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Abstract
We present a simple tight-binding model for the bismuth atom and dimer whose main feature
is the inclusion of the spin–orbit coupling in such a way that it allows the study of several
electronic properties as a function of the spin–orbit coupling strength. Density functional
theory calculations (norm-conserving and full-potential linearized augmented plane wave) are
used to obtain the tight-binding parameters and to check the accuracy of the model. The model
is then used to show in a straightforward way that, in the case of the bismuth dimer, the
inclusion of the spin–orbit coupling produces a set of molecular orbitals that are a mixture of
bonding and non-bonding non-relativistic molecular orbitals, thus weakening the molecular
bond.

(Some figures may appear in colour only in the online journal)

1. Introduction

A proper account of relativistic effects is essential for an
accurate determination of the electronic properties of systems
including heavy elements. In the past decades, a great amount
of work has been devoted to understanding what is the effect
of considering relativity with respect to the results obtained
from the simpler and more widely used non-relativistic theory.
For example, it has been known for quite some time that gold
is predicted to be yellow only if relativistic effects are taken
into account [1]. More recently, it was shown that relativistic
effects are responsible for the unique bonding pattern of U2

[2]. Other studies also showed the importance of relativistic
effects in systems like nanographene [3] or organo-transition
metal compounds [4]. Many other examples can be found in
the literature of how electronic properties, like bond lengths,
dissociation energies, photo-electron spectra, etc, are predicted
to be different if relativistic effects are taken into account (see
e.g. [1, 5, 6] and references therein).

Because of its large atomic number (Z = 83),
bismuth is a clear case where relativistic effects cannot
be ignored. Moreover, crystalline bismuth exhibits quite

interesting properties. For example, it is the most diamagnetic
elemental solid [7] and is considered to be an ideal system
to study quantum confinement effects [8, 9]. Recently, it
was shown that the inclusion of the spin–orbit coupling
is essential to obtain phonon band structures and specific
heat of crystalline bismuth in agreement with experiment
[10, 11]. In particular, ab initio calculations of the specific
heat of bismuth were carried with the spin–orbit coupling
term multiplied by a parameter that was used to vary the
spin–orbit strength. This was done in an attempt to better
understand what was the impact of this relativistic effect when
determining the thermodynamic properties of crystals. Besides
the bulk, bismuth nanostructures, like nanotubes, nanowires
and clusters, have also attracted some attention [12–14]. In
particular, the bismuth dimer has been studied to some extent
theoretically and experimentally [15, 16]. Concerning the
importance of relativistic effects, van Lenthe et al analysed
the effect of spin–orbit coupling on the electronic properties
of the dimer using the ZORA Hamiltonian within density
functional theory (DFT) [17]. They showed that, although
the bond length of the dimer only changed by 1% when
spin–orbit coupling was included, the dissociation energy
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decreased by almost 40%. This weakening of the bond is
quite significant. For example, it is partially responsible for
the changes observed in the phonon band structure of the bulk
[11]. A simple qualitative explanation for this change in the
bond was given by Pitzer, who argued that the j j coupled
relativistic p orbitals of the atom could not combine to form
good bonding molecular orbitals [18, 19, 1].

Nowadays, relativistic effects can be readily included
in ab initio calculations, like quantum chemistry methods
or DFT. Nevertheless, understanding how relativity affects
the properties of atoms, molecules or solids in ab initio
calculations is not always straightforward. Furthermore,
calculations including heavy atoms can be very CPU intensive,
such that many systems of interest are out of reach from
today’s available computational power. On the other hand,
tight-binding models [20] are usually much cheaper from the
computational point of view and the simplicity of the
tight-binding Hamiltonian makes it easier to understand
the contribution of specific terms like the spin–orbit coupling.
The inclusion of spin–orbit coupling in tight-binding models
was proposed some years ago [21] and one can even find such
a model for bulk bismuth [22]. However, to our knowledge,
there is no similar model for the bismuth dimer nor an analysis
of the effect of spin–orbit coupling on the dimer bond length
based on such a model.

In this work we introduce tight-binding models for the
bismuth atom and dimer that include the spin–orbit coupling.
In these models, a parameter is introduced to control the
strength of the spin–orbit coupling, such that it is possible
to study the change in the electronic properties when the
spin–orbit coupling is switched on and is increased up to
full strength. We also performed DFT calculations where the
spin–orbit coupling term was included multiplied by a similar
parameter as in the tight-binding models. The details of the
DFT calculations are presented in section 2. The tight-binding
models are presented in section 3. In section 4, we discuss how
to fit the tight-binding parameters using the DFT results and
compare the results obtained with both methods. We finalize
by using the tight-binding model to analyse the effect of the
spin–orbit coupling on the bond length of the bismuth dimer.

2. Ab initio calculations

We have performed calculations of the eigenvalues of the
bismuth atom and dimer within DFT [23]. The core electrons
were treated using norm-conserving pseudopotentials. Since
most relativistic effects come from the core electrons, these
have to be taken into account in the pseudopotential. This is
done starting from all-electron fully relativistic calculations
for the atom and by generating the pseudopotentials using
a suitable scheme. In this work, we decided to use
pseudopotentials generated from the scheme of Hartwigsen,
Goedecker and Hutter (HGH) [24] and the relativistic
extension of the Troullier–Martins (TM) scheme [25, 26].
For reasons of computational efficiency, pseudopotentials are
usually applied in a fully non-local form [27]. In the case
of relativistic pseudopotentials including spin–orbit, there are
two ways of expressing them in a non-local form. In the first

case, the pseudopotentials are written in terms of scalar-
relativistic and spin–orbit coupling terms, V SR

l and V SO
l , and

depend on the angular momentum quantum number l. This in
turns allows us to express the projectors in terms of the spin
and angular momentum eigenfunctions [28]:

V PP(r, r′) = Vloc(r)δ(r − r′) +
∑

ls

V SR
l (r, r′)|ls〉〈ls|

+
∑

ls

V SO
l (r, r′)L̂ · Ŝ|ls〉〈ls| , (1)

where Vloc is the local part of the potential. This means that,
in this case, the strength of the spin–orbit coupling can be
controlled by simply multiplying the third term of (1) by a
parameter λ. In the second case, the pseudopotentials depend
on the total angular momentum quantum number j and the
projectors are written in terms of the total angular momentum
eigenfunctions [29]:

V PP(r, r′) = Vloc(r)δ(r − r′) +
∑

j

Vj(r, r′)| j〉〈 j| . (2)

Although the spin–orbit term does not appear explicitly in
(2), it is nevertheless possible to rewrite the projectors in
terms of the Pauli matrices and thus identify the spin–orbit
term and multiply it by λ [30]. The HGH pseudopotentials
are generated directly in the form of (1), while for the TM
scheme, j-dependent pseudopotentials are first generated in a
semi-local form and later they can be either transformed into
(1) or into (2) [27–29, 31].

The HGH pseudopotential for bismuth used in this
work was taken directly from [24], while a relativistic TM
pseudopotential was generated using the APE package [32].
As for the actual DFT calculations for the atom and dimer,
we used the OCTOPUS [33] and ABINIT [34] computer codes.
ABINIT allows for the usage of HGH pseudopotentials
and relativistic TM pseudopotentials expressed as in (1).
HGH pseudopotentials can also be used with OCTOPUS, while
relativistic TM pseudopotentials are handled using (2). In both
codes the valence electrons are treated with the non-relativistic
Schrödinger equation. This is a very good approximation, as
the Dirac equation for the valence states outside the core region
reduces to the non-relativistic Schrödinger equation.

As a further validation step of our ab initio results,
we calculated the atom and dimer eigenvalues with an all-
electron method. In particular, we used the full-potential
linearized augmented plane wave (FP-LAPW) method [35]
as implemented in the ELK code [36]. In this method, the
spin–orbit coupling is included as a perturbation within the
second-variational scheme, so it is straightforward to multiply
it by a parameter λ.

All the calculations were performed using the Perdew–
Wang parametrization of the local density approximation [37]
for the exchange and correlation functional.

In OCTOPUS the wavefunctions are discretized in a real-
space grid and zero-boundary conditions are used when
dealing with finite systems. As such, there are basically two
parameters that control the convergence: the grid spacing and
the size of the box that contains the system. We found that a
spacing of 0.52 au and a sphere of radius 11.5 au was necessary
to converge the 6p eigenvalues of the bismuth atom to less than
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Figure 1. Ab initio eigenvalues of the 6p states of the bismuth atom
as a function of the spin–orbit strength computed using the
FP-LAPW method and using TM and HGH pseudopotentials.

a millihartree for all pseudopotentials. The same spacing was
used for the bismuth dimer, but in this case the simulation
box was built by taking two spheres of radius 11.5 au centred
around each atom. In the case of ABINIT, the wavefunctions
are expanded in a plane-wave basis set and periodic boundary
conditions are used in all cases. We found that an energy cut-
off of 10 Ha and a super-cell of 50×50×50 au was necessary
to fulfil the same convergence criteria. As for the FP-LAPW
calculations, the radius of the muffin-tin spheres, RMT, was
chosen to be 2.4 au, so that there were no overlapping spheres
in our calculations. The plane-wave cut-off, kmax, was chosen
such that RMT kmax =7.0. Finally, the size of the super-cell used
was the same as for the ABINIT calculations.

In figure 1, we plot the 6p eigenvalues of the bismuth atom
as a function of the spin–orbit coupling strength λ calculated
with ELK, and with OCTOPUS and ABINIT using TM and HGH
pseudopotentials. In this case, all the curves corresponding
to the pseudopotential calculations are very close to each
other. The only noticeable difference occurs for the eigenvalues
of the three unoccupied 6p states, which are slightly shifted
upwards in the case of the ABINIT calculation. We note that
this shift occurs even without spin–orbit coupling and that
these curves are the most difficult to converge with respect to
the size of the box, so this difference is not surprising and is
within the expected numerical error. More important than this
shift is the fact that the shape of the curves is identical in all
cases. As for the FP-LAPW curves, we note small deviations
from the pseudopotential curves for larger values of λ. This is
probably because of the different way in which the spin–orbit
coupling is handled in the FP-LAPW method. In figure 2, we
plot the same curves, but for the eigenvalues of the bismuth
dimer at the experimental bond length of 2.661 Å [38]. In
this case the curves also exhibit a similar behaviour. The only
significant difference is found in the unoccupied antibonding
σ1/2u orbital eigenvalues obtained using TM pseudopotentials,
which differ from the other curves by more than 0.01 Ha.
Because the results obtained with the TM pseudopotentials
are very similar for the two codes, the differences must come
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Figure 2. Ab initio eigenvalues of the bonding σ1/2g, π1/2u and π3/2u

molecular orbitals and of the antibonding σ1/2u, π1/2g and π3/2g

molecular orbitals of the bismuth dimer as a function of the
spin–orbit strength computed using the FP-LAPW method and
using TM and HGH pseudopotentials. Note that each state is doubly
degenerate.

from the pseudopotential. However, we can rule out the way
in which the spin–orbit coupling is handled as a possible cause
for these differences, as they occur even when there is no spin–
orbit coupling, i.e. when λ = 0. Despite these differences, we
note that the shape of all the curves is the same, even more than
in the case of the atom. Thus, in the remainder of this work we
will only use the ab initio results obtained with one of the codes
and pseudopotentials (OCTOPUS with TM pseudopotential).

3. Tight-binding model

3.1. Bismuth atom

The basis functions for the tight-binding model are taken to be
the scalar-relativistic spin-dependent wavefunctions of the 6p
orbitals of the bismuth atom in its ground-state configuration
([Xe]4f145d106s26p3):∣∣ψ↑

6,1,1(r) ↑ 〉 = ∣∣R↑
6,1(r)

〉∣∣Y 1
1 (θ, φ)

〉| ↑〉 , (3)

∣∣ψ↑
6,1,0(r) ↑ 〉 = ∣∣R↑

6,1(r)
〉∣∣Y 0

1 (θ, φ)
〉| ↑〉 , (4)

∣∣ψ↑
6,1,−1(r) ↑ 〉 = ∣∣R↑

6,1(r)
〉∣∣Y −1

1 (θ, φ)
〉| ↑〉 , (5)

∣∣ψ↓
6,1,1(r) ↓ 〉 = ∣∣R↓

6,1(r)
〉∣∣Y 1

1 (θ, φ)
〉| ↓〉 , (6)

∣∣ψ↓
6,1,0(r) ↓ 〉 = ∣∣R↓

6,1(r)
〉∣∣Y 0

1 (θ, φ)
〉| ↓〉 , (7)

∣∣ψ↓
6,1,−1(r) ↓ 〉 = ∣∣R↓

6,1(r)
〉∣∣Y −1

1 (θ, φ)
〉| ↓〉 , (8)

where we have separated the wavefunctions in radial, angular
and spin parts in the usual way.

The Hamiltonian of the system is

Ĥ = Ĥat + Ĥso, (9)
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where Ĥat is the scalar-relativistic atomic Hamiltonian, and the
spin–orbit coupling term Ĥso can be written as

Ĥso = ξ (r)L̂ · Ŝ. (10)

At this point, in the same spirit as in the previous section,
we introduce the parameter λ that controls the strength of the
spin–orbit coupling:

Ĥ = Ĥat + λĤso. (11)

When λ = 1, we recover the usual form of the spin–orbit
interaction, while setting λ = 0 is equivalent to neglect
the spin–orbit coupling. The Bi atom (with 3p electrons at
λ = 0) is spin-polarized, following Hund’s rule. Accordingly,
we distinguish the spin up ε↑ and spin down ε↑ eigenvalues
(and associated eigenvectors).

The next step is to find the solutions of the Schrödinger
equation:

Ĥ|ψλ〉 = ελ|ψλ〉 , (12)

where the wavefunction |ψλ〉 is expanded in terms of the basis
functions:

|ψλ(r)〉 =
∑

σ=↑,↓

1∑
m=−1

cσ,m

∣∣ψσ
6,1,m(r) , σ

〉
. (13)

The matrix elements 〈i|Ĥ| j〉 can easily be determined either by
writing the basis functions in terms of total angular momentum
states [21] or by writing L̂ · Ŝ in terms of ladder operators. In
either case, we obtain the following matrix elements for the
spin–orbit term:

HSO =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α↑↑
2 0 0 0 0 0

0 0 0
√

2α↑↓
2 0 0

0 0 −α↑↑
2 0

√
2α↑↓
2 0

0
√

2α↑↓
2 0 −α↓↓

2 0 0

0 0
√

2α↑↓
2 0 0 0

0 0 0 0 0 α↓↓
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

where we have defined

α↑↑ = 〈
R↑

6,1(r)|ξ (r)|R↑
6,1(r)

〉
, (15)

α↓↓ = 〈
R↓

6,1(r)|ξ (r)|R↓
6,1(r)

〉
, (16)

α↑↓ = α↓↑ = 〈
R↑

6,1(r)|ξ (r)|R↓
6,1(r)

〉
. (17)

The eigenvalues are determined in the usual way by solving
the secular equation, giving

ε1
λ = 1

2

(
ε↑ + ε↓ − λα↑↑

2

)

−1

2

[(
ε↓ − ε↑ + λα↑↑

2

)2

+ 2λ2α2
↑↓

] 1
2

, (18a)

ε2
λ = 1

2

(
ε↑ + ε↓ − λα↑↑

2

)

+1

2

[(
ε↓ − ε↑ + λα↑↑

2

)2

+ 2λ2α2
↑↓

] 1
2

, (18b)

ε3
λ = ε↑ + λα↑↑

2
(18c)

ε4
λ = 1

2

(
ε↑ + ε↓ − λα↓↓

2

)

−1

2

[(
ε↑ − ε↓ + λα↓↓

2

)2

+ 2λ2α2
↑↓

] 1
2

, (18d)

ε5
λ = 1

2

(
ε↑ + ε↓ − λα↓↓

2

)

+1

2

[(
ε↑ − ε↓ + λα↓↓

2

)2

+ 2λ2α2
↑↓

] 1
2

, (18e)

ε6
λ = ε↓ + λα↓↓

2
, (18f)

where ε↑ and ε↓ are the eigenvalues of Ĥat.
The case where the states with opposite spins are equally

occupied, like closed-shell atoms, is a particular case of the
previous equations. Indeed, in that case we have R↑(r) =
R↓(r) and ε↑ = ε↓ = εp, and the eigenvalues are given by

ε1,4
λ = εp − λα , (19a)

ε2,3,5,6
λ = εp + λα , (19b)

with α↑↑ = α↑↓ = α↓↓ = α.

3.2. Bismuth dimer

At the equilibrium bond length, the bismuth dimer is non-
magnetic, i.e. the magnetization density is null everywhere
in space. As such, we will use the wavefunctions of
the non-magnetic atom as basis functions. Therefore, the
wavefunctions of our basis corresponding to the first atom
are

|ψ6,1,1(r − R1) ↑〉 , (20)

|ψ6,1,0(r − R1) ↑〉 , (21)

|ψ6,1,−1(r − R1) ↑〉 , (22)

|ψ6,1,1(r − R1) ↓〉 , (23)

|ψ6,1,0(r − R1) ↓〉 , (24)

|ψ6,1,−1(r − R1) ↓〉 , (25)

and the wavefunctions corresponding to the second atom are

|ψ6,1,1(r − R2) ↑〉 , (26)

|ψ6,1,0(r − R2) ↑〉 , (27)

|ψ6,1,−1(r − R2) ↑〉 , (28)

|ψ6,1,1(r − R2) ↓〉 , (29)

4
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|ψ6,1,0(r − R2) ↓〉 , (30)

|ψ6,1,−1(r − R2) ↓〉 , (31)

where R1 and R2 are the positions of the two bismuth atoms.
The Hamiltonian of the system can be written as

Ĥ = Ĥ (1)
at + λĤ (1)

so + Ĥ (2)
at + λĤ (2)

so + �V̂ , (32)

where Ĥ (i)
at is the Hamiltonian of an isolated atom, �V̂ is

the interaction between the two atoms, Ĥ (i)
so is the spin–orbit

coupling acting on one atom, and we have again introduced a
parameter λ that controls the spin–orbit coupling strength.

Like for the case of the atom, we search solutions of (12),
and the wavefunctions are again expanded in terms of the basis
functions:

|ψλ(r)〉 =
2∑

i=1

∑
σ=↑,↓

1∑
m=−1

c(i)
σ,m|ψ6,1,m(r − Ri) , σ 〉 . (33)

As for the determination of the matrix elements, we will
consider that the only contributions of Ĥ (i)

at and Ĥ (i)
so are the

ones involving basis functions centred on atom i. This implies
that the only non-zero integrals involving two centres are the
ones concerning the interaction between the two atoms �V̂ .
Taking this into account, we can write the matrix elements as

H =
(

A B
B A

)
, (34)

where A and B are

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

εp + λα
2 0 0 0 0 0

0 εp 0
√

2λα
2 0 0

0 0 εp − λα
2 0

√
2λα
2 0

0
√

2λα
2 0 εp − λα

2 0 0

0 0
√

2λα
2 0 εp 0

0 0 0 0 0 εp + λα
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (35)

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

Vπ 0 0 0 0 0
0 Vσ 0 0 0 0
0 0 Vπ 0 0 0
0 0 0 Vπ 0 0
0 0 0 0 Vσ 0
0 0 0 0 0 Vπ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (36)

and where we have made

〈ψ6,1,1(r − R1) ↑ |�V̂ |ψ6,1,1(r − R2) ↑〉 = Vπ , (37)

〈ψ6,1,1(r − R1) ↓ |�V̂ |ψ6,1,1(r − R2) ↓〉 = Vπ , (38)

〈ψ6,1,0(r − R1) ↑ |�V̂ |ψ6,1,0(r − R2) ↑〉 = Vσ , (39)

〈ψ6,1,0(r − R1) ↓ |�V̂ |ψ6,1,0(r − R2) ↓〉 = Vσ , (40)

〈ψ6,1,−1(r − R1) ↑ |�V̂ |ψ6,1,−1(r − R2) ↑〉 = Vπ , (41)

〈ψ6,1,−1(r − R1) ↓ |�V̂ |ψ6,1,−1(r − R2) ↓〉 = Vπ . (42)

This choice for the integrals of two centres just corresponds to
fixing the axis of the dimer along a given direction in space.

Like for the case of the atom, the eigenvalues of the dimer
are obtained by solving the secular equation. The solutions are
readily obtained and are the following:

ε1 = εp − 1

2

(
λα

2
+ Vσ + Vπ

)

+1

2

[(
λα

2
− Vσ + Vπ

)2

+ 2λ2α2

] 1
2

, (43a)

ε2 = εp − 1

2

(
λα

2
− Vσ − Vπ

)

−1

2

[(
λα

2
+ Vσ − Vπ

)2

+ 2λ2α2

] 1
2

, (43b)

ε3 = εp + λα

2
+ Vπ , (43c)

ε4 = εp − 1

2

(
λα

2
+ Vσ + Vπ

)

−1

2

[(
λα

2
− Vσ + Vπ

)2

+ 2λ2α2

] 1
2

, (43d)

ε5 = εp + λα

2
− Vπ , (43e)

ε6 = εp − 1

2

(
λα

2
− Vσ − Vπ

)

+1

2

[(
λα

2
+ Vσ − Vπ

)2

+ 2λ2α2

] 1
2

. (43f)

Note that all eigenvalues are twofold degenerate.
When there is no spin–orbit coupling, we recover well-

known solutions for the tight-binding model of a non-magnetic
dimer. Indeed, when λ = 0, the previous solutions become

ε1
λ=0 = εp − Vσ , (44a)

ε2,3
λ=0 = εp + Vπ , (44b)

ε4,5
λ=0 = εp − Vπ , (44c)

ε6
λ=0 = εp + Vσ . (44d)

From the previous equations, one sees that the tight-
binding model predicts the eigenvalues of the bonding and
antibonding orbitals to be symmetric with respect to εp when
λ = 0. Considering that from the DFT calculations we have
εp = −0.176 au, we immediately see from figure 2 that this
symmetry is not respected by the DFT results, especially in
the case of the σ orbitals. Since our purpose focuses on the
behaviour with respect to the spin–orbit strength, we will allow
some modification of this model at λ = 0 to correct this
problem, that will then simply be transferred to the non-zero
λ case. First, the value of εp will be different in the dimer and
the atom, this being due, e.g., to a global chemical shift of
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Figure 3. Eigenvalues of the 6p states of the bismuth atom as a
function of the spin–orbit strength from DFT calculations and
calculated with the tight-binding model for magnetic (upper panel)
and non-magnetic (lower panel) cases.

the potential due to the redistribution of charge density. Then,
we will also take into account the influence of the presence
of other σ and π orbitals, by allowing a shift of the first and
sixth orbitals (σ -like at λ = 0) with respect to the second to
fifth orbitals (π -like at λ = 0). This amounts to replacing εp

in equations (43a)–(43f) by two new parameters ε′
p and ε′′

p:

ε1 = ε′
p − 1

2

(
λα

2
+ Vσ + Vπ

)

+1

2

[(
λα

2
− Vσ + Vπ

)2

+ 2λ2α2

] 1
2

, (45a)

ε2 = ε′′
p − 1

2

(
λα

2
− Vσ − Vπ

)

−1

2

[(
λα

2
+ Vσ − Vπ

)2

+ 2λ2α2

] 1
2

, (45b)

ε3 = ε′′
p + λα

2
+ Vπ , (45c)
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Figure 4. Eigenvalues of the bonding σ1/2g, π1/2u and π3/2u

molecular orbitals and of the antibonding σ1/2u, π1/2g and π3/2g

molecular orbitals of the bismuth dimer as a function of the
spin–orbit strength from DFT calculations and calculated with the
tight-binding model. Note that each state is doubly degenerate.

ε4 = ε′′
p − 1

2

(
λα

2
+ Vσ + Vπ

)

−1

2

[(
λα

2
− Vσ + Vπ

)2

+ 2λ2α2

] 1
2

, (45d)

ε5 = ε′′
p + λα

2
− Vπ , (45e)

ε6 = ε′
p − 1

2

(
λα

2
− Vσ − Vπ

)

+1

2

[(
λα

2
+ Vσ − Vπ

)2

+ 2λ2α2

] 1
2

, (45f)

and we obtain the following solutions when λ = 0:

ε1
λ=0 = ε′

p − Vσ , (46a)

ε2,3
λ=0 = ε′′

p + Vπ , (46b)

ε4,5
λ=0 = ε′′

p − Vπ , (46c)

ε6
λ=0 = ε′

p + Vσ . (46d)

4. Tight-binding versus ab initio

To be able to compare the results obtained using the tight-
binding model presented in section 3 with the ab initio data,
it is first necessary to fit the parameters of the model to the
ab initio results.

A simple way to do this is to take the analytical solutions
of the secular equations and use them to write the parameters
as functions of the eigenvalues and of λ. Then one can obtain
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Figure 5. Coefficients c(i)
σ,m of the bonding σ1/2g, π1/2u and π3/2u molecular orbitals and of the antibonding σ1/2u, π1/2g and π3/2g molecular

orbitals of the bismuth dimer as a function of the spin–orbit strength. For clarity, only the non-zero values are plotted and indicated in the
key. Note that all the orbitals are twofold degenerate, but only the coefficients corresponding to one of the solutions are shown.

the parameters by replacing the eigenvalues by their ab initio
values for a given value of λ. The V , ε′

p and ε′′
p parameters of

the bismuth dimer tight-binding model can indeed be obtained
this way by considering the case when λ = 0, i.e. by using
equations (46a)–(46d). As there are four equations and four
parameters, the later can be determined exactly from the
ab initio values. Unfortunately, the same cannot be done for the
α parameters. Indeed, a closer inspection of equations (18a)–

(18f) reveals that there is more than one way to write each
parameter in terms of the eigenvalues. This is no surprise,
as there are more eigenvalues than parameters. If the tight-
binding model was able to exactly reproduce all the ab initio
eigenvalues at the same time, then the values of the parameters
would not depend on which conditions are chosen to be
fulfilled. Unfortunately, this is not necessarily the case (and
indeed it is not).
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Another possible approach to obtain the α parameters is
to fit them in order to minimize the deviations between the
ab initio and tight-binding eigenvalues for a given λ. Because
this approach is more general and might be better suited for
practical applications, it is the one that we chose to obtain the
α parameters.

We started by fitting the α parameters for the tight-binding
models for the bismuth atom presented in section 3 using the
DFT eigenvalues at λ = 1.0, for both magnetic and non-
magnetic cases. This was done by minimizing the average
deviation of the tight-binding eigenvalues with respect to the
DFT eigenvalues. The minimization was carried out using the
Simplex algorithm of Nelder and Mead [39] and the parameters
were constrained to positive values. The resulting parameters
for the magnetic atom were α↑↑ = 0.0581 au, α↑↓ = 0.0230 au
and α↓↓ = 0.0243 au, with an average deviation of 0.0068 au
and a maximum deviation of 0.0091 au. As for the non-
magnetic case, we obtained α = 0.0475 au, with an average
deviation of 0.0044 au and a maximum deviation of 0.0045 au.
In figure 3, we plot the curves obtained with these parameters
for the 6p eigenvalues compared to the DFT curves. From
these plots we see that, although the general trend of the
curves is well described in both cases, significant deviations
are observed for some eigenvalues in the magnetic case. These
deviations increase with λ, while they are very small for small
values of λ, indicating that for this system the full spin–orbit
coupling cannot be accurately treated as a perturbation.

Next, we used equations (46a)–(46d) to determine the
V , ε′

p and ε′′
p parameters of the bismuth dimer tight-binding

model. We obtained the following values: ε′
p = −0.1386 au,

ε′′
p = −0.1666 au, Vπ = −0.0364 au and Vσ = 0.0857 au.

As for the α parameter, we used the one obtained previously
for the non-magnetic atom. We plot the obtained curves in
figure 4. From this plot we see that the λ dependence of
the eigenvalues is very well described. In particular, notable
deviations between the ab initio and tight-binding curves
are only observed in some cases and for large values of
λ, although they are never larger than 0.006 au. This is in
contrast with the case of the magnetic atom. This indicates
that the inclusion of the spin–orbit coupling as a perturbation
in tight-binding models might only be a good approximation
for closed-shell (i.e. non-magnetic) systems. This is probably
due to the interplay between the spin–orbit coupling and the
magnetic moment of the system. Furthermore, these results
for the dimer validate the use of the α parameter fitted for the
non-magnetic atom in the tight-binding model for the dimer,
suggesting that it is transferable to other systems containing
bismuth.

Previous DFT calculations showed that one of the effects
of the spin–orbit coupling in the bismuth dimer was to weaken
the bond and to increase the bond length [17]. Several ways
of rationalizing the effect of the spin–orbit coupling on bond
lengths of diatomics have been suggested. In particular, Pitzer
observed that, when combined to form molecular orbitals,
p3/2(1/2) and p1/2(1/2) atomic states give rise to σ and π

molecular orbitals that are a mix of bonding and anti-bonding
orbitals, which would explain the weakening of the bond
[18, 19, 1]. Although it is not straightforward to investigate

this in the DFT calculations, the tight-binding model allows
us to easily verify it by looking at the λ dependence of
the coefficients of (33) for the various molecular orbitals.
In figure 5, we plot the coefficients for one of the two
degenerate solutions that we find for each molecular orbital.
For the σ1/2g orbital, we see that, when λ = 0, this orbital’s
wavefunction is expressed as a mixture of |ψ6,1,0(r − R1) ↑〉
and |ψ6,1,0(r−R2) ↓〉 basis functions, and that the coefficients
have opposite signs. From this, we readily identify this
molecular orbital as the usual non-relativistic bonding σ

orbital. When we introduce the spin–orbit coupling, i.e. when
λ > 0, the coefficients corresponding to the |ψ6,1,1(r−R1) ↓〉
and |ψ6,1,1(r − R2) ↑〉 basis functions become non-null.
This combination of atomic orbitals with coefficients with
opposite signs is the usual non-relativistic anti-bonding π∗

molecular orbital. From this we see that, for the σ1/2g orbital,
the effect of spin–orbit is to mix the bonding σ molecular
orbital with the anti-bonding π∗ molecular orbital. A similar
analysis can be made for the π1/2u, π1/2g and σ1/2u molecular
orbitals, where from figure 5 we see that the effect of spin–
orbit coupling is to mix bonding with non-bonding orbitals, as
expected.

5. Conclusions

We have introduced tight-binding models with the inclusion of
the spin–orbit coupling for the bismuth atom and dimer. The
parameters of the models were obtained by fitting the tight-
binding eigenvalues to the eigenvalues obtained from density
functional theory calculations.

We have analysed the eigenvalues obtained from the
tight-binding models as a function of the spin–orbit coupling
strength and compared them to the ab initio results. Good
qualitative agreement was found in all cases. In the case of
the dimer and of the non-magnetic atom, very good qualitative
agreement was found for all values of the spin–orbit coupling
strength. In contrast, for the case of the magnetic atom,
very good quantitative agreement was only found for small
values of the spin–orbit coupling strength, indicating that the
inclusion of spin–orbit coupling as a perturbation in tight-
binding models of open-shell systems might not be a very
good approximation.

We also found that, despite its simplicity, the tight-binding
model was able to successfully explain the effect of the spin–
orbit coupling in the bonding length of the bismuth dimer.
Indeed, in agreement with previous studies, we found that
one of the effects of spin–orbit coupling is to produce a set
of molecular orbitals where some of them can be expressed
as a mixture of the bonding and non-bonding non-relativistic
molecular orbitals, thus yielding a bond that is weaker than
when spin–orbit coupling is neglected.
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