵ ref
n−n, a second–order contribution

within the Taylor expansion in the nuclear displacements,
that provides the reference phonon modes to be used in

the diagrammatic expansion. This ∆Ŵ ref
n−n can be de-

fined from DFPT

∆Ŵ ref
n−n (R) =

1

2

∑

lsα,l′s′β

∂2RlsαRl′s′β
EBO (R)∆R̂lsα∆R̂l′s′β , (24)

with EBO the Born–Oppenheimer total energy of the sys-
tem calculated within DFT. By construction, the phonon
frequencies and eigenvectors will be equal to those of the
Born-Oppenheimer approximation based on the corre-
lated electronic Hamiltonian. Therefore, Eq. (23) defines
an independent–particle Hamiltonian beyond the equi-
librium geometry. The remaining interaction part, up to
second order in nuclear displacements, is

∆Ĥ (R) = Ŵe−e +∆Ŵe−n (R)

+ ∆Ŵn−n (R)−∆Ŵ ref
n−n (R) . (25)
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where

∆Ŵe−n (R) = Ŵe−n (R)− Ŵe−n

(
R
)
, (26)

and

∆Ŵn−n (R) = Ŵn−n (R)− Ŵn−n

(
R
)
. (27)

At this point we can introduce the eigenstates of the

nuclear harmonic oscillations of Ĥ0, written in terms of
the canonical transformation

∆R̂lsα =
∑

qλ

(2NMsωqλ)
−1/2

ηα (qλ|s)

× eiq·Rls

(
b̂†−qλ + b̂qλ

)
, (28)

where (q, λ) is a generic DFPT phonon mode with mo-
mentum q, energy branch λ and energy ωqλ. N is the
number of q–points in the whole Brillouin Zone (BZ). We
assume the q–point grid to be uniform so that we have
alsoN k–points for the single particle representation. Ms

is the nuclear mass, ηα (qλ|s) is the polarization vector
of the atom s in the unit cell l in the Cartesian direction
α, while b̂qλ and b̂†qλ, respectively, are the annihilation

and creation operators of the phonon mode (q, λ), re-
spectively.
We now introduce a second quantization formulation

for the electrons. If φnk (r) is the Ĥ0 electronic eigen–
function, we introduce the field operator

ψ̂ (r) =
1√
N

∑

k

ψ̂k (r) , (29)

with

ψ̂k (r) =
∑

n

φnk (r) ĉnk, (30)

with ĉnk the annihilation operator of an electron. By us-
ing field operators, the independent-particle Hamiltonian
can be written in a second quantization form:

Ĥ0 (R) =
∑

nk

ǫnkĉ
†
nkĉnk +

∑

qλ

ωqλ

(
b̂†qλb̂qλ +

1

2

)
, (31)

where the first term corresponds to T̂e + Ŵe−n

(
R
)
and

the second one to T̂n (R) + ∆Ŵ ref
n−n (R). The Born-

Oppenheimer energy of the ground state at equilibrium
geometry has been redefined to be the zero of energy

(hence e.g. Ŵn−n(R) disappears from this expression).
The introduction of a reference nucleus–nucleus poten-

tial ∆Ŵ ref
n−n (R) in Ĥ0 (R) was the crucial step to be able

to map it with its second quantization form. Indeed it is
well known that phonon dynamics is actually decoupled
from the electronic one, as shown in many references48,52.
Nonetheless, the phonon dynamics can describe accu-
rately the vibrational properties of a real system only if it
feels the electronic screening. Such screening is accounted

for in DFPT by the reference potential ∆Ŵ ref
n−n (R) op-

erator.

IV. THE ELECTRON–PHONON INTERACTION

TERMS

Thanks to the definition of the reference part of the
Hamiltonian, Eq. (23), we have that the final splitting in
independent–particle and interaction terms easily follows
from Eq. (7). The first two orders of the Taylor expansion

of Ĥ are:

∆Ĥ (R) = Ŵe−e +∆Ĥ(1) (R) + ∆Ĥ(2) (R) , (32)

with

∆Ĥ(1) (R) ≡
∑

lsα
∂Rlsα

[We−n (R) +Wn−n (R)]∆R̂lsα, (33)

and

∆Ĥ(2) (R) ≡
1

2

∑

lsα,l′s′β

∂2RlsαRl′s′β
[We−n (R) +Wn−n (R)]

×∆R̂lsα∆R̂l′s′β −∆Ŵ ref
n−n (R) . (34)

By using Eq. (28) we can manipulate Eq. (33) and (34)
in order to introduce the electron–phonon interaction in
the basis of the phonon modes. We analyze separately
the first and second order terms.
The first order can be written by using Eqs. (28)–(30)

as:

∆Ĥ(1) (R) =
∑

qλ

{[∑

k

∫

0

drψ̂†
k (r) ξqλ (r) ψ̂k−q (r)

]

+ Ξqλ

}(
b̂†−qλ + b̂qλ

)
, (35)

with

ξqλ (r) = ∂(qλ)We−n (r,R) . (36)

The function ∂(qλ)We−n (r,R) represents the derivative
of the electron–phonon interaction along the phonon
mode (q, λ). The definitions of the ∂(qλ) operator and
the ξqλ (r) function are given in the appendix A. Note
that, in Eq. (35), the real–space integral is performed
in the unit cell

∫
0
and not in the whole crystal. This

is because the sum running on all unit cell replicas has
been used to impose the momentum conservation at each
vertex of the interaction terms (see Eq. (A13)).
A similar derivation can be done for Ξqλ, which rep-

resents the first-order derivative of the nucleus–nucleus
potential

Ξqλ = ∂(qλ)Wn−n (R) . (37)

The second–order terms can be worked out in a similar
way leading to the final form for their contribution to the
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electron–phonon interaction Hamiltonian:

∆Ĥ(2) (R) =

∑

qλ,q′λ′

{[∑

k

∫

0

drψ̂†
k (r) θqλ,q′λ′ (r) ψ̂k−q−q′ (r)

]

+Θqλ,q′λ′

}(
b̂†−qλ + b̂qλ

)(
b̂†−q′λ′ + b̂q′λ′

)
. (38)

In Eq. (38) we have introduced the functions θ and Θ
whose definition is quite similar to Eq. (36) and Eq. (37)

θqλ,q′λ′ (r) =
1

2
∂2(qλ)(q′λ′)We−n (r,R) , (39)

Θqλ,q′λ′ =
1

2
∂2(qλ)(q′λ′)Wn−n (R)

−∆W ref
n−n (R)

∣∣∣
(qλ)(q′λ′)

, (40)

with ∆W ref
n−n (R)

∣∣∣
(qλ)(q′λ′)

the reference nucleus–nucleus

potential written in the phonon modes basis by plugging
Eq. (28) into Eq. (24).

The explicit expressions for θ and for
∂2(qλ)(q′λ′)Wn−n (R) are given in Appendix A, Eqs. (A18)

and (A19).

Finally, the total Hamiltonian Ĥ (R), up to second
order in the nuclear displacements, can be written as

Ĥ (R) =
∑

nk

ǫnkĉ
†
nkĉnk +

∑

qλ

ωqλ

(
b̂†qλb̂qλ +

1

2

)
+

1

2

∫
dr1dr2 ψ̂

† (r1) ψ̂
† (r2) v (r1 − r2) ψ̂ (r2) ψ̂ (r1)+

+
∑

qλ

[∫

0

drψ̂†
k (r) ξqλ (r) ψ̂k−q (r) + Ξqλ

](
b̂†−qλ + b̂qλ

)
+

∑

qλ,q′λ′

[∫

0

drψ̂†
k (r) θqλ,q′λ′ (r) ψ̂k−q−q′ (r)

+ Θqλ,q′λ′

](
b̂†−qλ + b̂qλ

)(
b̂†−q′λ′ + b̂q′λ′

)
. (41)

The diagrammatic transposition of the four electron–
phonon interaction terms in Eq. (41) is given in Fig. (1).
We see that we have two terms with electronic legs (•
and �). Those give direct contributions to the electronic
propagator. In addition, there are two purely nuclear
contributions (

⊗
and �) that do not contribute directly

to the electron propagator but can be combined with
the two electronic interactions and still contribute to the
electronic self–energy, as it will be clear in the follow-
ing. Those are commonly neglected in textbook theories
of the electron–phonon interaction. But from Eq. (37)
and Eq. (40) we see that there is no reason, a priori, to
assume that both Ξqλ and Θqλ are zero.

The Ξqλ and Θqλ interaction terms do not have elec-
tronic legs because they arise from the purely nuclear
potential (Wn−n (R)). Nevertheless, at it is evident
from the above discussion, they can exchange momen-
tum with the electronic subsytem. Energy, instead, is
not exchanged as the nuclear potential is a static func-
tion. The momentum exchange reflects the change in
the nuclear–nuclear potential induced by a nuclear dis-
placement. This term is neglected in the jellium model
because, as it will be clear in the following, the only al-
lowed modes are acustic excitations for which the zero
frequency limit corresponds to the zero momentum limit.
This contribution vanishes as explained in Sec.VA1.

G
(0)
k (t)
(1.a)

D
(0)
qλ (t)

(1.b)

k k− q

qλ

• = ξqλ (r)
(1.c)

qλ

⊗
= Ξqλ

(1.d)

k− q− q′k

qλ

q′λ′

� = θqλ,q′λ′ (r)
(1.e)

q′λ′
qλ

� = Θqλ,q′λ′

(1.f)

FIG. 1. Diagrammatic representations of the electron and phonon
propagators (diagrams (a) and (b)) and of the first (ξ, diagram (c)
and Ξ, diagram (d)) and second (θ, diagram (e) and Θ, diagram

(f)) order interaction terms in the Taylor expansion of Ĥ in powers
of the nuclear displacements. All interaction terms are written in
the basis of the phonon displacements. More definitions can be
found in the text.
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Thus, any coherent and accurate framework that aims
at providing a consistent way of introducing screening
and correlation in the perturbative expansion of Eq. (41)
will also have to answer to the key question about the
role played by the nucleus–nucleus interaction.

V. THE PERTURBATIVE EXPANSION

Now that the total Hamiltonian has been split in the
bare Hamiltonian, Eq. (31), and in the interaction con-

tributions, Ŵe−e, ∆Ĥ
(1) (R) (Eq. (35)), and ∆Ĥ(2) (R)

(Eq. (38)), it is possible to perform a standard diagram-
matic analysis. In the following, we will work in the finite
temperature regime where the electronic Green’s function
is defined49 as

G (1, 2) ≡ −Tr
{
ρ̂ (β)Tt

[
ψ̂ (1) ψ̂† (2)

]}
. (42)

In Eq. (42) β = (kBT )
−1

and T is the temperature. Tt
represents the time ordering product, the ĉnk (t) opera-
tor is written in the Heisenberg representation, ρ̂ (β) =

e−β(Ĥ−µN̂)/Tr
{
e−β(Ĥ−µN̂)

}
, with µ the chemical po-

tential and N̂ the total electronic number operator. We
have introduced global variables to represent space and
time components 1 ≡ (r1, t1). The average spanned by
the trace operator runs over all possible interacting states
weighted by the density operator ρ̂.

By using Eq. (29), we can expand the Green’s function
in the electronic basis defined by the reference Hamilto-
nian:

G (1, 2) =

1

N

∑

nn′k

φnk (r1)φ
∗
n′k (r2)Gnn′k (t1 − t2) , (43)

with

Gnn′k (t) ≡ −Tr
{
ρ̂ (β)Tt

[
ĉnk (t) ĉ

†
n′k(0)

]}
. (44)

The electronic Green’s function can also be expressed in
a matrix representation as

[Gk (1, 2)]nn′ = φnk (r1)φ
∗
n′k (r2)Gnn′k (t1 − t2) . (45)

We will later use the same generic representation of
Eqs. (43),(44) and (45) for the self–energy operator.
The non–interacting electronic Green’s function

G
(0)
nn′k (t) is diagonal in the band index and it reduces

to a simple exponential49

G
(0)
nn′k (t) ≡ δnn′e−(ǫnk−µ)t

× [f (ǫnk) θ (−t)− (1− f (ǫnk)) θ (t)] , (46)

with f (ǫ) ≡
(
eβ(ǫ−µ) + 1

)−1
the Fermi-Dirac distri-

bution function. A similar expression holds for the

non–interacting phonon propagator defined similarly to

Eq. (42), with bosonic phonon
(
b̂qλ + b̂†−qλ

)
operators

replacing the electronic ones ĉ:

D
(0)
qλ (t) ≡ − [1 + n (ωqλ)]

[
e−ωqλtθ (t) + eωqλtθ (−t)

]

− n (ωqλ)
[
eωqλtθ (t) + e−ωqλtθ (−t)

]
, (47)

with n (ǫ) ≡
(
eβǫ − 1

)−1
the Bose-Einstein distribution

function. Thanks to the standard many-body approach
and perturbative expansion, it is possible to rewrite

Gk (t) in terms of G
(0)
k (t) and the electronic self–energy

operator Σk by means of the Dyson equation49

Gk (1, 2) = G
(0)
k (1, 2) +

∫
d3d4G

(0)
k (1, 3)

×Σk (3, 4)Gk (4, 2) , (48)

where the Σk matrix has been introduced following a
definition similar to Eq. (45). Eq. (48) is written in dia-
grammatic form in Fig.(2.a).

Note that in Eq. (48) the time variables t3 and t4 runs
in the range [0, β].

In the following subsections we will write Σ using ap-
proximations with an increasing level of correlation, self–
consistency and screening in order to investigate the ef-
fect of the different electron-phonon interaction terms.
The solution of the Dyson equation corresponds to an in-
finite series in terms of the Green’s function and the self-
energy. Consistently with the harmonic approximation
(the expansion with respect to the nuclear displacements
is limited to the second power in Eqs. (7) and (41)), we

will work up to second order with respect to ∆Ĥ(1) (R),

and only to first order in ∆Ĥ(2) (R). Higher orders of
nuclear displacements might appear as a consequence of
self-consistency or screening (in the Dyson equation), but
we will consider them to be negligible or to have no im-
pact, consistently with our choice of the harmonic ap-
proximation. By contrast, for the electron-electron in-
teraction, there will be no such approximation: higher-
order powers of the electron-electron interaction will be
significant.

A. The Hartree, Debye–Waller and tad–poles

self–energies

We analyze first the electronic self-energy that is ob-
tained by considering only one interaction node attached
to the electronic Green’s function, and select the low-
est non-vanishing diagrams. This self–energy can be ob-
tained mathematically from the Feynmann diagrams in
figure 2.b, following the diagrammatic rules of Ref. 49, for
example. It is composed of four terms: the Hartree ΣH ,
Debye-Waller ΣDW , nucleus-nucleus Σn−n and electron-
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nucleus Σe−n self-energy:

ΣH (1) =

∫
d2v (1, 2)G

(
2, 2+

)
, (49)

ΣDW (1) = −
∑

q,λ

θqλ,−qλ (1)D
(0)
qλ

(
0−
)
, (50)

Σn−n (1) = lim
q→0

[∑

λ

ξqλ (1)D
(0)
qλ

(
0−
)
Ξ∗
qλ

]
, (51)

where v (1, 2) ≡ θ (t1 − t2) v (r1 − r2). The electron-
phonon induced tad–pole contribution is

ΣTPe−n (1) = lim
q→0

{∑

λ

ξqλ (1)D
(0)
qλ

(
0−
)

×
[∫

d2ξ∗qλ (2)G
(
2, 2+

)]
}
. (52)

The other diagram (Fan diagram) appearing at second

order in ∆Ĥ(1) (R) will be analyzed in the next sub-
section, Sec. VB, together with the Fock diagram from

Ŵe−e. They both have two interactions nodes attached
to the electronic Green’s function.
The self-energy ΣH is the usual Hartree contribution

which is a tad–pole diagram made of a Coulomb inter-
action that connects the incoming electronic propagator
with another, closed, electronic loop. Also the ΣTPe−n is
a tad–pole diagram, but, in contrast to the Hartree term,
the interaction is not electronic but phonon mediated.

= + Σ

(2.a)

Σ = + +

ΣH
k ΣDW

k Σn−n
k Σ

TPe−p
k

+

(2.b)

FIG. 2. Dyson equation written in terms of diagrams (frame (a)).
In frame (b), instead, the lowest-order electronic self–energy in the
electron–electron and electron–phonon interaction is shown. We
see the usual electronic Hartree contribution (first diagram) Σ

H
k
,

the well-known Debye–Waller term (second diagram) Σ
DW
k

, and

the electron–phonon induced tad–pole (fourth diagram) Σ
TPe−n

k
.

In addition we see the appearance of a new diagram due to the
derivative of the nucleus–nucleus potential (third diagram), Σn−n

k
.

This diagram plays a crucial role in balancing the contribution from

Σ
TPe−n

k
that, indeed, is not zero in general.

The nucleus-nucleus self-energy Σn−n is a new term
that has never been discussed before in the literature.
It comes from the merging of a nucleus–nucleus and

electron–nucleus interaction. It acquires an electronic
character thanks to the contraction with the electronic
propagator embodied in the electron–nucleus interac-
tion (•).
Finally ΣDW is the well–known Debye–Waller (DW)

self–energy. It represents the lowest (first) order elec-
tronic self–energy in the second–order derivative of the
Hamiltonian.
The total self–energy is local in time and space and

therefore the Dyson equation of Eq. (48) reduces to

Gk (1, 2) = G
(0)
k (1, 2)

+

∫
d3G

(0)
k (1, 3)Σk (3)Gk (3, 2) , (53)

with

Σk (1) =

ΣH
k (1) +ΣDW

k (1) +Σn−n
k (1) +Σ

TPe−n

k (1) . (54)

The different contributions shown in Eq. (54) have the
following properties:

(a) All self–energy contributions are bare. No screen-
ing is present. This is not what should be ap-
plied for practical calculations because, as it will
be clear in the following, bare potentials lead also
to unphysical properties. Moreover from DFPT,
we know that ΣDW is screened. In the original
work of AHC this screening was introduced in a
semi–empirical manner while in the more advanced
approach based on DFPT16,57 the electron–nucleus
interaction is screened in the self–consistent solu-
tion of the Kohn–Sham equation. It is clear, how-
ever, that from a rigorous MB approach this screen-
ing is not present in the original Hamiltonian and
must be build–up by the electronic correlations.
How does this screening emerge from a MB per-
spective?

(b) The nucleus-nucleus self-energy Σn−n
k is a new con-

tribution that is not present in any treatment of the
electron–phonon interaction where the nuclear den-
sity is approximated with an homogeneous charge
density. In this work, the nuclear coordinates are
instead coherently taken into account. This is an
essential step to bridge the MBPT and DFT ap-
proaches.

(c) In the standard approach to the electron–phonon
interaction the electron-nucleus self-energy ΣTPe−n

is commonly neglected. However the arguments
that motivate this approximation49 are based on
two specific approximations: (i) the nuclear inter-
action is dressed and (ii) there are only acoustic
modes. In general, however, any system has both
acoustic and optical modes and the ΣTPe−n self–
energy is not vanishing. What is its role and is it
justified to neglect it?
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In order to answer those questions we proceed with a de-
tailed analysis of the two series of diagrams connected
with the dressing of the tad–pole and of the Debye–
Waller terms.

1. The electron–phonon induced tad–pole diagram and the
nucleus–nucleus interaction contribution

The sum of the Σn−n and ΣTPe−n is

Σn−n (1) + ΣTPe−n (1) = lim
q→0

{∑

λ

ξqλ (1)D
(0)
qλ

(
0−
)

×
[
Ξ∗
qλ +

∫
d2ξ∗qλ (2)G

(
2, 2+

)]
}
. (55)

This sum would be zero if the ξqλ (1) prefactor or if
the expression between brackets vanishes. However the
derivative of the bare ionic potential, when q → 0, di-
verges like |q|−1. Thus Eq.(55) is, actually, divergent. In
the Jellium model the screening49 of the electron–nucleus
potential regularizes this divergence and the dressed e–n
interaction vanishes when q → 0. This is the standard
motivation used to neglect the contribution coming from
the integral appering in the r.h.s of Eq.(55). The term
due to Ξ, instead, has been never considered before.

We focus our attention, instead, on the sum of the
terms between brackets appearing in Eq. (55) for small
but not vanishing values of q. If we work it out we can
rewrite it in a more clear way. We notice that G (2, 2+) =
ρ (2) and, from Eq. (A14) and Eq. (A18), we have that

Ξ∗
qλ +

∫
dr2ξ

∗
qλ (r2,R)G

(
2, 2+

)
=

∑

lsα

ηα (qλ|s) e−iq·Rls

√
2NMsωqλ

∂Rlsα

[∫
dr2We−n (r2,R) ρ (r2) +Wn−n (R)

]
. (56)

Before proceeding in the evaluation of Eq.(56) we notice
that from the Dyson equation (Eq. (48)) it follows that

Gk ≈ G
(0)
k +∆G

(e−e)
k +O

(
∆R2

)
, (57)

with ∆G(e−e) the change in the Green’s function due
to el–el correlation effects. Eq. (57) implies that ρ ≈
ρ(e−e) + O

(
∆R2

)
with ρ(e−e) the exact charge of the

system with atoms frozen at the equilibrium positions.
Therefore, as in Eq. (56) ∂Rs

We−n (r,R) ∝ ∆R, it fol-
lows that, within the harmonic approximation, we can
safely assume ρ ∼ ρ(e−e).
It follows than, that within the harmonic approxima-

tion, the overlined quantity in Eq. (56) is minus the force
Fs acting on the nucleus located at R

Fls ≡ −∂Rls

[ ∫
dr2We−n (r2,R) ρ(e−e) (r2)

+Wn−n (R)
]
R=R

. (58)

By using the Hellmann–Feynman theorem it follows that

Fls ≡ −∂Rls
〈Ψ0|ĤBO (R) |Ψ0〉R=R, (59)

with |Ψ0〉 the exact electronic ground state of the total

frozen Hamiltonian, Ĥ
(
R
)
.

Thus we can draw the following conclusion: if the self–

energy is chosen in such a way that the nuclear positions

and density correspond to the exact electronic ground

state then it follows

ΣTPe−n (1) + Σn−n (1) = 0. (60)

This is true for the exact self–energy but it is not true
for any approximation of the self–energy unless the Born-
Oppenheimer energy of the system is calculated accord-
ingly by means of MBPT (for example by using the
Luttinger–Ward expressions49).

The condition represented by Eq. (60) reveals the cru-
cial role played by the nucleus–nucleus interaction. It is
only thanks to the coherent inclusion of electron-nucleus
and nucleus-nucleus contributions that the theoretical
framework can lead to the justification of the AHC ap-
proach or to the textbooks results. A formal condition for
the tad–pole diagram to be zero can therefore be defined.

As an additional approximation we notice that one of
the most widely approximation used in the litterature is
to treat correlation effects non self–consistently. In prat-
ice this means to use the Dyson equation to renormalize
the single particle energies but not the wave–functions.
As a consequence, within this approximation, the charge
density is assumed to be well described by the one calcu-
lated within DFT. This approximation has an important
and usefull consequence. Eq. (57) would impose to use
as ionic positions (R) the ones calculated with a level of
correlation coherent with the one introduced in ρ(e−e).
As this is a hardly (if not impossible) to do in practice
the use of the DFT charge allows to approximate both

ρ ∼ ρ(0) and R ≈ R
(0)

in Eq. (58). In this case R(0) are
the DFT equilibrium atomic positions that are a simple
by–product of any DFT calculation.
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2. Self–consistent diagrams: dressing of the internal
Green’s functions and of the bare interactions

Before starting the analysis of the diagrammatic struc-
ture of the self–energy we notice that at any order of the
diagrammatic expansion we can clearly distinguish be-
tween diagrams that dress the internal electronic propa-
gators and the interaction.

A clear definition of these two families of diagrams can
be done by using the simple Hartree approximation for
the self–energy. Its diagrammatic expansion is shown in
Fig.(3) and we notice that at third order, two different
diagrams appear ((b) and (c)). In the case of diagram
(b) the interaction builds up a series of bubbles that de-
scribes electron–hole pair excitations. These bubbles,
when summed to all orders, reduce to the well–known
Random Phase Approximation for the response function
as it will be shown explicitly in Sec. (VA3).

The diagram (c), instead, represents a bare self–energy
insertion in an internal Green’s function. Any other dia-
gram where an internal propagator is dressed belongs to
this family. The effect of these diagrams is to renormalize
the single particle states. This can be easily visualized in
the quasi–particle approximation where all internal prop-
agator self–interaction contributions can be summed in
the definition of a new set of independent particle ener-
gies, {ǫnk}.

In this work, we are interested in building up a scheme
to concretely compare the Many–Body and DFT schemes
as far as the e–n interaction is concerned. In order
to greatly simplify the analysis, we will focus on the
first series of diagrams disregarding all diagrams that
correspond to a dressing of internal electronic propaga-
tors. In the self–consistent Hartree case this amounts
to neglect the diagram (c) and, in practice, this means
that the screening of the interaction is described by os-
cillations (described by bubble diagrams) of the bare
charge. This approximation is commonly used in the
ai–MBPT scheme and can be written analytically as

Ginternal
k ≈ G

(0)
k . (61)

When applied in the diagramatic context we will refer to
Eq.(61) as the linearization procedure. The reason of the
name will be clear in the next section.

(a)

≈ + + + . . .+

(b)

(c)

FIG. 3. Diagrammatic expansion of the self–consistent Hartree
self–energy. Diagram (a) is the non self–consistent contribution
corresponding to the bare electronic charge. Diagram (b) is com-
posed of bare bubble diagrams. These diagrams belongs to the
family of diagrams that dress the interaction. Diagram (c), in-
stead, represents a dressing of the internal electronic propagator.
All diagrams of this kind can be, within the quasi–particle approx-
imations, summed in a definition of a new independent particle
Hamiltonian, as explained in the text.

3. Screening of the second–order electron-phonon
interaction and of the Debye–Waller diagram

As mentioned earlier, one important aspect that must
be included in the perturbative analysis in order to bridge
it with the DFPT formalism is the screening of the
electron–phonon interaction terms. How does screening
build up ? This question could appear easy to answer as
the series of diagrams that screen the lowest order (ξ)
interaction is, indeed, well known in the litterature. But,
what about the second order interaction, Ξ ?
In the original AHC work, the DW self–energy is writ-

ten, from the beginning, in terms of a statically screened
We−n interaction. However this screening cannot be in-
troduced directly in the Hamiltonian. It must appear as
a result of the diagrammatic expansion.
In addition, from the discussion of the previous section,

it follows that ΣTPe−n (1) + Σn−n (1) is not zero for any
self–energy that does not reproduce the exact reference
density and the exact corresponding nuclear positions.
As a matter of fact this is a condition hard to fulfill in any
practical implementation as it is computationally very
difficult to find the nuclear positions corresponding to a
specific level of approximation for Σ.
Even if the condition given by Eq. (60) can be used as

a simple approximation it is instructive, for the moment,
to keep the two self–energies in our derivation in order
to see their effect on the definition of the screening.

= +

FIG. 4. The total bare interaction Wλ
q (1, 2).

At the lowest order of the perturbative expansion the
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self–energy shown in Diagram 2.b can be explicitly writ-
ten as

Σk (1) =
∑

λ

lim
q→0

{∫
d2Wqλ (1, 2)Gk

(
2, 2+

)

+ ξqλ (1)D
(0)
qλ

(
0−
)
Ξ∗
qλ

−
∑

q

θqλ,−qλ (1)D
(0)
qλ

(
0−
)
}
, (62)

where we have introduced a total bare electron–electron

interaction Wqλ (1, 2) (see Fig. (4)) defined as

Wqλ (1, 2) ≡ vq (1, 2) δ (t1 − t2)

+
∑

λ

ξqλ (1)D
(0)
qλ (t1 − t2) ξ

∗
qλ (2) , (63)

with vq (1, 2) the periodic q–component of the Fourier
transformation of the bare Coulomb interaction

v (1, 2) =

∫

BZ

dq

(2π)
3 e

iq·(r1−r2)vq (1, 2) , (64)

with the integral restricted to the Brillouin Zone (BZ)
only.
The total bare electron-electron interaction Wqλ gets

dressed (i.e. screened) by self-consistency when the
Green’s function (Eq. (53)) is inserted into the self–
energy (Eq. (62)). We can also sum over k as the Hartree
self–energy is a local function and get

Σ (1) =
1

N

∑

k

Σk (1) =
∑

λ

{∫
d2 lim

q→0
[Wqλ (1, 2)]×

[
G(0)

(
2, 2+

)
+

∫
d3G(0) (2, 3)Σ (3)G (3, 2)

]

+ lim
q→0

[
ξqλ (1)D

(0)
qλ

(
0−
)
Ξ∗
qλ

]
−
∑

q

θqλ,−qλ (1)D
(0)
qλ

(
0−
)}

. (65)

The Wqλ (1, 2)Gk (2, 2
+) term appearing in Eq.(62) is

written in terms of Feynman diagrams in Fig.(5.a).
Now we group all Σ operators to the left hand side of

the equation. We have that

∫
d3Σ (3)

[
δ (1, 3)−

∑

λ

lim
q→0

[Wqλ (1, 2)]G
(0) (2, 3)G (3, 2)

]
=

∑

λ

{∫
d2 lim

q→0
[Wqλ (1, 2)]G

(0)
(
2, 2+

)
+ lim

q→0

[
ξqλ (1)D

(0)
qλ

(
0−
)
Ξ∗
qλ

]
−
∑

q

θqλ,−qλ (1)D
(0)
qλ

(
0−
)}

, (66)

and the corresponding diagrams are shown on Fig.(5.b).

Now, Eq. (66) is not linear in the sense that the right-
hand side depends on the dressed G because of the per-
turbative expansion of the inverse of the square bracket
quantity appearing in the left-hand side. By using the
discussion of Sec.VA2 we observe that all dressed G’s
are internal Green’s functions. This can be deduced also
by the expansion of the diagrammatic fraction appearing
in Fig.(5.c). Then we can apply the linearization pro-

cedure, Eq.(61) to approximate G (3, 2) with G(0) (3, 2)
in the Eq.(66). This allows to define the single–particle

response function χ(0)

lim
q→0

χ(0)
q (1, 2) ≡ 1

N

∑

k

G
(0)
k (1, 2)G

(0)
k (2, 1) . (67)

Then, we define the dielectric matrix in the Time-
Dependent Hartree approximation (see later) as

ǫtdhq (1, 2) ≡

δ (1, 2)−
∑

λ

∫
d3Wqλ (1, 3)χ

(0)
q (3, 2) . (68)

By using Eq. (66) into Eq. (67) the screening of the
bare potential W and electron-phonon terms appears so
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that

Σ (1) =
∑

λ

{∫
d2 lim

q→0

[
W̃qλ (1, 2)

]
G(0)

(
2, 2+

)

+ lim
q→0

[
ξ̃qλ (1)D

(0)
qλ

(
0−
)
Ξ∗
qλ

]

−
∑

q

θ̃qλ,−qλ (1)D
(0)
qλ

(
0−
)}

(69)

with W̃ , ξ̃ and θ̃ the dressed counterparts of the bare W ,
ξ and θ functions

ξ̃qλ (1) =

∫
d2
[
ǫtdhq (1, 2)

]−1
ξqλ (r2) , (70)

θ̃qλ,−qλ (1) =

∫
d2

[
lim
q→0

ǫtdhq (1, 2)

]−1

θqλ,−qλ (r2) ,

(71)

W̃q (1, 2) =

∫
d3
[
ǫtdhq (1, 3)

]−1
Wq (3, 2) . (72)

Eq. (69) and Eqs. (70), (71), (72) represent an important
result of the present work. Indeed, they show that self–
consistency screens the interaction lines of all diagrams,
including the Debye–Waller one. This result will be cru-
cial in discussing how to include higher-order diagrams
avoiding double-counting problems.

Indeed, there are two well known ways of increas-
ing the order of the perturbative expansion. One is
to add skeleton diagrams and the other is to use self–
consistency. This second path is extremely important
as it provides the way for a given self–energy to fulfill
conserving conditions58. Skeleton (as well as reducible)
diagrams are known to build–up the screening of the
electron–electron and electron–nucleus interactions. In
this section we have shown that screening arises also from
self–consistency.

= +

Σ

(5.a)

=Σ 1− + +

(5.b)

=Σ

+ +

1−

(5.c)

FIG. 5. Diagrammatic proof that self–consistency at the Hartree
level is equivalent to screening, at the time–dependent Hartree
level. The proof is obtained by using the Dyson equation inside
the definition of the Hartree self–energy. This can be solved in
terms of the self–energy itself by a simple Fourier transformation
because the Hartree self–energy is local in time. The mathematical
transposition of this proof is discussed in the text.

The first two diagrams resulting from the expansion
of the diagrammatic fraction appearing in Fig. (5.c) are
shown in Fig. 6. The repeated closed loops represent
the Time–Dependent Hartree (TDH) approximation for
the response function. The corresponding screening of
the interaction is known as Random–Phase Approxima-
tion (RPA). The RPA is the most elemental way to in-
troduce screening in a system of correlated electrons.

Self–consistency dresses the electron-phonon interac-
tion in the Hartree, in the tad–pole and in the DW dia-
grams. As it will be clear in the following, the equation of
motion for the corresponding screening function changes
with the level of approximation used in the self–energy.
Moreover, when ΣTPe−n (1) + Σn−n (1) 6= 0, the screen-
ing is due to the total time–dependent Hartree dielectric
function that includes the lattice polarization contribu-
tion. This follows from the definition of the zig–zag inter-
action, Fig. (4) and Eq. (63), which induces (see Fig. (6),
for example) scatterings processes where an electron–hole
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pair is annihilated and a phonon propagator is created.

+

(6.a)

+

(6.b)

FIG. 6. First two diagrams contributing to the screening of
the Hartree (upper diagram) and DW (lower diagram) term. The
screening can be written as the action of a time–dependent Hartree
screening function (see text). The dielectric function contains
only the Hartree exchange diagrams as we considered only the
Hartree term in the electronic self–energy. However, it also in-
cludes phonon–mediated scatterings as a consequence of the fact
that ΣTPe−n has been included in the diagrammatic expansion.
As it will be clear in the Sec. VB, the addition of more diagrams
to the electronic self–energy corresponds to modify the equation of
motion satisfied by the dielectric function.

Even today, most of the calculations at the GW level
are performed by using the G0W0 non self–consistent ver-
sion. However, this section shows that the DW diagram
gets correctly screened only by solving the Dyson equa-
tion self–consistently.

B. The Fock and Fan self-energies

The analysis of the previous paragraph has been re-
stricted at the Hartree level to keep the notation as sim-
ple as possible. In this section, we extend the derivation
to the Fock approximation by showing how the screen-
ing of the second–order electron-phonon interaction θ is
modified by the inclusion of electronic exchange scatter-
ings via the Fock diagram. We will assume for simplicity
that Σe−n + Σn−n = 0 and show the changes that this
approximation induces in the definition of the dielectric
function.

The procedure to disentangle the self–consistency from
the electron propagator appearing in the Fock operator
can be done entirely using Feynman diagrams. We start
by using the Dyson equation to rewrite the dressed (thick
line) electronic propagators in Fig. (7) in terms of the
bare electronic propagators (thin line) and of the self–
energy. The resulting diagrammatic expression for Σ is
showed in Fig.(8.a).

= +ΣΣ +

FIG. 7. The Dyson equation at the Fock level in the electron–
electron and electron–phonon interaction. In addition to the
Hartree and DW contributions we include the Fock diagram. Note
that the zig–zag interaction lines include the bare electron-phonon
interaction defined in Fig.(4). Thus Σ includes the DW and the
Fan diagrams with bare and un–dressed interactions.

We can then work out diagram (8.a) by isolating a non–
local operator that is evidenced by the square brackets
in the diagram (8.b). The self–energy can be isolated to
the left-hand side of the equation. Then, in the same
spirit as for the Hartree case, we can invert the equation.
By following the same procedure used to go from dia-
gram (5.b) to (5.c) we introduce a diagrammatic fraction
represented by the square bracket in the diagram (8.c).
Formally speaking, this fraction must be interpreted as
follows. Let us consider the generic expression 1

1̂−D̂1−D̂2

,

with D̂1 and D̂2 two generic diagrams with M open in-
teraction lines (in the present case M = 4). Then we
have that

1

1̂− D̂1 − D̂2

≡ 1̂ +
∑

n

(
D̂1 + D̂2

)n
c
, (73)

where the c sub–script means that, at each order, we
consider the totally contracted products of D̂1 and D̂2 in
such a way that the resulting diagram has, again,M open
interaction lines. We can illustrate this procedure by
applying it to the DW term (last term in the numerator of
diagram 8.c). In this case, Eq. (73) applied to the square
bracket produces an infinite series of diagrams that are
closed in the upper part by a fermion line contracted in
the second–order bare interaction (�). The first three
diagrams of this series are shown in Fig. (9.a).
The final result is that, like in Sec.VA3, the Debye–

Waller diagram is screened by a dielectric function. How-
ever, there are two important differences with respect to
the Hartree case. First of all, after linearization of the
Green’s functions appearing in the right-hand side of the
diagram (8.c) by using Eq. (61), we can define a different
dielectric function than Eq. (68):

ǫtdhfq (1, 2) ≡ δ (1, 2)−
∫

d3vq (1, 3)χ
irr
q (3, 2) , (74)

with χirr
q (3, 2) the time–dependent Hartree–Fock irre-

ducible response function. The equation that defines χirr

is represented in diagrammatic form in Fig. (9.b) and
Fig. (9.c).
The corresponding definition of the screened second–

order electron-phonon interaction is

θ̃qλ,−qλ (1) =
∫
d2

[
lim
q→0

ǫtdhfq (1, 2)

]−1

θqλ,−qλ (r2) . (75)
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= +ΣΣ + + +Σ Σ

(8.a)

= +ΣΣ + + + Σ

(8.b)

=

+

Σ

+

−1−

(8.c)

FIG. 8. Diagrammatic proof of the equivalence between self–
consistency and screening when a Fock and a Fan diagrams are
present (second and third in the r.h.s. of Fig.(7)). In the frame
(b) a portion of the equation is isolated and enclosed in square
brackets. By defining formally the diagrammatic fraction (see text)
the equation is inverted and the diagram in the square bracket goes
in the denonimator of frame (c). The perturbative expansion of this
fraction leads to the screening of Hartree term and of the second–
order bare electron-phonon interaction θ. Some of the diagrams
that follows from the expansion are shown in Fig.(9).

The first two orders of χ are represented by the two
bubbles appearing in Fig.(9.a) while in Fig. (6) only the
independent-particle bubbles appear (this is, indeed, the
definition of the RPA). In this case the Fock and Fan dia-
grams induce a first order bubble with the interaction W
connecting the two fermion propagators. This diagram
represents the contribution of the electron–hole attrac-
tion and, when summed to all orders, it can explain and
predict the formation of excitonic states13. Such bound
electron–hole states are commonly observed in the ab-
sorption spectrum of several materials13. In this case
the electron–hole attraction is both electron and phonon
mediated47.

The second difference is the fact that in this derivation
of the Hartree–Fock screening, we have assumed that the
two tad-poles Σe−n (1) and Σn−n (1) cancel each other.
Formally speaking this cancellation is never exact. If
the contribution of these two terms is included then the
dashed interaction in the denominator of the diagram-
matic equation (8.c) would contain a electron-phonon
contribution and the whole definition of the screening
function would be affected. This corresponds, for exam-
ple, to the appearance of exchange diagrams mediated by

phonons.

++

(9.a)

= χirrL

(9.b)

=L + L

(9.c)

FIG. 9. The series (a) corresponds to the first three diagrams
contributing to the screening of the DW term. Similar series of dia-
grams contributing to the self–energy can be obtained by replacing
the DW bare self–energy with the Hartree and Fock self–energies.
As we see besides the usual time–dependent Hartree contribution
to the polarization function (second diagram) there is a irreducible
diagram where the electron and hole interact via the total screened
interaction defined in Eq. (63). The definition of the irreducible
time–dependent Fock response function is given in the diagram (b)
in terms of the four point function L. The final equation for χirr

follows, then, from the corresponding equation of motion for L (di-
agram (c)).

C. Skeleton diagrams, GW approximation and

self–consistency issues

In Sec. VA and Sec. VB we have noticed that, even
if we assume that tad–poles diagrams cancel each other,
i.e. Eq. (60) is satisfied, the screening of the first (ξ)
and second (θ) electron-phonon interaction potentials in-
duced by self–consistency depends on the kind of approx-
imation used for the electronic self–energy.
The situation for the other family of diagrams that

must be considered at each order of the perturbative ex-
pansion is different. Indeed, if we consider skeleton (bare)
diagrams we have that the ξ function is renormalized by
the purely electronic dielectric function, as explained for
example in Ref. 48 (via the diagrammatic method) and
in Ref. 52 (via the equation of motion approach):

ξ̃qλ (1) =

∫
d2
[
ǫq (1, 2)|el

]−1
ξqλ (r2) . (76)

In this case
[
ǫq|el

]−1
is the electronic dielectric function

whose irreducible response function part follows directly
by contracting the vertex function associated with the
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self–energy. In the case of the well–known GW approx-
imation, the dielectric function is calculated within the
RPA. The purely electronic expression can be obtained
from Eq. (68) when the phonon–mediated exchange con-
tribution is neglected and corresponds to approximate
Wqλ (1, 2) by vq (r1, r2).

Σ = + +

FIG. 10. The Dyson equation at the GW level in the electron–
electron and electron–phonon interaction. The electron–phonon
diagram is known as Fan self–energy and its vertex (represented
by the circled dot) represents a dressed electron–phonon interac-
tion (see Eq. (76)). The wiggled line is a dressed electron–electron
interaction (see Eq. (77)). The most important aspect of this di-
agram is that, as long as only skeleton diagrams are included, the
second–order electron-phonon interaction, and consequently the
DW diagram, is not screened.

The non self–consistent self–energy is showed in

Fig. (10). The circled dot symbol ( ) represents the
dressed interaction defined in Eq. (76) and, diagrammat-
ically, in Fig. (11). Similarly, the wiggled line is the
screened electron–electron interaction

W̃ (1, 2) =

∫
d3 [ǫ (1, 3)|el]

−1
v (2, 3) . (77)

All the equations and definitions connected to the in-
clusion of skeleton diagrams are well–known in the lit-
erature. The original aspect outlined by the derivations
presented in the previous sections is that, while the first
order electron-phonon interaction ξ appearing in the Fan
diagram is screened by skeleton diagrams, the second–
order θ is screened by self–consistency.

This deep difference in the procedure that defines the
kind of screening of the electron-phonon interaction is re-
flected in the different equation that is satisfied by ǫ in,
for example, Eq. (77), Eq. (75) and Eq. (70). Depending
on the choice of the self–energy, we have phonon me-
diated exchange and/or direct scatterings and electron–
hole attraction diagrams. We will see in the following
that yet another family of dielectric functions is used
within the DFPT approach. The physical interpretation
of these different definitions is discussed in Sec. VIIB.

= + + + . . .

FIG. 11. Diagramatic representation of the dressed electron–
phonon vertex within the GW approximation for the self–energy.
In this case the diagrams are bare (skeleton) and sum into an RPA
dielectric screening of the ionic potential. In this case, even in
the case where the tad–pole diagrams are non zero, the dielectric
screening is purely electronic. The standard additional approxima-
tion is to consider a static screening.

VI. THE DENSITY–FUNCTIONAL–THEORY

APPROACH TO THE ELECTRON-PHONON

PROBLEM

In the previous section we have analyzed the kind of
diagrams induced by the electron–electron interaction in
the dressing of the electron–nucleus interaction terms.
We have disclosed the key role played by self–consistency
and the different level of approximation that arises from
the perturbative expansion.
In order to link the DFPT and MBPT approaches we

start with a short review of the purely DFT–based ap-
proach to the electron–phonon coupling.
DFT is a self–consistent theory, and DFPT is its exten-

sion to take into account, self–consistently, the effect of
static perturbations (like nuclear displacements). In this
case, DPFT provides an exact description of phonons
within the limits of a static and adiabatic approach.
The phonon frequencies in DFPT are always real and no
phonon dissipation process is included. If we introduce a
total (electron–electron plus electron–nucleus) potential

V̂scf (R, r) = V̂Hxc [ρ] (r)−
∑

ls

Zs

|r̂− R̂ls|
, (78)

where the functional dependence of the electronic density
on the nuclear positions introduce a direct (via We−n)
and indirect (via VHxc) dependence on (R) in Vscf . In
DFPT this complicated dependence links the calculation

of ∂Rls
V̂scf (R, r) to the solution of a self–consistent set

of equations.
By applying the same procedure used to derive Eq. (7),

a formal Taylor expansion ofHKS can be obtained. How-
ever, if the dependence of the density on the nuclear posi-
tions is not taken into account, all terms in the Taylor ex-
pansion are bare. In DFT (or DFPT), screening builds–

up because of the V̂scf indirect dependence on (R). We
introduce

ξDFPT
qλ (r) = ∂(qλ)Vscf (R, r) , (79)

and

θDFPT
qλ,−qλ (r) = ∂(qλ),(−qλ)Vscf (R, r) . (80)

The expression for ξDFPT
qλ (r) can be written in terms of

∂Rs
Vscf (R, r) by following the same procedure outlined

in appendix A. The screening of ξ within a pure DFPT
scheme follows from the fact that

∂Rls
Vscf (R, r) = ∂Rls

We−n (R, r)

+

∫
dr′

δVHxc [ρ] (r)

δρ (r′)
∂Rls

δρ (r′) . (81)

In order to evaluate Eq. (81) and create a link with the
MB approach, we notice that DFPT is based on the linear
response regime16,57 where:

∂Rls
ρ (r) =

∫
dr′χDFT (r, r′) ∂Rls

We−n (R, r
′) , (82)
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where the DFT polarizability χDFT = ∂ρ
∂Vext

is solution
of the following Dyson equation

χDFT (r, r′) = χ
(0)
KS (r, r′)

+

∫
dr

′′

drχ
(0)
KS (r, r) fHxc(r, r

′′

)χDFT (r
′′

, r′), (83)

with χ
(0)
KS the independent particle KS response function.

From the definition of the Hartree and xc potential it
follows that

fHxc (r, r
′) ≡ δVHxc [ρ] (r)

δρ (r′)
(84)

= v (r− r′) + fxc (r, r
′) , (85)

which, finally, yields the well-known expression for the
derivative of the total DFT self–consistent potential

∂Rls
Vscf (R, r) =

∫
dr′
{
δ (r− r′)

+

∫
dr

′′

fHxc

(
r, r

′′

)
χDFT

(
r
′′

, r′
)}

∂Rls
We−n (R, r

′) . (86)

If we now introduce the DFT dielectric function

[
ǫDFT (r, r′)

]−1 ≡ δ (r− r′)

+

∫
dr

′′

fHxc

(
r, r

′′

)
χDFT

(
r
′′

, r′
)
, (87)

we have, finally, that

∂Rls
Vscf (R, r) =

∫
dr′
[
ǫDFT (r, r′)

]−1

× ∂Rls
We−n (R, r

′) . (88)

Similarly, the second–order derivative of Vscf can be in-
troduced16,57 as

∂2RlsRl′s′
Vscf (R, r) =

∂Rls

{∫
dr′
[
ǫDFT (r, r′)

]−1
∂Rl′s′

We−n (R, r
′)

}
. (89)

Eqs. (88) and (89) must be compared with Eqs. (70), (71)
and (72) in order to highlight the differences between the
two formulations and potential similitudes.
Eq. (88) can be written in the basis of phonon displace-

ments (q, λ) as

ξ̃DFPT
qλ (r) =

∫
dr′
[
ǫDFT
q (r, r′)

]−1
ξDFPT
qλ (r′) . (90)

This last equation can directly be compared with Eq. (70)
and the following observations can be made

(a) In DFPT the ξ function (and more generally the
electron–phonon interaction) is statically screened

and it does not include the contribution from
the lattice polarization. In the MBPT, instead,
the electron-phonon interaction is dynamically
screened (i.e. the dielectric functions defined in
Eq. (68) and Eq. (74) are time dependent) and it in-
cludes phonon mediated scatterings (see Eq. (70)).
The static screening of DFPT reflects the fact that
there are no retardation effects in the theory. Those
effects are peculiar of the MBPT and, in some
cases, can lead to important deviations from the
static limit11,59,60 when included in the self–energy.

(b) The DFT dielectric function ǫDFT defined in
Eq. (87) is a test–electron dielectric function
whereas in the MBPT the dielectric function that
screens the bare electron-phonon interaction is a
test–charge function. The difference between those
two functions is well described in Ref. 61 and 62.
In the test–charge case, the dielectric function rep-
resents a response to an external particle, while in
the test–electron case, the charge is itself an elec-
tron. We will discuss in more detail this difference
from a physical perspective in Sec.VIIB.

(c) A peculiar consequence of the DFPT approach is
the appearance of non–rigid nuclei contributions
to the second–order derivative of the electron–
nucleus interaction potential, ∂2RlsRl′s′

Vscf (R, r).

This contribution does not appear in the Many–
Body derivation carried on in the previous sections.

Such non–rigid nuclei (recently called in the literature
non–rigid ion contribution45) can be studied by applying
the derivative with respect to a nucleus displacement on
the right-hand side of Eq. (89) and by distinguishing a
rigid–nuclei (RN) and a non–rigid nuclei (NRN) terms

∂2RlsRl′s′
Vscf (R, r) =

[
∂2RlsRl′s′

Vscf (R, r)
]∣∣∣

RN

+
[
∂2RlsRl′s′

Vscf (R, r)
]∣∣∣

NRN
, (91)

with
[
∂2RlsRl′s′

Vscf (R, r)
]∣∣∣

RN
=

∫
dr′
[
ǫDFT (r, r′)

]−1
∂2RlsRl′s′

We−n (R, r
′) , (92)

and
[
∂2RlsRl′s′

Vscf (R, r)
]∣∣∣

NRN
=

∫
dr′∂Rls

[
ǫDFT (r, r′)

]−1
∂Rl′s′

We−n (R, r
′) . (93)

If we now rewrite both terms in the DFPT phonon (q, λ)
basis and multiply by a 1/2 pre factor we get

θ̃DFPT,RN
qλ,q′λ′ (r) ≡ 1

2

∫
dr′
[
ǫDFT (r, r′)

]−1

× ∂2qλ,q′λ′Vscf (R, r
′) , (94)
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and

θ̃DFPT,NRN
qλ,q′λ′ (r) ≡

1

2

∫
dr′ξ̃DFPT

q′λ′ (r′) ∂qλ
[
ǫDFT (r, r′)

]−1
. (95)

From the local dependence on R of the Vscf it follows
that, in the RN contribution, a δRls,Rl′s′

appears. In
the rigid–nuclei approximation (also called the rigid-ion

approximation) the θ̃DFPT,NRN
qλ,q′λ′ is neglected.

The physical interpretation of the NRN contribution
to the second–order derivative of the self–consistent po-
tential is obscure in the DFPT derivation and seems to
be more a mathematical separation based on computa-
tional load of the calculations rather than a physically
motivated choice (see Ref. 45 for a detailed explanation).
We will discuss this term from a Many–Body perspective
in Sec. VIIC.

VII. MBPT STARTING FROM

DENSITY–FUNCTIONAL AND

DENSITY–FUNCTIONAL PERTURBATION

THEORY

The main difficulty in performing a diagrammatic ex-
pansion on top of DFT is that it is not possible to write
the initial Hamiltonian in terms of dressed interactions.
This means that, even within DFT, the Taylor expansion

of Ĥ (R) is still given by Eq. (32) with the only differ-
ence that the electron–electron interaction is replaced by
the mean–field xc–potential. At this point DFPT and
MBPT follow two different routes in order to describe
the dressing of the interaction and the definition of the
electronic self–energies.
To obtain the same screening as DFT+DFPT from

a purely many–body point of view, we start by writing
again the total Hamiltonian as a function of the KS one

Ĥ (R) = ĤKS

(
R
)
+ Ĥn

(
R
)
+∆Ŵ ref

n−n (R)

+ ∆Ĥremaining (R) . (96)

We can determine the value of ∆Ĥremaining (R) from
Eqs. (17), (23) and (25)

∆Ĥremaining (R) = ∆Ŵn−n (R)−∆Ŵ ref
n−n (R)

+ ∆Ŵe−n (R) + Ŵe−e − V̂Hxc [ρ] , (97)

with ρ the equilibrium DFT density.
Now the full MBPT machinery described in the pre-

vious sections can be applied to Eq. (97), leading to the
screening of the electron-phonon interactions. However,
our aim is to create a link with the DFPT definitions
of Eq. (88) and (89). The main differences between the
MBPT and DFPT approach are listed in Table I and
explained below.

A. Tad–Poles

By definition the DFT density is the exact one and it
satisfies Eq. (58). Thus, bearing in mind the linearization
procedure outlined at the end of Sec. VA1, we can affirm
that within DFPT, Σe−n (1)+Σn−n (1) = 0. As a conse-
quence the dielectric function that screens the electron-
phonon interaction does not include phonon-mediated ex-
change scatterings.

B. Screening of the second–order electron–nucleus

interaction

In order to discuss how screening builds up, we start
from the lowest order self–energy in the electron–phonon
scattering (see Fig.(2.b)). Again, we start from the bare
Hamiltonian but this time we use the KS system as refer-
ence. The Dyson equation that follows from the Hamil-
tonian of Eq. (96) is

G (1, 2) = GKS (1, 2) +

∫
d3GKS (1, 3)

×
{
ΣH (3)− VHxc [ρ] (3)

}
G (3, 2) . (98)

Moreover, since the Hartree part (VH) also appears in
VHxc, we have

ΣH [ρ] (1)− VH [ρ] (1) =∫
d2v (1, 2)

[
ρ (2)− ρ (2)

]
. (99)

In the case of a local self–energy, the difference of densi-
ties can be rewritten in terms of the self–energy by using
Eq. (53)

ρ (1)− ρ (1) =

∫
d2GKS (1, 2)Σ (2)G (2, 1) . (100)

Following Eq. (68), we obtain within RPA and after lin-
earization of the Green’s function (G ≈ GKS) that

ǫKS,RPA (1, 2) ≡ δ (1, 2)−
∫

d3v (1, 3)χKS (3, 2) , (101)

with

χKS (1, 2) ≡ GKS (1, 2)GKS (2, 1) . (102)

The final expression of the second–order electron-phonon
interaction thus becomes

θ̃qλ,−qλ (1) =

∫
d2

[
lim
q→0

ǫKS,RPA
q (1, 2)

]−1

× θqλ,−qλ (r2) δ (t2) , (103)

with the dielectric function defined by

[
ǫKS,RPA (1, 2)

]−1 ≡ δ (1, 2)

+

∫
d3v (1, 3)χKS,RPA (3, 2) , (104)
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TABLE I. Schematic representation of the different treatment within MBPT and DFPT of the most important aspects of the
electron–nucleus interaction.

MBPT DFPT
Tad–Pole diagrams sum, Σe−n + Σn−n,
Fig. (2.b).

Vanishing only when the atomic positions
are evaluated consistently with the level
of correlation included in the self–energy.

Vanishing.

Screening of the first order interaction,
ξ (r).

Time–dependent and described by a test–
charge dielectric function consistent with
the self–energy. Induced by skeleton
diagrams.

Screened by the static test–electron DFT
dielectric function. Introduced via self–
consistency.

Screening of the second order interaction,
θ (r).

Time–dependent and described by a
test–charge dielectric function consistent
with the self–energy. Induced by self–
consistency diagrams.

Screened by the static test–electron DFT
dielectric function. Introduced via self–
consistency.

Non–rigid nuclei contribution to the sec-
ond order interaction, θ (r).

Appears in the static limit from the di-
agrams that describe the dressing of the
electronic density caused by the e–n in-
teraction. It is, again, caused by self–
consistent diagrams.

Present and static. Induced by the im-
plicit dependence of the screening on the
atomic positions.

and χKS,RPA solution of Eq. (83) with fHxc (r, r
′) =

v (r, r′).

We notice that Eq. (104) defines a test–charge dielec-
tric function while in DFPT, Eq. (87), a test–electron
dielectric function appears.

This difference of definition is a straightforward con-
sequence of the fact that the definition of the dielectric
function is linked to the distinction between the classical
and the quantum parts of the induced potential. The
classical part satisfies a Poisson equation whose solution
is the Hartree potential. The quantum part is treated
in different ways in MBPT and DFPT. In the MBPT,
the quantum induced field is represented by the change
of the correlation self–energy due to a test charge. This
is described by the vertex function58 that can also be
used to rewrite the exact self–energy in a closed form.
In DFT, instead, electronic correlations are included in a
mean–field manner by means of the exchange–correlation
Vxc potential. It follows that, the variation of Vxc mimics
the variation of the self–energy and, thus, represent the
quantum part of the induced potential. Therefore, the
difference between a test–electron and a test–charge is
that the test–electron includes the total variation of the
total potential, including Vxc. This contribution leads to
the fxc term appearing in the right-hand side of Eq. (87)
and marks the difference between the MBPT and DFPT
screening.

As additional proof, we can notice that if the electronic
self–energy is approximated with a DFT exchange–
correlation potential, then the many–body vertex turns
the test–particle into a test–electron dielectric function
that is consistent with the DFPT definition. This means
that fxc is taking into account, in a mean–field manner,
the effect of the MBPT vertex function.

At this point, we can conclude by observing that if
local or semi–local approximations for Vxc are used, the
difference between a test–charge and a test–electron di-
electric function can be safely neglected. Indeed any local

or semi–local expression for Vxc is regular in the short–
distance limit whereas v (r, r′) diverges. This means that,
when q → 0, it follows that fHxc (r, r

′) ≈ v (r, r′).
More elaborate expressions for Vxc that also include

proper short–distance spatial corrections exist. In this
case, a more accurate analysis of the effect of the Many–
Body vertex function on the screening of the electron-
phonon interaction becomes essential to draw a conclu-
sive parallel between MBPT and DFPT. However, this
goes beyond the scope of the present work.
Therefore, as far as local or semi–local approximations

for Vxc are used, we can approximate the DW screened
interaction with the one evaluated at the DFPT level.

C. The non–rigid nuclei contribution to the

Debye–Waller self–energy from a diagrammatic

perspective

One of the most undeniable difference between the
DFT and MBPT scheme is the absence of a diagram-
matic explanation for the non–rigid nuclei contribution
(Eq. (95)) to the second–order derivative of the nuclear
potential. This terms has been shown to be quite impor-
tant in low–dimensional systems21 but, at first sight, it
does not appear in the many–body theory of the electron-
phonon interaction. Indeed, in Eq. (71) and Eq. (75), the
derivatives with respect to the atomic positions act only
on the local bare ionic potential.
In order to find a diagrammatic perspective of

θ̃DFPT,NRN
qλ,q′λ′ we follow again the path of performing a
diagrammatic expansion of the bare, un–dressed Hamil-
tonian and, at the end, draw links with DFT. In the
present case we need to to consider a new series of di-
agrams describing the change of the electronic density
induced by the electron–phonon interaction. Three ex-
amples of this series of diagrams are showed in Fig. (12).
We can see that those diagrams are of the same order of
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magnitude as the lowest order self–energies and there is
a priori no reason to neglect them.

1
2

3

4

(12.a)

1
2

3 4

(12.b)

2

4

2
1

3

(12.c)

FIG. 12. First three diagrams that dress the Hartree self–energy
due to the change of the electronic density induced by the electron-
phonon interaction. The sum of all diagrams of this kind (see
Eq. (105) for a more formal definition) reduce, in the static and
adiabatic limit, to the NRN contribution to the Debye–Waller self–
energy as discussed in the text.

The dressing of the Hartree self–energy can occur in
two ways: the first is by dressing the internal electronic
propagators (an example is the Diagram (12.a)). The sec-
ond way is to dress two tad–poles with phonon scatterings
like in Diagrams (12.b) and (12.c). All the diagrams of
this kind can be written as

δΣH (r1) =

∫
dr2v (r1 − r2) δρ (r2) , (105)

with

δρ (r2) = [ρ (r2)− ρ (r2)] =
∑

p

δρp (r2) (106)

=
1

N

∑

np

φnp (r2)φ
∗
n′p (r2) δρnn′p (r2) . (107)

In the case of the diagram (12.a) we have that

δρp (2) =
∑

q,λ

∫
d34

[
G(0)

p (2, 3) ξ̃qλ (3)

×G
(0)
p−q (3, 4)

]
ξ̃∗qλ (4)G

(0)
p (4, 2)D

(0)
qλ (t3 − t4) , (108)

where ξ̃ is a first-order interaction that we assume to
be screened by the very same skeleton diagrams that we
described in Sec.VC.

In order to introduce a simple and clear interpreta-
tion of the contribution due to the δΣH diagrams, we
take the static and adiabatic limit of the atomic dis-
placements. This approach will also simplify the con-
nection with the corresponding quantity evaluated with
the DFPT scheme.
We start by taking the static limit of D

(0)
qλ (t3 − t4) ≈

−δ (t3 − t4) [2n (ωqλ) + 1] and of ξ̃ (3) ≈ ξ̃ (r3) δ (t3).
Moreover, in this limit, we can treat the atomic dis-
placements as classical and static variables in order to

approximate ∆Ĥ (R)

∆Ĥ (R) ≈
∑

qλ,i

ξ̃qλ (ri)uqλ, (109)

with uqλ the phonon displacements defined as

uqλ =
∑

lsα

(2NMsωqλ)
−1

∆Rlsαηα (qλ|s) . (110)

As we are interested in a specific series of diagrams, we
can disregard higher-order corrections to ∆H (R). The
Eq. (109) allows to formally define the derivative of the

Green’s function, ∂qλG (1, 2) evaluated at the equilib-
rium nuclear positions. Indeed, from Eq. (109), it follows
that

[G (1, 2)]
−1

=
[
G(0) (1, 2)

]−1

−∆H (R) . (111)

and

∂qλ [G (1, 2)]
−1

=

− ∂qλ∆H (R) = −ξ̃qλ (r1) δ (1, 2) , (112)

which, finally, using the identity

δ (1, 2) =

∫
d3 [G (1, 3)]

−1
G (3, 2) , (113)

yields the desired definition

∂qλG (1, 2) =

∫
d3G(0) (1, 3) ξ̃qλ (r3)G

(0) (3, 2) . (114)

Eq. (114) is diagrammatically represented in Fig. (13).
The derivative of the Green’s function splits the projector
in two with the insertion of a dressed electron-phonon

first–order interaction ( ).

∂qλ =

FIG. 13. Diagrammatic transposition of the derivative of a Green’s
function with respect to a specific displacement written in the
phonon basis (see text, in particular Eq. (114)). The derivative
splits the Green’s function with the insertion of an electron-phonon
first–order interaction.

By using Eq. (114) we notice that the first–order inter-
actions appearing in the ρ (r2)−ρ (r2) can be interpreted



21

as derivatives of the Green’s function. By using Eq. (114)
we can indeed rewrite the quantity in square brackets of
Eq. (108) as

∫
d3G

(0)
k (2, 3) ξ̃qλ (r3)G

(0)
k−q (3, 4) =

∂qλGk (2, 4). (115)

We take now the static limit of χ(0), which is consistent
with the static and adiabatic approach taken in this sec-
tion. In this way, we obtain the contribution of the first
diagram (12.a) to δΣH

δΣH,a (r1) = −1

2

∑

qλ

∫
dr2 dr3v (r1, r2)

× ∂qλχ
(0) (r2, r3) ξ̃

∗
qλ (r3) [2n (ωqλ) + 1] , (116)

where the factor 1/2 follows from the definition of χ(0)

(see Eq. (67)) that yields two equivalent contributions to
δΣH,a.
If we now perform the same procedure to all bub-

ble diagrams that contribute to time–dependent Hartree
reducible response function we get the diagram (12.b)
and (12.c). The final expression for δΣH is

δΣH (r1) =
1

2

∑

qλ

∫
dr2∂qλ

[
ǫtdh (r1, r2)

]−1

× ξ̃qλ (r2) [2n (ωqλ) + 1] . (117)

We have demonstrated that, in the static and adia-
batic limit, the series of diagrams due to the dressing of
the electronic density as a consequence of the electron–
nucleus interaction reduce to a new contribution to the
series of second–order diagrams. However, the derivative
with respect to the atomic displacements is acting on the
dielectric function.
The Eq. (117) allows us to rewrite the DFPT NRN

potential θ̃DFPT,NRN
qλ,q′λ′ in a purely MBPT language. A

direct comparison between Eq. (117) and Eq. (95) reveals
that the difference between the MBPT and the DFPT
approaches lies in the dielectric function (ǫtdh for the first
and ǫDFT for the second).

D. Screening of the first–order electron–nucleus

interaction

If we now consider terms beyond the Hartree approx-
imation, the definition of the dielectric function that
screens the second–order interaction will change. This
means that if we add to the Hartree potential a Fock
operator, a VHxc potential or a GW self–energy, the di-
electric function will solve a time–dependent Fock, DFT
or GW equations.
We can anyway add new correlation terms to the self–

energy by keeping frozen the self–consistency at the DFT

level. This means that the dielectric function will approx-
imatively solve a DFT equation that, within the limits of
the discussion of Sec. VIIB, will correspond to a simple
RPA approximation written in the KS basis.

If we now include the Fan contribution to the total
self–energy and follow the same procedure already dis-
cussed for the skeleton diagrams (see Sec. VC), we will
obtain that the ξ function is renormalized by the stan-
dard skeleton polarization diagrams. These, again, will
be summed in a RPA dielectric function written in terms
of KS bare Green’s functions.

E. Self–consistency

As already mention earlier, the self–consistent dia-
grams play a crucial role in the definition of the second–
order interaction.

The screening of the rigid–nuclei second–order interac-
tion can be obtained with a simple self–consistent Hartree
approximation (that is already embodied in the DFT pro-
cedure). Instead, the non–rigid nuclei term requires to
include, self–consistently, Fan diagrams and cannot be
obtained with a simple mean–field approximation.

This complicates the merging of MBPT and DFT as it
is now clear that we can approximate the θ and ξ func-
tions with the DFPT counterparts under the condition
that the Dyson equation is not solved self–consistently.
Any kind of self–consistency would screen again the θ
interaction leading to a severe over–screening.

The self–consistency must be taken from the solution
of the KS equations and not re–introduced at the MB
level. This, as explained above, will correspond to the
inclusion of certain class of diagrams, a practice that is
well motivated within a many-body approach.

Finally, if the Dyson equation is not solved self–
consistently, any additional electronic self–energy beyond
the Vxc can be introduced as an additive potential (see
Eq. (19)). This means that it is safe to introduce non
self–consistent quasi-particle corrections (electron and/or
phonon mediated).

F. Higher–order derivatives of the Vscf

The importance of creating a coherent merging of DFT
and MBPT stems from the possibility of deriving an ac-
curate and predictive approach to the electron-phonon
interaction. There is however an entire family of physical
problems induced by a strong electron–phonon interac-
tion that requires to introduce higher-order self–energy
diagrams. A crucial difference with respect to the state–
of–the–art models (like Fröhlich or Holstein Hamiltoni-
ans) is that the correct treatment of the nuclear positions
produce a new category of diagrams of generic order n
where the n–th order derivative of the self–consistent po-
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tential appears

T
(n)
R1···Rn

(r) ≡ ∂nVscf (R, r)

∂R1 · · · ∂Rn
, (118)

where the Debye–Waller diagram is the lowest order ex-
ample. Thanks to the simplicity of DFPT, it is possible
to define an iterative expression for the matrix elements

of T
(n)
R1···Rn

(r)

T
(n)
R1···Rn

∣∣∣
nn′

kk′

≡ 〈nk|T (n)
R1···Rn

(r) |n′k′〉. (119)

Such matrix can be rewritten in terms of T (n−1) and of
the n–th derivative of the KS energy levels

T
(n)
R1···Rn

∣∣∣
nn′

kk′

=
∑′

mp,nk

[ T (1)
R1

∣∣∣nm
kp

T
(n−1)
R2···Rn

∣∣∣
mn′

pk′

ǫmp − ǫnk

−
T

(n−1)
R2···Rn

∣∣∣nm
kp

T
(1)
R1

∣∣∣
mn′

pk′

ǫn′k′ − ǫmp

]
+P1

(
T

(n−1)
R2···Rn

∣∣∣
nn′

kk′

)
, (120)

with

T (0)
∣∣∣
mn′

pk′

= ǫn′k′δn′mδk′p, (121)

and

P1F (R1 . . .Rn) = −i∂R1
F (R1 . . .Rn) , (122)

where F is a generic function of the atomic positions.
More information on Eq. (120) is provided in ap-

pendix B. Such procedure can be used to calculate nu-
merically, in an ab–initio manner, the high–order self–
energies.

VIII. CONCLUSIONS

In this work we have studied the electron–phonon
problem by comparing the standard Many–Body Pertur-
bation Theory (MBPT) with Density Functional The-
ory (DFT) and Density Functional Perturbation Theory
(DFPT). By analyzing the different diagrams that con-
tribute to the electronic self–energy we have achieved sev-
eral important goals.
(i) The well–known electron–phonon induced tad–pole

diagram is not zero in general but can be cancelled by
a nuclear–nuclear self–energy if the equilibrium nuclear
positions are coherent with the level of correlation in-
troduced at the single–particle levels. In the case of a
non self–consistent calculation, the equilibrium positions
evaluated with a DFT reference Hamiltonian removes the
sum of the tad–pole diagrams.
(ii) Self–consistency diagrams dress the second–order

interaction and the corresponding Debye–Waller self–
energy. This provides the many–body interpretation of

the screened Debye–Waller self–energy already known in
the DFPT case.
(iii) We identify the specific series of diagrams that

explain the non–rigid nuclei contribution to the Debye–
Waller self–energy. The existence of this term was known
only in a purely DFPT (static and adiabatic) approach.
In the present work, we provide a clear physical inter-
pretation of this term by performing a static limit of the
MBPT expression to demonstrate that, indeed, it reduces
to the well–known DFPT result.
(iv) We have drawn a final series of statements re-

garding the possibility to perform many–body pertur-
bation theory calculations on top of Density Functional
and Density Functional Perturbation Theory avoiding
the double counting of diagrams.
This work represents a firm and formally accurate in-

spection of the two methods while describing the lim-
itations of the static DFPT approach and providing a
practical way to go beyond by the merging with more
advanced MBPT methods.
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Appendix A: The interaction Hamiltonians in the

phonon displacements representation

We proceed here to discuss the details of the derivation
and definition of the functions

ξqλ (r) = ∂(qλ)We−n (r,R) , (A1)

θqλ,q′λ′ (r) =
1

2
∂2(qλ)(q′λ′)We−n (r,R) , (A2)

Ξqλ = ∂(qλ)Wn−n (R) , (A3)

Θqλ,q′λ′ =
1

2
∂2(qλ)(q′λ′)Wn−n (R)

−∆W ref
n−n (R)

∣∣∣
(qλ)(q′λ′)

, (A4)

where we purposely did not place a nucleus dependenceR
on the left-hand side of those equations. We will indeed
see that the dependence is lifted by Eq. (A9), as the
derivatives have to be evaluated at R.
Those functions enter in the different interaction terms

of the electron-phonon interaction . We start by remem-
bering that

We−n (r,R) = −
∑

ls

Zsv (r−Rls) , (A5)
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and

Wn−n (R) =
1

2

∑′

ls,l′s′
ZsZs′v (Rls −Rl′s′) . (A6)

It follows that

∂Rlsα
We−n (r,R) = Zsv

(1)
α (r−Rls) , (A7)

and

∂2RlsαRl′s′α′
We−n (r,R) =

− Zsv
(2)
αα′ (r−Rls) δll′δss′ , (A8)

with v
(1)
α (r) ≡ ∂rαv (r) and v

(2)
αα′ (r) ≡ ∂2rαrα′

v (r). By

using Eqs. (A7) and (A8) the evaluation of the ∂(qλ) and

∂2(qλ)(q′λ′) is straightforward. It is enough to remember

that

∂(qλ)F (R) =
∑

lsα

(2NMsωqλ)
−1/2

× ηα (qλ|s) eiq·Rls∂Rlsα
F (R)|R=R , (A9)

with F (R) a generic function. The resulting expression
is therefore independent of R. The ∂2(qλ)(q′λ′) is then

obtained by applying twice Eq. (A9). We finally obtain
that

ξqλ (r) =

∑

lsα

Zse
iq·Rls

√
2NMsωqλ

ηα (qλ|s) v(1)α

(
r−Rls

)
. (A10)

The same machinery can be applied to θqλ,q′λ′ (r) ob-
taining:

θqλ,q′λ′ (r) = −
∑

lsαα′

Zse
i(q+q′)·Rls

2NMs
√
ωqλωq′λ′

× ηα (qλ|s) ηα′ (qλ|s) v(2)αα′

(
r−Rls

)
. (A11)

Two important quantities follow from the integral
of Eq. (A10) and (A11) when multiplied by two
single–particle wavefunction: 〈nk|ξqλ (r) |n′p〉 and
〈nk|θqλ,q′λ′ (r) |n′p〉. In order to evaluate those we have
to consider, in the first-order derivative case, a term like

∑

ls

[∫
drφ∗nk (r) v

(1)
α

(
r−Rls

)
φn′p (r) eiq·Rls

]
, (A12)

with the r integral performed on the whole crystal. Now
we observe that v(1) and v(2) depend on the atomic posi-
tions only via their argument. If Rls = Rl + τ s with τ s

the position of the atom s inside the unit cell located at
Rl we can change variable from r to r′ = r−Rl to center

the sum in the unit cell corner. It follows that Eq. (A12)
turns into

eiq·τs

[∑

l

ei(q+p−k)·Rl

]

×
[∑

sα

∫

0

dru∗nk (r) v
(1)
α (r− τ s)un′p (r) ei(q+p−k)·r

]
,

(A13)

where unk is the periodic part of the wavefunction. By

using the fact that
∑

l e
iP·Rl = NδP we finally obtain

that

〈nk|ξqλ (r) |n′p〉 = δp,k−q〈nk|ξqλ (r) |n′k− q〉 =
∑

sα

Zse
iq·τs

√
N√

2Msωqλ

ηα (qλ|s)

×
[∫

0

dru∗nk (r) v
(1)
α (r− τ s)un′k−q (r)

]
. (A14)

The same strategy can be used to define the matrix ele-
ments of θ:

〈nk|θqλ,q′λ′ (r) |n′p〉 =
δp,k−q−q′〈nk|θqλ,q′λ′ (r) |n′k− q− q′〉 =

−
∑

sαα′

Zse
iq·τs

√
4Msωqλ

ηα (qλ|s) ηα′ (q′λ′|s)

×
[∫

0

dru∗nk (r) v
(2)
αα′ (r− τ s)un′k−q−q′ (r)

]
. (A15)

The definition of Ξqλ is similar and follows directly from
Eq. (A4) and from the extension of Eqs. (A7) and (A8)
to the nucleus-nucleus potential:

∂Rlsα
Wn−n (R) =

∑′

l′s′
ZsZs′v

(1)
α (Rls −Rl′s′) , (A16)

and

∂2RlsαRl′s′α′
Wn−n (R) =

− ZsZs′v
(2)
αα′ (Rls −Rl′s′) (1− δll′δss′)

+
∑′

l′′s′′
ZsZs′′v

(2)
αα′ (Rls −Rl′′s′′) δll′δss′ . (A17)

This, leads to

Ξqλ ≡
∑′

ls,l′s′

ZsZs′√
2MsNωqλ

eiq·Rls

× v(1)α

(
Rls −Rl′s′

)
ηα (qλ|s) , (A18)

and, finally, that
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1

2
∂2(qλ)(q′λ′)Wn−n

(
R
)
=
∑

lsα

∑

l′s′α′

Zse
i(q·Rls+q′·Rl′s′)

2N
√
MsMs′ωqλωq′λ′

ηα (qλ|s) ηα′ (q′λ′|s′)
[
−Zs′v

(2)
αα′

(
Rls −Rl′s′

)
(1− δll′δss′)

+
∑′

l′′s′′
Zs′′v

(2)
αα′

(
Rls −Rl′′s′′

)
δll′δss′

]
. (A19)

Appendix B: An iterative expression for arbitrary

n–th order derivatives of Vscf with respect to the

nuclear displacements

One of the ingredients that are most difficult to cal-
culate within an ab–initio framework is the higher or-
der derivatives of Vscf (R, r). While the first and second
order are needed to calculate the lowest order electron-
phonon self–energies an extension of the theory to the
regime of strong interaction requires the knowledge of an
arbitrary order derivative

T
(n)
R1···Rn

(r) ≡ ∂nVscf (R, r)

∂R1 · · · ∂Rn
. (B1)

In order to derive a close expression for T (n) we use the
following property of the nuclear momentum operator PI

[
P1, Vscf (R, r)

]
= −i∂Vscf (R, r)

∂R1
. (B2)

This identity can be iterated to give:

[
P1,

[
P2, Vscf (R, r)

]]
=
∂2Vscf (R, r)

∂R1∂R2
. (B3)

More generally we have that

T
(n)
R1R2···Rn

= i
[
P1, T

(n−1)
R2···Rn

]
(B4)

In order to evaluate the T (n) matrix elements we start
by noticing that, within DFPT,

〈nk|P1|mp〉 = (−i)
〈nk|∂Vscf (R,r)

∂R1

|mp〉
ǫmp − ǫnk

. (B5)

Now we define

T
(n)
R1···Rn

∣∣∣
nn′

kk′

≡ 〈nk|T (n)
R1···Rn

(r) |n′k′〉, (B6)

and we plug into Eq. (B4) a complete set of eigenstates
obtaining

T
(n)
R1···Rn

∣∣∣
nn′

kk′

=

i
∑

mp 6=nk

[
〈nk (R) |P1

(
|mp (R)〉 T (n−1)

R2···Rn

∣∣∣
mn′

pk′

)

− T
(n−1)
R2···Rn

∣∣∣nm
kp

〈mp|P1|n′k′〉
]
. (B7)

In order to rewrite T (n) in terms of T (n−1) we need to
evaluate

P1

(
|mp (R)〉 T (n−1)

R2···Rn

∣∣∣
mn′

pk′

)
=

(
P1|mp (R)〉

)
T

(n−1)
R2···Rn

∣∣∣
mn′

pk′

+ |mp (R)〉
(
P1 T

(n−1)
R2···Rn

∣∣∣
mn′

pk′

)
. (B8)

Last step is, then, to use Eq. (B5) to get

T
(n)
R1···Rn

∣∣∣
nn′

kk′

=
∑

mp 6=nk

[ T (1)
R1

∣∣∣nm
kp

T
(n−1)
R2···Rn

∣∣∣
mn′

pk′

ǫmp − ǫnk

−
T

(n−1)
R2···Rn

∣∣∣nm
kp

T
(1)
R1

∣∣∣
mn′

pk′

ǫn′k′ − ǫmp

]
+P1

(
T

(n−1)
R2···Rn

∣∣∣
nn′

kk′

)
. (B9)

In order to check the soundness of this approach we apply
it to the first order case:

T
(1)
R1

∣∣∣
nn′

kk′

=
∑

mp 6=nk

T
(1)
R1

∣∣∣nm
kp

T (0)
∣∣
mn′

pk′

ǫmp − ǫnk

−
∑

mp 6=nk

T 0
∣∣nm
kp

T
(1)
R1

∣∣∣
mn′

pk′

ǫn′k′ − ǫmp

+P1

(
T (0)

∣∣∣
nn′

kk′

)
. (B10)

But it is easy to verify that

∂Vscf (R, r)

∂R1
=
∂ [Te + Vscf (R, r)]

∂R1
, (B11)

which implies that

T (0)
∣∣∣
mn′

pk′

= ǫn′k′δn′mδk′p. (B12)

Eq. (B12),when used in Eq. (B10), gives an identity
that confirms the correctness of the iterative equation,
Eq. (B9).
When Eq. (B9) is applied to the second–order deriva-

tive it provides a well–known relation that connects the
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second to the first derivative21,45.

T
(2)
R1R2

∣∣∣nn
kk

=

∑

mp

′

T
(1)
R1

∣∣∣nm
kp

T
(1)
R2

∣∣∣mn
pk

+ T
(1)
R2

∣∣∣nm
kp

T
(1)
R1

∣∣∣mn
pk

ǫmp − ǫnk

− ∂2R1R2
ǫnk (R) . (B13)

More in general Eq. (B9) can efficiently rewrite the n–
th order derivative in terms of the first order derivative
and of the n–th order derivative of the electronic ener-
gies, ∂nǫnk(R)

∂R1···∂Rn
. But these derivatives can be efficiently

calculated using DFPT or finite differences24,45.
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