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With the ever-increasing sophistication of codes, the verification of the implementation of advanced the-
oretical formalisms becomes critical. In particular, cross comparison between different codes provides a
strong hint in favor of the correctness of the implementations, and a measure of the (hopefully small)
possible numerical differences. We lead a rigorous and careful study of the quantities that enter in the
calculation of the zero-point motion renormalization of the direct band gap of diamond due to elec-
tron–phonon coupling, starting from the total energy, and going through the computation of phonon fre-
quencies and electron–phonon matrix elements. We rely on two independent implementations:
Quantum Espresso + Yambo and ABINIT. We provide the order of magnitude of the numerical discrepan-
cies between the codes, that are present for the different quantities: less than 10�5 Ha per atom on the
total energy (�5.722 Ha/at), less than 0.07 cm�1 on the C; L;X phonon frequencies (555–1330 cm�1), less
than 0.5% on the square of the electron–phonon matrix elements and less than 4 meV on the zero-point
motion renormalization of each eigenenergies (44–264 meV). Within our approximations, the DFT con-
verged direct band gap renormalization in diamond due to the electron–phonon coupling is �0.409 eV
(reduction of the band gap).

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

First-principles electronic-structure codes develop and evolve:
they adapt to increasing computational capabilities and also
include new formalisms, approximations, and numerical methods.
In addition to the validation of new formalisms and approxima-
tions, the verification of implementations is of utmost importance
if one wants to deliver reliable new results or compare them to
existing ones. This concern has been the subject of increased atten-
tion in the recent years, as witnessed by the set up of ESTEST, a
framework for the validation and verification of electronic struc-
ture codes [1], and the organization of several related activities
under the auspices of the ‘‘Centre Européen de Calcul Atomique
et Moléculaire’’ (CECAM) [2].

In particular, the first-principle computation of electronic prop-
erties, quasiparticles band structures and optical spectra of crystal-
line solids has reached an unprecedented level of sophistication.
Many-body GW calculations [3], dynamical-mean-field theory [4]
and Bethe–Salpeter [5] calculations, that includes excitonic effects,
sometimes claim to agree with experimental data at the level of
0.1–0.2 eV. However, the influence of lattice vibrations on elec-
tronic properties is usually neglected because it is assumed to lead
only to minor corrections, on the order of a few tens of meV. Actu-
ally, as reviewed in Ref. [6], for materials that contain light atoms
like diamond, the inclusion of the influence of lattice vibration is
non-negligible, since the renormalization is larger than the claimed
accuracy of quasiparticle methods.

For the case of diamond, the closing of the electronic gap has
been measured experimentally at different temperatures, and an
Einstein oscillator fit has been used to extrapolate the data at 0 K
[7], giving a value of 0.37 eV for the renormalization of the indirect
band-gap due to the zero-point motion renormalization (ZPR) of
atoms. The temperature dependence of the direct band-gap of dia-
mond was also studied experimentally [8].

The direct band-gap renormalization has been studied from
first-principles approaches. Ramírez obtained 0.7 eV using path-
integral Monte Carlo simulations [9] and more recently Giustino
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et al. [10] obtained a value of 0.615 eV using the Allen–Heine–
Cardona (AHC) [11,12] theory, with the Local Density Approximation
(LDA) [13,14] of Density Functional Theory (DFT) [15], a basis of plane
waves, and norm-conserving pseudopotentials [15].

However, the first-principle computation of such quantity is
particularly delicate, because it is the outcome of several layers
of consecutive first-principle calculations: computation of the total
energy (and associated relaxation of cell geometry), computation
of the phonon frequencies and eigenvectors, computation of the
electron–phonon (EP) coupling, and finally, computation of the
zero-point motion effect. Not only the choice of a mathematical
formalism, with associated approximations (like the above-
mentioned Monte Carlo versus DFT possibility), might deliver
different values, but the implementation of one well-defined
mathematical formalism, with given approximations, needs to be
carefully verified.

At variance with the 0.615 eV result of Giustino et al. [10],
calculations made by us lead to a smaller value, on the order of
0.4 eV, on the basis of the implementation partly described in
Ref. [16]. However, the mathematical formalism and numerical
approximations were, to our understanding, equivalent to that of
Ref. [10]. This raised the question on whether the accumulation
of layers of calculations could yield numerical errors that are as
large as 0.2 eV, or whether there might be a problem in the
implementations.

In this work, we present a rigorous and careful study of all the
quantities that enters into the calculation of the ZPR of the direct
band gap of diamond due to EP coupling, on the basis of two differ-
ent implementations, and provide the values of the numerical dis-
crepancies. We work within the AHC formalism with exactly the
same numerical approximations, as implemented in ABINIT [17],
on one side, and in Yambo [18] on top of Quantum Espresso (QE)
[19], on the other side. These implementations have been done
completely independently by two different groups. The ABINIT
implementation has been used earlier to study zero-point motion
effects on the electronic structure in the above-mentioned Ref.
[16], while the YAMBO + QE implementation has been used, inde-
pendently, in Ref. [20–23]. Unfortunately, we did not have access
to the code used by Giustino et al. [10].

We found only small numerical discrepancies between the
ABINIT and QE + YAMBO results: less than 10�5 Ha=at on the total
energy, 0.07 cm�1 on the phonon frequencies, 0.005 on the elec-
tron–phonon matrix elements squared (relative difference), and
less than 4 meV on the ZPR. Given our choice of formalism, and
associated approximations, the numerically converged value for
the renormalization of the direct band gap in diamond due to
electron–phonon coupling in the AHC formalism is �0.409 eV
(reduction of the band gap), from both implementations. Changing
the pseudopotential can lead to larger differences, in any case not
larger than 50 meV.

The structure of the article is as follows. In Section 2, we discuss
the mathematical theory used in this work. In Section 3, we give
details about the material studied as well as computational param-
eters and approximations. In Section 4, we review the results and
discuss their impact. We draw the conclusions in Section 5.

2. Theory and methods

2.1. Ground-state and phonons

The decomposition of the total energy differs between ABINIT
and QE, such that a comparison of energy components needs to
be done with care. The expression for the total ground-state
energy per unit cell of a periodic insulator at 0 K, within DFT is
[15,24]:
ETotal ¼
1

Nk

X
k

Xocc

n

hnkjbT þ bV pspjnki þ EHxc þ EEw þ Epsp-core; ð1Þ

where n is the band number, k the wavevector, nkj i represents a
Kohn–Sham orbital, bT the kinetic energy operator, bV psp the opera-
tor corresponding to the external potential of the electronic system
(composed by a local and a non-local part when the implementa-
tion is based on the pseudopotential concept), the n-summation is
over the occupied bands and the k-summation over a discretiza-
tion of the Brillouin zone. EHxc is the Hartree and exchange–
correlation energy functional of the electronic density (expressed
per unit cell), EEw is the Ewald energy per unit cell (periodic
positively charged particles placed in a negatively charged
homogeneous background), and finally Epsp-core is the pseudo-core
energy per unit cell. It is also possible to define a one-electron
contribution per unit cell as:

EOne-el ¼
1

Nk

X
k

Xocc

n

hnkjbT þ bV pspjnki þ Epsp-core: ð2Þ

See the appendix for more details concerning the Ewald energy,
the pseudocore energy and the one-electron contribution.

The phonon frequencies and eigenvectors can be obtained from
Density Functional Perturbation Theory (DFPT) following Refs. [24–
28]. With eCsa;s0bðqÞ being the interatomic force constant matrix in
reciprocal space, the phonon frequencies xqk and eigendisplace-
ments naðqkjsÞ are linked by the dynamical equationX
s0b

eCsa;s0bðqÞnbðqkjs0Þ ¼ Msx2
qknaðqkjsÞ; ð3Þ

where s labels the atom in the cell (at position ss and with atomic
mass Ms) and a is a Cartesian coordinate. Using the orthonormaliza-
tion relation

dk0k ¼
X

sa
Msn

�
aðqk0jsÞnaðqkjsÞ; ð4Þ

the eigenfrequencies can also be expressed as

x2
qk ¼

X
sa

X
s0b

n�aðqkjsÞeCsa;s0bðqÞnbðqkjs0Þ: ð5Þ
2.2. Electron–phonon coupling and zero-point motion renormalization

The computation of the ab initio temperature dependence
implies the calculation of the electron–phonon interaction.
Following Ref. [23] the first-order electron–phonon matrix
elements can be computed thanks to DFPT as

gqk
nn0k ¼

X
sa
ð2MsxqkÞ�1=2eiq�ss � nk

@ bV scf

@Rsa

�����
�����n0k� q

* +
naðqkjsÞ; ð6Þ

where bV scf is the self-consistent mean potential felt by the electrons
(which depends on the atomic positions):

bV scf ¼ bV psp þ bV Hxc: ð7Þ

The first-order electron–phonon matrix element, gqk
nn0k, that will

be referred to as the ‘‘GKK’’ matrix element, describes the probabil-
ity amplitude for an electron to be scattered from k to k� q, with
the emission or the absorption of a phonon with crystalline
momentum q belonging to the phonon branch k.

The second-order electron–phonon matrix element is:

Kqkq0k0

nn0k ¼
1
2

X
s;a;b

n�aðqkjsÞnbðq0k0jsÞ
2Msðxqkxq0k0 Þ1=2 � nk

@2 bV ðsÞscf

@Rsa@Rsb

�����
�����n0k� q� q0

* +
: ð8Þ
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The AHC theory [12] allows one to calculate the temperature-
dependent change in the electronic eigenenergies, as well as their
zero-point renormalization, as the sum of a Fan [29,30] and a
Debye–Waller (DW) self-energy term. These two terms can be
deduced from the more general many-body formalism [23] as:

RFAN
nk ðix;TÞ¼

1
Nq

X
n0qk

gqk
nn0k

�� ��2� 2nqkðTÞþ1
� � ðix�en0k�q� i0þÞ

ðix�en0k�q� i0þÞ2�x2
qk

24
þxqk

ð1�2f n0k�qðTÞÞ
ðix�en0k�q� i0þÞ2�x2

qk

35; ð9Þ

and

RDW
nk ðTÞ ¼

1
Nq

X
qk

Kqk�qk
nnk ð2nqkðTÞ þ 1Þ; ð10Þ

where nqkðTÞ is the Bose–Einstein distribution function for the pho-
non mode ðq; kÞ at temperature T, and fn0k�qðTÞ is the electronic
occupation.

The ZPR of the traditional AHC theory [12] is recovered by using
the following approximations for the Fan term: x � enk (the
on-the-mass-shell (OMS) limit), jenk�en0k�q

j � xqk (the adiabatic
limit) and by considering only the real part of the self energy:

DeAHC
nk ðTÞ ¼ RDW

nk ðTÞ þ
1

Nq

X
n0qk

gqk
nn0k

�� ��2ð2nqkðTÞ þ 1Þ
enk � en0k�q

: ð11Þ

From a practical point of view, the DW term is very difficult to
calculate, as one needs access to the second derivative of the self-
consistent potential (that is not provided by a DFPT calculation of
phonons). Making use of the translational invariance (if all atoms
are displaced by the same amount in the same direction, all phys-
ical quantities should be conserved) [12], one can rewrite the DW
term as a sum of a diagonal contribution and a non-diagonal one.
The diagonal Debye–Waller (DDW) contribution is the product of
first-order electron–phonon matrix that is easy to calculate [16]:

RDDW
nk ðTÞ ¼ � 1

Nq

X
qk

X
s;s0 ;a;b

n�aðqkjsÞnbð�qkjsÞ
4Msxqs

�
X
n0–n

1
enk � en0k

nk
@ bV scf

@Rs0a

�����
�����n0k

* +
n0k

@ bV scf

@Rsb

�����
�����nk

* +"

þ nk
@ bV scf

@Rsb

�����
�����n0k

* +
n0k

@ bV scf

@Rs0a

�����
�����nk

* +#
: ð12Þ

The non-diagonal contribution comes from the modification of
the screening due to atomic motion. By opposition with the case
of small molecules [16], the effect of the non-diagonal Debye–
Waller term is expected to be small in extended system, thanks
to the screening of the periodic lattice. Neglecting it corresponds
to the rigid-ion approximation.

From a numerical point of view, the term with an energy
denominator in Eq. (11) is omitted when the difference of eigenen-
ergies is smaller than 10�6 or is smoothed by introducing a small
imaginary component.

Finally, following Sternheimer [31], one can largely speed up
the calculation of the sum over states appearing in the Fan and
DDW terms. In that case, they are rewritten in terms of a sum
limited to an active space (spanning the occupied state with a
few extra bands over the valence band maximum):

�
X
n0–n

jn0ki n0k
@bV ðsÞ

scf
ðrÞ

@Rsa

���� ����nk
� �
enk � en0k

¼ Pa?
@nk
@Rsa

���� �
�

X
n0 6 a?

n0–n

jn0ki n0k
@bV ðsÞ

scf
ðrÞ

@Rsa

���� ����nk
� �
enk � en0k

; ð13Þ
with Pa? the projector over the states whose eigenenergies is above
the active space threshold and therefore orthogonal to the active
space. The result of such a projection is an outcome of a phonon
DFPT calculation, and, as such it is available at no additional cost.
More informations about this last derivation can be found in Ref.
[16].
3. Material and calculation

The ABINIT, QE and Yambo software applications are described
in Refs. [17–19], respectively.
3.1. Ground-state and phonons

The calculation of structural properties in this work is based on
DFT [15,32,33] using the LDA [13,14]. A norm-conserving pseudo-
potential [34] accounts for the core-valence interaction and a
plane-wave basis set is then used to expand the electronic wave-
functions. The pseudopotential was generated using the fhi98PP

code [35] with a 1.5 atomic unit cut-off radius for pseudization.
The valence electrons of Carbon, treated explicitly in the ab initio
calculations, are generated for the 2s22p23d0 configuration. Quite
importantly for the comparison between codes, the same pseudo-
potential file was used by ABINIT and QE. Moreover this pseudopo-
tential is the same as the one used in Ref. [10]. We refer to this
pseudopotential as our ‘‘reference’’ pseudopotential.

Careful convergence checks (error below 0.5 mHa per atom on
the total energy) leads to the use of a 6 � 6 � 6 C centered Monk-
horst–Pack k-point sampling [36] of the Brillouin zone and an
energy cut-off of 30 Ha for the truncation of the plane wave basis
set. The lattice parameter of 6.652 Bohr was obtained by structural
relaxation of the diamond system.

Additional tests were performed to assess the influence of the
pseudopotential choice. In addition to our ‘‘reference’’ pseudopo-
tential, we considered five other ones. We will refer to the first
one as 06-C.LDA.fhi also generated using the fhi98PP code. It
is a Troullier–Martins pseudopotential with the Perdew/Wang
[37] parametrization of LDA, an atomic cut-off radius of 1.0247
atomic unit and a maximum angular channel of l ¼ 3. The second
one is the 6c.pspnc Troullier–Martin [34] pseudopotential with
a 1.4851 atomic unit cut-off radius and a maximum angular chan-
nel of l ¼ 1. The third one is the 06-C.GGA.fhi Troullier-Martin
pseudopotential with the GGA Perdew/Burke/Ernzerhof [38]
parametrization and a 1.0247 atomic unit cut-off radius. The max-
imum angular channel used is l ¼ 3 for this pseudopotential. The
required cut-off energy for the truncation of the basis set for those
three pseudopotential was also 30 Ha. The fourth one is the
6c.4.hgh Hartwigsen–Goedecker–Hutter pseudopotential [39]
with a 1.2284 atomic unit cut-off radius and a maximum angular
channel of l ¼ 1. An energy cut-off of 60 Ha was required for this
pseudopotential. The last one is the C.pz-vbc.UPF VonBarth-Car
pseudopotential with a maximum angular channel of l = 1 and an
energy cut-off of 45 Ha and 1.5 atomic unit cut-off radius. The lat-
tice parameter of the five additional pseudopotential after struc-
tural relaxation were 6.648, 6.694, 6.729, 6.675 and 6.663 Bohr,
respectively. All the calculations with these pseudopotential were
also done with the 6 � 6 � 6 unshifted Monkhorst–Pack k-point
grid.
3.2. Electron–phonon coupling and zero-point motion renormalization

In order to converge the ZPR below 1 meV, in the original AHC
formulation, around 300 unoccupied bands needs to be explicitly
included in the summation present in the Fan and DDW terms



Table 2
Comparison between Abinit and QE of the nine lower eigenenergies in eV, relative to
the top of the valence band at C.

Sym. Band Eigenergies in Abinit Eigenergies in QE

C1 1 �21.7959 �21.7957
C250 2–3–4 0.0000 0.0000
C15 5–6–7 5.6698 5.6699
C20 8 14.3020 14.3023
C1 9 19.4714 19.4716
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for diamond. In contrast, only 12 bands were needed to describe
the active space when the Sternheimer re-writing is used.

To avoid high symmetry points that might slow down the
convergence study (some EP matrix elements might be zero by
symmetry and are not representative of the discretization of an
integral) we computed the ZPR correction on a random q-wavevec-
tor grid, as described in Ref. [23]. The rate of convergence of homo-
geneous wavevector grid will also be discussed. The statistical
analysis to converge the results is explained in the next section.
The Sternheimer implementation, which speeds up significantly
the calculation, is only present in the ABINIT software. Therefore
we did the statistical analysis only with ABINIT.
4. Results and discussion

4.1. Ground-state and phonons

We started by comparing DFT ground-state total energies be-
tween ABINIT and QE using the same ‘‘reference’’ norm-conserving
pseudopotential and the same numerical parameters (plane wave
kinetic energy cut-off and wavevector sampling). The total energy
in ABINIT and QE is decomposed in different terms detailed in Eqs.
(1) and (2). The comparison between the terms and the total en-
ergy is given in the upper panel of Table 1. The agreement is excel-
lent: one gets a discrepancy on the order of 10�5 Ha/atom between
the total energies computed using the two codes. The disagree-
ment is even smaller for selected contributions: on the order of
10�7 Ha/atom for the exchange–correlation and Hartree contribu-
tions, and about 10�9 Ha/atom for the Ewald energy. We did not
try to track down the origin of the total energy discrepancy, the
agreement being beyond practical needs.

Table 1 also shows the agreement between the two codes on
the phonon frequencies at some high symmetry points obtained
from the DFPT Eq. (5). The agreement is also rather good, with less
than 0.07 cm�1 differences after imposition of the acoustic sum
rule (ASR) at C. The imposition of the ASR is discussed e.g. in Ref.
[40]. Without the imposition of the ASR, the frequency of acoustic
modes at C are small, but non-negligible: 3.335 cm�1 for ABINIT,
Table 1
Comparison of selected quantities related to the ground state and to phonon
calculations, for diamond, with a 6 � 6 � 6 unshifted k-point grid and a kinetic energy
cutoff of 30 Ha for the plane wave basis set. The same norm-conserving LDA
pseudopotential is used. The lattice parameter is 6.652 Bohr. All the energies are in
Hartree, are expressed per cell (two atoms per cell) and the phonon frequencies are in
cm�1.

ABINIT 7.3.2 QE 4.0.5

Kinetic energy 8.450310501 –
One-electron energy – 4.135925595
Hartree energy 0.943336981 0.943337120
XC energy �3.567609861 �3.567609935
Ewald energy �12.955782342 �12.955782345
Psp-core energy 0.581222385 –
Loc. psp. energy �5.093200787 –
NL psp. energy 0.197606844 –

Total energy �11.444116277 �11.444129565

Phonon freq. at q ¼ C1 3.335 (x3) 8.832 (x3)
q ¼ C250 1330.408 (x3) 1330.428 (x3)
with ASR imposed 0.000 (x3) 0.000 (x3)

1330.403 (x3) 1330.400 (x3)
q ¼ L3 555.305 (x2) 555.319 (x2)
q ¼ L20 1076.250 1076.268
q ¼ L1 1235.429 (x2) 1235.440 (x2)
q ¼ L30 1273.840 1273.860
q ¼ X3 795.900 (x2) 795.964 (x2)
q ¼ X1 1098.461 (x2) 1098.489 (x2)
q ¼ X4 1224.570 (x2) 1224.590 (x2)
and 8.832 cm�1 for QE. Such a variation between codes is however
sufficient to lead to significant differences in the absolute value of
the Fan and DDW terms computed separately, as we shall see later.
Concerning the electronic properties, the nine lower eigenenergies,
relative to the top of the valence band at C are compared for the
two codes in Table 2. One can see that there is less than
0.0003 eV differences between the two codes.

4.2. Electron–phonon coupling and zero-point motion renormalization

We now move forward and compare the GKK electron–phonon
matrix elements given in Eq. (6). This quantity is actually subject to
an arbitrary dependence on the phase factors of the wavefunctions,
and cannot be compared directly between codes. We have there-
fore compared the square norm of the GKK (the GKK times its com-
plex conjugate). Such a quantity, termed ‘‘GKK2’’ is relevant in the
present context, since the square of GKK is used to build the ZPR,
see Eq. (9). When wavefunctions are degenerate, we also sum them
inside the degenerate space, to remove any arbitrariness. More-
over, to decrease the number of handled data, we sum the GKK2
over the six phonon modes, giving SGKK2.

A measure of the relative difference between the two codes for
SGKK2, for different high symmetry q-wavevectors is displayed in
Figs. 1 and 2. We plot, for each pair of electronic state (or degener-
ate state) the difference of the SGKK2 divided by their sum:

D ¼ SGKK2ðABINITÞ � SGKK2ðQEÞ
SGKK2ðABINITÞ þ SGKK2ðQEÞ

���� ����: ð14Þ

The absolute values of SGKK2 are reported in Table 3 for the two
codes.

One can see that the relative differences are in all three cases
lower than 0.005 for all matrix elements on the 300 � 300 matrix
bands.

Finally, we have compared the ZPR computed with ABINIT and
Yambo using the GKKs of QE in the AHC framework of Eq. (11). The
energy denominator was smoothened by introducing a small imag-
inary component of 100 meV, following Ref. [41,10].

We have first compared the two codes without the Sternheimer
rewriting and then, in the case of ABINIT, we have used the Stern-
heimer rewriting of Eq. (13) and we have summed over 300 bands
in the case of Yambo. In Table 4 we show a comparison between
ABINIT and YAMBO for different number of q-wavevectors. The
47 q-wavevector case corresponds to a homogeneous, non-shifted
10 � 10 � 10 grid, folded in the irreducible part of the Brillouin
zone. For the 1000 and 2000 q-wavevector cases, the wavevectors
are randomly generated once and then used in both codes. In the
last two columns of Table 4, we can see that the disparity between
the two codes on the ZPR is lower than 4 meV.

We have imposed in both codes the phonon frequencies to be 0
for the acoustic modes at q ¼ C (ASR).

One can nevertheless see that the absolute value of the Fan (last
term in Eq. (11)) and DDW (Eq. (12)) terms display more variation
between both codes than the total ZPR (which is the sum of both
terms). The reason for this is that the acoustic modes tends to have
a larger relative difference than the optical ones between the two



Fig. 1. Relative differences D of the SGKK2 between ABINIT and QE, at k ¼ C and
q ¼ C, for 20 � 20 and 300 � 300 pairs of bands.

Fig. 2. Relative differences D of the SGKK2 between ABINIT and QE, at k ¼ C and
q ¼ L or q ¼ X for 300 � 300 pairs of bands.
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codes. Their separate contributions in the Fan and DDW tends to
the same value, with opposite sign, when the limiting behavior
for vanishing wavevector is considered. There is thus a cancellation
of error between the Fan and DDW terms, that allows one to obtain
a much better accuracy on the sum of these terms. Indeed, due to
the presence of the phonon frequency in the denominator of Eqs.
(6) and (12), the acoustic modes will be the one that contributes
mostly to the Fan and DDW terms. It can be shown that, due to
translational invariance, the eigendisplacement vectors of Fan
and DDW will tends to cancel out for acoustic modes (especially
those close to C). As a result, mostly the optical modes will contrib-
utes to the ZPR. This explains why the discrepancy is larger on the
absolute value of Fan and DDW terms separately, than on the total
ZPR between the two codes. Note that the Fan and DDW terms are
not observable quantities separately. They come from a perturba-
tion series, whose sum is an observable.
4.3. Analysis of the convergence with respect to the number of
q-wavevectors

We have just provided an analysis of the level of agreement that
one can expect from two different codes that implement the same
physics. We now turn ourselves to a careful convergence study of
the ZPR within the AHC formalism. Since the calculations are heavy
in YAMBO due to the band summations we decided to make that
convergence study in ABINIT only, with the Sternheimer rewriting.

We have performed DFPT calculations on 20,000 randomly
generated q-wavevectors in the full Brillouin Zone. We have then
performed a statistical analysis of these results. We have computed
the ZPR over N (N = 250, 500, 750, 1000, 2000, 3000, 4000, 5000,
6000, 10,000) q-wavevectors taken randomly between the 20,000
set and we have done such calculation 100 times for each N. This
gave us, for each N, a set of 100 different ZPR values whose statis-
tical characteristics are given in Fig. 3. We can see that the ZPR con-
verges smoothly towards 409 meV, the mean of the ZPR for the
20,000 set.

Since the rate of convergence of the variance of a normal distri-
bution goes as 1=Nq with Nq the number of random q-wavevectors,
the rate of convergence of the associated standard deviation goes
as 1=

ffiffiffiffiffiffi
Nq

p
. We can see on Fig. 3 that the 1=

ffiffiffiffiffiffi
Nq

p
of the continuous

line follow neatly the lower 25% and upper 75%.
The drawback of the random q-points methods is that one is

forced to test a sufficiently large set of random q-wavevectors.
The homogeneous grid approaches might be more appealing. The
red dots on Fig. 3 corresponds to non-shifted homogeneous Monk-
horst–Pack grids closest to the random points number we have



Table 3
Comparison between Abinit (AB) and Quantum Espresso (QE) of absolute value of the
SGKK2, at k ¼ C and q ¼ C in 10�6 a.u. (1 a.u. = 4:78599 � 1012 J=kg). Matrix elements
with values lower than 10�11 Ha have been put to 0.

Band Soft. 1 2–3–4 5–6–7 8 9

1 AB 0
QE 0

2–3–4 AB 1.530449 5.803074
QE 1.530401 5.803088

5–6–7 AB 0.493950 0.292491 4.495984
QE 0.493932 0.292472 4.496296

8 AB 0 4.635255 2.430641 0
QE 4.635284 2.430665 0

9 AB 0 1.565383 4.002821 0 0
QE 0 1.565460 4.002843 0 0
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chosen to analyze (e.g. the last grid is a 70 � 70 � 70 unshifted
q-point grid that lead to 8112 q-wavevectors in the irreducible
Brillouin-Zone.). As we can see, the red dots are always well inside
the 50% windows.

One can set an upper limit on the convergence rate if one does
not use an imaginary component to smooth the function.

In this case, when the difference of eigenenergies in the denom-
inator of Eq. (11) vanishes, the integrand to be considered over the
whole Brillouin zone diverges. This happens around C, with a
divergence that behaves like 1

q2. Treating separately a small volume

around C, set aside of the regular discretization, one can estimate
its contribution by replacing it by the integral over a sphere with
a cut-off radius qc whose length is inversely proportional to the lin-
ear density of q-wavevectors. The contribution of this small sphere
is /

R qc
0

1
q2 q2dq so that the rate of convergence of these integrals

goes as qc / N�1=3
q , slightly worse than in the case of the random

sampling.
Moreover, there are also regions distant from C, but where the

eigenenergies of the q-wavevectors are very close to the one at C
(diamond is indeed an indirect gap semiconductor). On the surface
Sð�CÞ where the eigenenergy is exactly equal to the C eigenenergy,
the denominator also vanishes. In the neighborhood of the surface,
the divergence is inversely proportional to the linear difference
between the energy at C and the actual eigenenergy in its
neighborhood. To estimate the rate of convergence with respect
Table 4
Comparison of the ZPR for different electronic states at C, for a 6 � 6 � 6 unshifted k-point
conserving LDA pseudopotential. In the case of YAMBO, 300 bands were explicitly included
limit the computational effort (12 active bands were needed). Moreover, for the set of 4
summation over 300 bands, is also displayed. The energies are in meV.

Set of q-
wavevectors

Band Fan

ABINIT 7.3.2 SEq/
300 bands

Yambo 3.4.0
300 bands

47 1 �120.76/�116.54 117.30
2–3–4 �981.61/�969.44 �978.00
5–6–7 �1332.55/�1318.55 �1329.10
8 �555.40/�541.89 �543.70
9 �33.72/�28.50 �28.49

1000 1 �121.13 �117.70
2–3–4 �983.51 �979.90
5–6–7 �1272.74 �1269.20
8 �284.45 �272.80
9 �9.83 �4.55

2000 1 �121.20 �117.80
2–3–4 �983.56 �980.00
5–6–7 �1269.55 �1266.00
8 �293.01 �281.30
9 �8.83 �3.56
to the number of q-wavevectors of the discretized integral, we
have to consider the discretization of an integral in the Brillouin
zone, in a zone of width qc around Sð�CÞ, in which the distance with
respect to the surface is denoted as q? giving a behavior
/ Sð�CÞ �

Rþqc
�qc

1
q?

dq?. Although the principal value of this integral

vanishes identically, fluctuations due to the discretization will
not be small, and hence the convergence is non-monotonic.

Nonetheless, in practice, the small imaginary component at the
denominator is present. One can observe, in Fig. 3, that the fluctu-
ations, in the case of the homogeneous grid, are quite acceptable.
The error with respect to the q-wavevector sampling might be
estimated at 5 meV, for the set of 20,000 q-wavevectors.

After this careful comparison between codes, and this conver-
gence analysis, we obtain that the ZPR converges smoothly
towards 409 meV.

This value disagrees with the one (0.615 eV) provided by Ref.
[10]. The latter was actually first confirmed using QE + YAMBO,
see e.g. Ref. [22]. However, while performing the cross verification
between ABINIT and QE + YAMBO for the present study, we found a
misuse of the symmetries at C in the interfacing between QE and
YAMBO, affecting only the DDW term. After correction, we obtain
the results provided in this work, with the numerical uncertainty
being much smaller than 0.2 eV. Documentation describing how
to generate data at C with the same standard meaning as data at
other k-points appeared in QE version later than 4.0.5 (input vari-
able nogg). Work relying on such data might have been affected by
this ambiguity.

4.4. Pseudopotential choices

We will now assess the influence of the pseudopotential choices.
Such a study would not be mandatory in the present context of com-
parison between codes for the same pseudopotential (the reference
pseudopotential has indeed been used with ABINIT, YAMBO, and
also in the study of Ref. [10]). This comparison will be performed
only using the Abinit software. We have tested all the norm-
conserving pseudopotentials available on the Abinit website as well
as two UPF pseudopotentials, one of which is the reference pseudo-
potential. In the Table 5, we give a comparison of the ZPR using
different pseudopotentials for Carbon. The calculations are made
on an homogeneous 10 � 10 � 10 q-point grid (47 q-points in the
IBZ), for a 6 � 6 � 6 unshifted k-point grid with the energy cut-off
grid with an energy cutoff of 30 Ha for the plane wave basis set, using the same norm-
into the calculation. In the case of ABINIT, the Sternheimer equation (SEq) was used to
7 q-wavevectors, the value obtained without the Sternheimer equation and with a

DDW Fan + DDW

ABINIT 7.3.2 SEq/
300 bands

Yambo 3.4.0
300 bands

ABINIT 7.3.2 SEq/
300 bands

Yambo 3.4.0
300 bands

59.23/55.23 55.69 �61.53/�61.30 �61.65
1119.92/1107.28 1116.53 138.30/137.84 138.50
1005.15/994.69 1002.88 �327.40/�323.86 �326.20

60.42/50.32 50.76 �494.98/�491.57 �492.90
�34.89/�39.91 �40.24 �68.61/�68.41 68.73

59.46 55.90 �61.67 �61.79
1124.21 1120.82 140.70 140.90
1009.01 1006.74 �263.73 �262.50

60.64 50.96 �223.80 �221.80
�35.03 �40.39 �44.85 �44.95

59.45 55.90 �61.75 �61.87
1124.11 1120.72 140.54 140.70
1008.92 1006.65 �260.63 �259.40

60.64 50.95 �232.37 �230.40
�35.02 �40.39 �43.86 �43.95



Fig. 3. Convergence with respect to the number of random q-wavevetors included
in the ZPR calculation using the software ABINIT in the static AHC formulation. 100
ZPR calculations have been performed for each subset of q-wavevectors taking Nq

q-wavevectors among 20,000 (the total number of computed q-wavevectors).
The upper and lower bars are the maximal and minimal values in each set. The top
and bottom of the boxes represent 25% and 75% of all the data in the set. The middle
line is the median and the blue diamonds are outliers. The red dots comes from non
shifted homogeneous Monkhorst–Pack grids, for which the number of q-wavevec-
tors corresponds to those in the irreducible Brillouin zone. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 5
Comparison inside Abinit of the ZPR (and its Fan + DDW decomposition) for different
pseudopotentials at C. Homogeneous 10 � 10 � 10 q-point grid (47 q-points in the
IBZ), for a 6 � 6 � 6 unshifted k-point grid with the adapted energy cut-off for the
plane wave basis set, 12 bands with were used (with the Sternheimer equation). The
energies are in meV. Due to the low sampling on the q-wavevector, these value are
not converged one, although the comparison between different pseudopotentials is
meaningful.

Pseudo Band Fan DDW Fan + DDW ZPR

Reference 2–3–4 �981.61 1119.92 138.30 465.70
5–6–7 �1332.56 1005.16 �327.40

06-C.LDA.fhi 2–3–4 �980.90 1119.42 138.52 467.73
5–6–7 �1333.64 1004.44 �329.20

6c.pspnc 2–3–4 �938.85 1074.14 135.28 468.32
5–6–7 �1286.04 953.00 �333.03

06-C.GGA.fhi 2–3–4 �952.12 1090.20 138.09 477.12
5–6–7 �1324.85 985.82 �339.03

6c.4.hgh 2–3–4 �1512.58 1649.55 136.97 450.35
5–6–7 �1791.63 1478.25 �313.38

C.pz-vbc.UPF 2–3–4 �1027.72 1167.13 139.41 419.22
5–6–7 �1303.42 1023.61 �279.81
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reported in Section 3.1 for the plane wave basis set, and 12 bands
were used (with the Sternheimer equation). The low density
q-wavevector grid used in this study allows for a fair comparison
between pseudopotentials, but does not yield converged final
results.

One can see that although the pseudopotentials are very differ-
ent (various exchange–correlation functional, different angular
momentum channel include and different atomic cut-off radius)
the spread on the ZPR is only around 50 meV. Fluctuations for
the Fan and DDW terms, treated separately, are much larger. As
emphasized earlier, the decomposition is indeed non-physical,
and prone to large numerical uncertainties.

5. Conclusions

In this work, we have carefully compared all the quantities
entering into the calculation of the ZPR in the AHC formalism in
two different softwares: ABINIT and Yambo on top of QE. We show
that one can get less than 10�5 Ha/atom discrepancy on the total
energy, 0.07 cm�1 on the phonon frequencies, 0.005 on the elec-
tron–phonon matrix elements squared (relative discrepancy) and
less than 2 meV on the zero-point motion renormalization. We also
discuss the absolute value of the Fan and DDW terms taken sepa-
rately. We have also presented the converged result of the band-
gap reduction due to electron–phonon renormalization, that is
409 meV at 0 K and discussed its discrepancy with previously pub-
lished result. We have also performed an analysis of the conver-
gence rate of q-wavevector samplings.

Finally we have discussed the impact of the pseudopotential
choices and shown that it was relatively small (around 10% of
the total ZPR) thus increasing our confidence in the results and
methodology.
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Appendix A

In this appendix, we detail several terms of the decomposition
of the total energy, as provided by ABINIT and QE. As concern ABI-
NIT, a decomposition of the total energy can be inferred from Refs.
[24,40], but the Ewald and psp-core terms are actually mixed in
these references, which is misleading.

We define first the psp-core energy. The external potential orig-
inates from sum of atomic pseudopotentials:

vpspðr; r0Þ ¼
X

ls

v sðr� ss � Rl; r0 � ss � RlÞ: ð15Þ

Each atom contribution to this external potential is made of a local
and a non-local part:

vsðr; r0Þ ¼ v loc
s ðrÞdðr� r0Þ þ vnon-loc

s ðr; r0Þ: ð16Þ

For each atom the local part is long ranged, with an asymptotic
behavior �Zs=r. Such behavior implies a divergence at G ¼ 0 in
reciprocal space. Divergencies at G ¼ 0 also happen in the Hartree
energy and the Ewald energy.

A careful treatment of the divergences lead to their mutual can-
cellation, albeit with some finite residual. The residual specifically
linked to the long-range behavior of the local pseudopotential is
denoted as the psp-core energy:

Epsp-core ¼
1

2X0

X
s

Zs

 !X
s0

Z
v loc

s0 ðrÞ þ
Zs0

r

� 	
dr: ð17Þ

The Ewald energy is the energy of an infinite number of periodic
positively charged particle placed in a negative homogeneous
background:

EEw ¼
1
2

X
s;s0

ZsZs0
X
G–0

4p
X0G2 eiG�ðss�ss0 Þe

�G2

4K2

"

�
X

l

eiq�Rl erfcðK Rl þ ss0 � ssj jÞ
Rl þ ss0 � ssj j � 2ffiffiffiffi

p
p Kdss0 �

p
X0K

2

#
; ð18Þ
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with Zs the charge of ion s;X0 the unit cell volume, K a parameter
that can assume any value and is adjusted to obtain the fastest
convergence.
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