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The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature depen-
dence and zero-point motion effect) is sizable in many materials with light atoms. This effect,
often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-
Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description
of the recent progresses in this field and a brief overview of the theory, we focus on the issue of
phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization
is obtained numerically through a slowly converging q-point integration. For non-zero Born effective
charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading
to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by
the slow convergence of Born effective charges with electronic wavevector sampling, which leaves
residual Born effective charges in ab initio calculations on materials that are physically devoid of
such charges. Here, we propose a solution that improves this convergence. However, for materials
where Born effective charges are physically non-zero, the divergence of the renormalization indicates
a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the
non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormaliza-
tion and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic
and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem
(and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN,
β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization,
temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band
structure. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927081]

I. INTRODUCTION

State-of-the-art accurate calculations of the electronic
structure of solids rely often on a combination of density
functional theory (DFT)1,2 and many-body perturbation theory
(MBPT).3,4 Usually, DFT provides reliable initial starting wave
functions and valence eigenenergies, but poor bandgap. The
DFT wavefunctions are then post-treated by MBPT in the
so-called GW approximation.5 Such a combined approach
delivers electronic bandgaps within 0.1-0.4 eV of the exper-
imental ones.6,7 For many weakly correlated materials, one-
shot GW corrections to DFT are sufficient to reach this agree-
ment, while self-consistent GW is needed for more strongly
correlated materials. The GW corrections to the DFT bandgap
can be as large as a few eV, i.e., 2 eV for the direct gap of
diamond.8,9 For the accurate description of optical properties,
the treatment of excitonic effects is important, which can be
done on the basis of the Bethe-Salpeter equation (BSE),10 using
the GW band structure as input.

a)Electronic mail: samuel.pon@gmail.com

This well-established DFT+MBPT approach neglects
electron-phonon coupling and is thus unable to predict temp-
erature-dependent modification of the electronic band struc-
ture, as well as corrections already present at 0 K, due to
the zero-point motion. Those are arguably the next largest
corrections to the electronic states description, at least for
materials that contain light nuclei. As a paradigmatic example,
for the direct bandgap of diamond, the zero-point motion
correction is as large as 0.6 eV.8,9

The treatment of the effect of electron-phonon coupling
on the electronic structure has a long and chaotic history that
started in the early 1950s. For a historical review, the reader is
invited to consult Ref. 11. Over the years, computations have
relied on three types of methods, with different advantages and
drawbacks: (1) as a time average of the bandgap using first-
principles molecular dynamics (MD) simulations, (2) through
the frozen-phonon (FP) method, which weights the eigenen-
ergy change along the phonon modes with a Bose-Einstein
distribution, and (3) thanks to the diagrammatic method of
many-body perturbation theory. These three types of methods
are compared to each other, at the harmonic level, in
Ref. 11.

0021-9606/2015/143(10)/102813/27/$30.00 143, 102813-1 © 2015 AIP Publishing LLC
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In the present contribution, we rely on the Allen-Heine-
Cardona (AHC) theory12–14 to compute the zero-point motion
renormalization (ZPR) as well as the temperature dependence
of electronic eigenenergies. The AHC theory originates from
the diagrammatic method of many-body perturbation theory.
It has been applied in several recent contributions in the field,
including the computation of temperature-dependence of the
optical properties,15 the computation of the surprisingly large
ZPR of the diamond bandgap,8,16 the demonstration of large
non-rigid ion corrections for molecules,17 the inclusion of
dynamical effects beyond the adiabatic approximation,18–20 the
study of the anharmonic electron-phonon contribution to the
indirect bandgap of diamond,21 and the inclusion of electronic
many-body effects (in the GW approximation) in the ZPR of
diamond,9 noticing a large increase of the renormalization with
respect to DFT. Also, we believe that the confusion in the
theoretical understanding of the relationship between MD, FP,
and AHC as well as the inaccuracies in first-principles software
implementations of AHC has been largely eliminated in two
recent publications.11,16

One of the major issues when performing AHC calcula-
tions is the slow convergence with respect to phonon wavevec-
tor sampling of the Brillouin Zone (BZ),16 referred to as q-
point sampling from now on. To accelerate this convergence,
a small imaginary component iδ (which can be inferred as
a finite lifetime for the unoccupied electronic states due to
thermal effects) is often used. However, this imaginary param-
eter is ad hoc rather than ab initio. Also, the convergence
problem becomes critical with the MD and FP methods, as su-
percells must be used to sample the phonon wavevectors, thus
dramatically increasing the computational time and memory
required. Currently, numerical convergence for the MD and
FP methods cannot reliably be reached in three-dimensional
solids, in contrast with finite systems.9,16,22

In this paper, we highlight that in AHC simulations, the
ZPR diverges at dense q-point samplings and vanishing iδ. For
materials with no infrared (IR) active phonon modes (which
we will refer to as IR-inactive materials in the remainder
of this paper), such unphysical divergence is attributed to a
residual Born effective charge, which stems from the finite
k-point sampling. We propose a solution to this problem and
devise a systematic way to converge the ZPR for vanishing
iδ. For IR-active materials (i.e., materials with IR active
phonon modes), the problem is more fundamental. Indeed,
the divergence in the adiabatic AHC approach is not simply
numerical and indicates a breakdown of the AHC approach.
Resorting to the non-adiabatic AHC theory solves this
issue.

This paper is organized as follows. First, a short reminder
of the AHC theory is presented in Section II. In Section III,
the bottleneck of the q-point convergence is discussed, the
divergence problem of the ZPR at large q-point density
is explored and a solution is proposed. We also devise in
Sections IV and V a systematic way to extrapolate the ZPR at
infinite q-point density and vanishing iδ. Finally, in Section VI,
we present the temperature dependences, the ZPR, and the
phonon-induced lifetimes for five semiconductors: α-AlN,
β-AlN, BN, diamond, and silicon. Atomic units are used
throughout.

II. REVIEW OF THE ALLEN-HEINE-CARDONA
FORMALISM

A. The AHC theory within the adiabatic harmonic
approximation

The temperature-dependent renormalization of the elec-
tronic eigenenergy εnk for band n and wavevector k can be
written in the adiabatic harmonic approximation as a sum over
the BZ of the phonon contributions for each wavevector q,11

∆εnk(T) = 1
Nq


q

3N
m

∂εnk

∂nmq

(
nmq(T) + 1

2

)
, (1)

with

∂εnk

∂nmq
=

1
2ωmq


κα
κ′γ


ll′

∂2εnk

∂Rlκα∂Rl′κ′γ

× e−iq·(Rl−Rl′)U∗m,κ′γ(q)Um,κα(q), (2)

where m is the phonon branch, T is the temperature, Nq is
the number of wavevectors used to sample the BZ, ωmq is
the phonon frequency, nmq(T) = 1

e

ωmq
kBT −1

is the Bose-Einstein

distribution, Um,κα(q) is the eigendisplacement vector of atom
κ in direction α associated to the phonon mode m, and ∂/∂Rlκα

is the derivative of a quantity with respect to the displacement
of atom κ of the unit cell l in the direction α.

The quantity ∆εnk(T) , εnk(T) − εnk[0] is the difference
between the temperature-dependent eigenenergy and the ei-
genenergy at ground-state atomic positions. We distinguish the
temperature-dependent εnk from the atomic-position-depen-
dent εnk by using () in the former and [] in the latter. The
difference between εnk(T = 0) and εnk[0] is called the ZPR.

In a mean-field approximation like the DFT, the eigenen-
ergies are the expectation values of the Hamiltonian Ĥk,k of the
system

εnk =

u(0)
nk
��� Ĥk,k

���u
(0)
nk


, (3)

with u(0)
nk the periodic part of the electronic wavefunctions.

Using perturbation theory to obtain the second-order derivative
with respect to atomic displacements of such eigenenergies,
Eq. (2) can be rewritten as

∂εnk

∂nmq
=

1
2ωmq


κα
κ′γ

U∗m,κ′γ(q)Um,κα(q)

×
 

u(0)
nk
���

∂2Ĥk,k

∂Rκα(−q)∂Rκ′γ(q)
���u

(0)
nk


+

1
2

(( ∂unk

∂Rκα(q)
���
∂Ĥk,k

∂Rκ′γ(q)
���u

(0)
nk


+ (κα)↔ (κ′γ)) + (c.c.)), (4)

where (c.c.) stands for the complex conjugate of the previous
terms within parentheses, and where we use the following
notation for the derivative with respect to atomic positions of
an arbitrary quantity X :

∂X
∂Rκα(q) =

1
NBvK


l

eiq·Rl
∂X

∂Rlκα
, (5)
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NBvK being the number of primitive cells of the periodic sys-
tem defined by the Born-von Kármán boundary conditions.23

The first term within curly brackets in Eq. (4) is called the
Debye-Waller (DW) term,

D κα
κ′γ

(q) , 
u(0)
nk
���

∂2Ĥk,k

∂Rκα(−q)∂Rκ′γ(q)
���u

(0)
nk


, (6)

while the remainder constitutes the Fan term,

F κα
κ′γ

(q) , 1
2

(( ∂unk

∂Rκα(q)
���
∂Ĥk,k

∂Rκ′γ(q)
���u

(0)
nk


+ (κα)↔ (κ′γ)) + (c.c.)) . (7)

The change of eigenenergy εnk due to the specific phonon
mode m with wavevector q (Eq. (4)) thus becomes

∂εnk

∂nmq
,

∂εFAN
nk

∂nmq
+
∂εDW

nk

∂nmq
, (8)

with the Fan contribution given by

∂εFAN
nk

∂nmq
,

1
2ωmq


κα
κ′γ

F κα
κ′γ

(q)U∗m,κ′γ(q)Um,κα(q) (9)

and the Debye-Waller contribution given by

∂εDW
nk

∂nmq
,

1
2ωmq


κα
κ′γ

D κα
κ′γ

(q)U∗m,κ′γ(q)Um,κα(q). (10)

At this point, no approximations beyond the adiabatic and har-
monic ones were made. However, the calculation of the Debye-
Waller term (Eq. (6)) requires the second-order derivative of
the Hamiltonian, which is a computational bottleneck within
the density functional perturbation theory (DFPT) framework.
To overcome this issue, we make the rigid-ion approximation
(RIA), a standard approach within the AHC framework12–14

that allows the renormalization to be computed from first-order
derivatives of the Hamiltonians only

∂ε
DWRIA
nk

∂nmq
=
−1

4ωmq


κα
κ′γ

F κα
κ′γ

(Γ) (U∗m,κγ(q)Um,κα(q)

+U∗m,κ′γ(q)Um,κ′α(q)
)
. (11)

We thus split the DW term into RIA and non-RIA (NRIA)
contributions,

∂εDW
nk

∂nmq
=

∂ε
DWRIA
nk

∂nmq
+
∂ε

DWNRIA
nk

∂nmq
, (12)

with

∂ε
DWNRIA
nk

∂nmq

=
1

2ωmq


κα
κ′γ


D κα

κ′γ
(q)U∗m,κ′γ(q)Um,κα(q) + 1

2
F κα

κ′γ
(Γ)

×
(
U∗m,κγ(q)Um,κα(q) +U∗m,κ′γ(q)Um,κ′α(q)

)
. (13)

Also, in our calculations, all Fan-like contributions are
obtained within DFPT and can thus be written as follows: ∂unk

∂Rκα(q)
���
∂Ĥk,k

∂Rκ′γ(q)
���u

(0)
nk


=

M′

n′=1


u(0)
nk
���

∂Ĥk,k
∂Rκα(−q)

���u
(0)
n′k+q


u(0)
n′k+q

���
∂Ĥk,k

∂Rκ′γ(q)
���u

(0)
nk


ε
(0)
nk − ε

(0)
n′k+q

+

P̂ck+q

∂unk

∂Rκα(q)
���
∂Ĥk,k

∂Rκ′γ(q)
���u

(0)
nk


, (14)

where the summation over energetic bands (above M) has been
replaced by the solution

�
P̂ck+q

∂unk
∂Rκα(q)

�
of a linear equation

as proposed by Sternheimer24 and applied to this problem in
Ref. 17. The definition for the projector P̂ck+q and active space
M as well as the description of the linear equation to be solved
can be found in the Appendix of Ref. 11.

We finally obtain the adiabatic temperature-dependent renormalization in the RIA by neglecting the non-RIA contribution
as defined by Eq. (13), which yields

∆ε
(adiabatic,RIA)
nk (T) =ℜ 1

Nq


q

3N
m

(
nmq(T) + 1

2

) 1
4ωmq


κα
κ′γ

((  M′

n′=1


u(0)
nk
���

∂Ĥk,k
∂Rκα(−q)

���u
(0)
n′k+q


u(0)
n′k+q

���
∂Ĥk,k

∂Rκ′γ(q)
���u

(0)
nk


ε
(0)
nk − ε

(0)
n′k+q + iδ

+

P̂ck+q

∂unk

∂Rκα(q)
���
∂Ĥk,k

∂Rκ′γ(q)
���u

(0)
nk


+ (κα)↔ (κ′γ)

)
+ (c.c.)

)
U∗m,κ′γ(q)Um,κα(q)

− 1
2

((  M′

n′=1


u(0)
nk
���

∂Ĥk,k
∂Rκα(Γ)

���u
(0)
n′k


u(0)
n′k
���

∂Ĥk,k
∂Rκ′γ(Γ)

���u
(0)
nk


ε
(0)
nk − ε

(0)
n′k + iδ

+

P̂ck

∂unk

∂Rκα(Γ)
���
∂Ĥk,k

∂Rκ′γ(Γ)
���u

(0)
nk


+ (κα)↔ (κ′γ)

)
+ (c.c.)

) (
U∗m,κγ(q)Um,κα(q) +U∗m,κ′γ(q)Um,κ′α(q)

)
, (15)

where a small imaginary component iδ is usually introduced in the AHC equation to smooth the energy denominators. For example,
in the case of diamond, several authors have used an iδ of 100 meV to account for the finite lifetimes of the electronic states.8,9,16,25

However, the theory must also be valid (apart from controlled numerical instabilities) for vanishing iδ. This point will be further
discussed in Section III.
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B. Beyond the Rayleigh-Schrödinger perturbation theory

Phonons affect the one-electron energy bands εnk in two ways: there is a shift ∆εnk and a lifetime broadening 1/τnk. As seen
in Subsection II A, the adiabatic approximation leads to a real renormalization of the eigenstates (and no broadening). Thus, the
study of the lifetime broadening requires an extension of the adiabatic theory.

In 1978, Allen generalized his earlier work,12 derived within the standard Rayleigh-Schrödinger perturbation theory, using
MBP techniques to include finite phonon frequencies.26 These techniques describe excitations in terms of spectral functions,19,27

where quasiparticles cannot always be unambiguously identified with the associated well defined eigenenergies. We will refer to
this technique as the dynamical AHC theory, which goes beyond the Born-Oppenheimer approximation. We obtain the following
equation, which contains the electron-phonon matrix elements already calculated for the adiabatic renormalization:

∆ε
(dynamic,RIA)
nk (T,ω) =ℜ 1

Nq


q

3N
m

1
4ωmq


κα
κ′γ

((  M
n′=1


u(0)
nk
���

∂Ĥk,k

∂Rκα(−q)
���u

(0)
n′k+q


u(0)
n′k+q

���
∂Ĥk,k

∂Rκ′γ(q)
���u

(0)
nk



× 1
2

( nmq(T) + fn′k+q

ω − ε(0)
n′k+q + ωmq + iη + iδ

+
nmq(T) + 1 − fn′k+q

ω − ε(0)
n′k+q − ωmq + iη + iδ

)

+

Pck+q

∂unk

∂Rκα(q)
���
∂Ĥk,k

∂Rκ′γ(q)
���u

(0)
nk

(
nmq(T) + 1

2

)
+ (κα)↔ (κ′γ)

)
+ (c.c.)

)
U∗m,κ′γ(q)Um,κα(q)

− 1
2

((  M
n′=1


u(0)
nk
���

∂Ĥk,k
∂Rκα(Γ)

���u
(0)
n′k


u(0)
n′k
���

∂Ĥk,k
∂Rκ′γ(Γ)

���u
(0)
nk


ω − ε(0)

n′k + iδ
+


Pck

∂unk

∂Rκα(Γ)
���
∂Ĥk,k

∂Rκ′γ(Γ)
���u

(0)
nk



+ (κα)↔ (κ′γ)
)
+ (c.c.)

) (
nmq(T) + 1

2

) (
U∗m,κγ(q)Um,κα(q) +U∗m,κ′γ(q)Um,κ′α(q)

)
, (16)

where fnk is the electronic occupation of the wavevector k
at band n, where a convergence study on M is required for
the Fan term due to the fact that the Sternheimer solution
neglects the phonon frequency ωmq, while the sum over the
active space does not, where iη is the mathematical (as opposed
to the numerical nature of iδ) infinitesimal shift of the poles
ε
(0)
n′k+q − ωmq to the lower part of the complex plane, which is

required to enforce causality in MBPT, and where (c.c.) stands
for the complex conjugate of the previous term, except for iη,
whose sign must not be changed in the complex conjugation.

In this work, following Allen,26 rather than obtaining the
full spectral function to describe the electronic excitation, we
suppose that their description in terms of quasiparticles is still
valid and evaluate the associated eigenenergies by correcting
the DFT eigenvalues to first-order in perturbation theory, tak-
ing the self-energy evaluated at ω = ε

(0)
nk as the perturbation.

Complex eigenenergies are obtained within this generalization
that we refer to as the non-adiabatic AHC theory,26,28

∆ε
(non-adiabatic,RIA)
nk (T) = ∆ε(dynamic,RIA)

nk (T,ω = ε
(0)
nk). (17)

The phonon-induced lifetime broadening 1/τnk is the
imaginary part of Eq. (16) with ω = ε

(0)
nk and iδ = 0 (i.e., 1/τnk

stems from the infinitesimal shift iη introduced by MBPT),

1

2τ(non-adiabatic,RIA)
nk

=
π

Nq


q

3N
m

1
8ωmq


κα
κ′γ

U∗m,κ′γ(q)Um,κα(q)
M′

n′=1

×
(  

u(0)
nk
���

∂Ĥk,k

∂Rκα(−q)
���u

(0)
n′k+q


u(0)
n′k+q

���
∂Ĥk,k

∂Rκ′γ(q)
���u

(0)
nk


+ (κα)↔ (κ′γ) + (c.c.)

)
×

(�
nmq(T) + fn′k+q

�
δ(ε(0)

nk − ε
(0)
n′k+q + ωmq)

+
�
nmq(T) + 1 − fn′k+q

�
δ(ε(0)

nk − ε
(0)
n′k+q − ωmq)

)
, (18)

where δ is the Dirac delta (which we broaden for numerical
reasons).

The phonon-induced lifetime broadening in the adiabatic
limit (ωmq << ε

(0)
nk − ε

(0)
n′k+q) is

1

2τ(adiabatic,RIA)
nk

=
π

Nq


q

3N
m

1
4ωmq

(
nmq(T) + 1

2

) 
κα
κ′γ

M′

n′=1

(  
u(0)
nk
���

∂Ĥk,k

∂Rκα(−q)
���u

(0)
n′k+q



×

u(0)
n′k+q

���
∂Ĥk,k

∂Rκ′γ(q)
���u

(0)
nk


+ (κα)↔ (κ′γ) + (c.c.)

)
δ(ε(0)

nk − ε
(0)
n′k+q)U∗m,κ′γ(q)Um,κα(q). (19)
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FIG. 1. Adiabatic ZPR of the Γv25 state of diamond with
respect to the q-point grid density for decreasing values
of iδ before restoration of the charge neutrality. The size
of the q-point grid is Nq×Nq×Nq.

The adiabatic and non-adiabatic renormalizations, Eqs.
(15) and (17), as well as adiabatic lifetime Eq. (19) have been
coded in the ABINIT software (v7.11) and will be used in
Sections III–VI.

III. PHONON WAVEVECTOR SAMPLING
AND THE DIVERGENCE PROBLEM

A. Potential breakdown of perturbation theory

Quantum mechanical perturbation theory can breakdown
when vanishing denominators appear in the perturbation se-
ries. This can happen in the present case, as the short-hand form
of Eq. (15) is

∆ε
(adiabatic,RIA)
nk (T) ∝


q

|GKK(q)|2
ε
(0)
k − ε

(0)
k+q

. (20)

Actually, there are two types of potential divergences
in Eq. (20): (i) when ε

(0)
k = ε

(0)
k+q and (ii) when the electron-

phonon matrix elements GKK(q) diverge, which happens
when the Born effective charges do not vanish, as we shall see
(GKK(q) is then proportional to 1

q ).
In practical calculations, the q = 0 contribution from the

same band (the denominator being thus zero) is not included
in the summation. Also, in case of degeneracies, the terms
with zero denominators are ignored. However, a large sampl-
ing density of q-points are needed to include correctly the
contributions of the poles of the function. For this reason, the
numerical convergence of the adiabatic ZPR of diamond with
respect to q-point density is slow and requires large q-point
grids.16 This problem is often assessed in practice by adding
an ad hoc iδ to the denominator of Eq. (20).

IR-active materials exhibit non-zero Born effective
charges, which describe the coupling between the electric field
generated by the dipoles present in these materials and the
ionic motion. Those dipoles, as mentioned previously, also
lead to IR active phonon modes. In these cases, the non-zero
oscillator strengths (see Eq. (54) of Ref. 29) associated to
these modes cause a divergence in the GKK(q). Divergences
of type (ii) are therefore present in these materials. However, in
IR-inactive materials, there are theoretically no such effective
charges and there should therefore be no divergence of type
(ii). Since divergences of type (i) have a finite integral when
no divergences of type (ii) are present, the q-point sum should

converge to a finite value for IR-inactive materials. Following
the work of Zallen et al.,30 among the non-metallic materials,
the only IR-inactive ones are those with only one type of
atom and no more than two atoms per unit cell except for the
two exceptional space groups P6/mmm and P63/mmc where
materials with one type of atom but four atoms per unit cell
can be found to be also IR-inactive.

In practice, however, we observe a non-physical diver-
gence of the ZPR for large q-points densities, even in IR-
inactive materials. This effect can be clearly seen in Figure 1,
where the q-point density dependence of the adiabatic Γv25 ZPR
of diamond (calculated using Eq. (15)) for vanishing iδ exhibits
a divergent behavior when δ is 1 meV or 0.01 meV (hardly
seen for δ equal to 50 meV or 100 meV), despite its lack of IR
activity.

Actually, this divergence is attributed to a residual electric
field stemming from the breaking of the Born effective charge
neutrality sum rule in IR-inactive periodic solids. This leads
to the presence of divergences of type (ii) which, combined
to these of type (i), cause the integral around q = 0 (and the
associated q-point sum) to diverge.

This residual electric field stems from the finite k-point
grid used within DFT. Indeed, the first-order density is ob-
tained thanks to a discretized integral on the BZ (see Eq. (B9)
of Ref. 31). This first-order density in turn determines the
electric field and the Born effective charges (see Eq. (42) of
Ref. 29). This residual electric field is found to converge to
zero exponentially but is nonetheless substantial at k-point
grid usually sufficient to converge other relevant quantities. An
example of this slow convergence is given in Table I for the case
of diamond.

TABLE I. Born effective charge of one carbon atom in diamond, for different
electronic wavevector samplings. Since diamond is IR-inactive, the charge
should physically be zero, but a very slow convergence with the sampling is
found in practice.

Number of k-points Born effective charge

8 −2.5406
64 −0.3514
216 −0.0534
512 −0.0080

1000 −0.0011

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

81.240.19.109 On: Sat, 01 Aug 2015 18:35:15



102813-6 Poncé et al. J. Chem. Phys. 143, 102813 (2015)

B. Restoration of the charge neutrality

In this section, we present a scheme to numerically remove
this spurious electric field and thus considerably speed up the
ZPR convergence with respect to the electronic wavevector
sampling. To this end, let us study the impact of a small Born
effective charge on the matrix elements of ∂Ĥk,k

∂Rκα(q) present in
Eq. (15). We introduce the following short-hand notation for
derivatives, which matches the one used in Ref. 31:

∂Ĥk,k

∂Rκα(q) , H (1)
k+q,k. (21)

As mentioned in Ref. 31, Eq. (61), within the pseu-
dopotential framework, H (1)

q can be decomposed into a first-
order change of the separable, local, Hartree and exchange-
correlation potentials,

H (1)
k+q,k = v

(1)
sep,k+q,k + v̄

(1)
loc,q + v̄

(1)
H,q + v̄

(1)
xc,q, (22)

where the bar symbol above a quantity X̄ means that it is the
periodic part of X ,

X̄ (1)
q (r) = e−iq·rX (1)

q (r), (23)

and where both v̄ (1)loc,q and v̄ (1)H,q diverge as 1
|q| with opposite signs.

To make this more explicit, we express v̄
(1)
loc,q as (see

Eq. (50) of Ref. 31)

v̄
(1)
loc,q(G) = −i

Ω0
(G + q)αe−i(G+q)·τκv loc

κ (G + q), (24)

where Ω0 is the volume of the unperturbed unit cell, τκ the
vector position of the atom κ in the unit cell and with (see
Eq. (A17) of Ref. 31)

v loc
κ (q → 0) = −4πZκ

q2 + Cκ + O(q2), (25)

where Zκ is the number of valence electrons of the atom κ
described in the pseudopotential. To explicit the same behavior
in v̄

(1)
H,q, we express it as (see Eq. (62) of Ref. 31)

v̄
(1)
H,q(G) = 4π

n̄(1)
q

|G + q|2 . (26)

Since v̄
(1)
loc,q(G) in Eq. (24) has an analytic expression for

q → 0, a residual electric charge can only affect the first-
order density n̄(1)

q in Eq. (26). The derivation of the impact
of a residual Born effective charge on the first-order density
is presented in Appendix A of this paper and can be seen in
Eq. (A77) in the G = 0 limit. For practical reasons, we apply
the renormalization to any G as it will converge to the same
result when the k-point grid is large enough.

Using this knowledge, we can renormalize the Hartree
term as follows (see Eq. (A81)):

v̄
ren(1)
H,q (G) = v̄

(1)
H,q(G)


γqγ

(
Zκδαγ −

(Z∗κα,γ−Z̄αγ)
1
q2


δ,ξ qδϵδξqξ

)


γqγ
(
Zκδαγ −

Z∗κα,γ
1
q2


δ,ξ qδϵδξqξ

) , (27)

where Z∗κ,αβ is the Born effective charge, ϵγξ is the macroscopic
static dielectric tensor for the electronic system (where the ions
are considered fixed), and Z̄αβ is the averaged Born effective

FIG. 2. Contribution to the ZPR of 6 q-points with respect to the densi-
fication of the k-point grid of the first band of diamond at k=L. Only 6
symmetry equivalent 1

100 X q-points are used. The calculations were done
with and without the renormalization of Eq. (27).

charge

Z̄αβ =
1

Nat


κ

Z∗κ,αβ, (28)

where Nat is the number of atoms in the primitive cell. If the
Born effective charge neutrality sum rule was fulfilled, Z̄αβ

should be exactly zero.
With this renormalization, the v̄

ren(1)
H,q term correctly can-

cels the v̄
(1)
loc,q when q → 0. Figure 2 shows the faster conver-

gence rate of the ZPR with respect to the density of the k-
point grid obtained with this renormalization for the specific
case of the first band of diamond at k = L. To highlight the
divergent behavior of the ZPR with respect to q-point grid
density without the associated high computational cost for
q-point integration, only 6 symmetry equivalent q-points are
used in the sum. The q-points are chosen close enough to zero
to show the divergence, q = 1

100 X.

IV. BEHAVIOR OF THE q-POINT CONVERGENCE

After enforcing the charge neutrality by application of
Eq. (27), the theoretical rate of convergence of the ZPR can
be analyzed when the number of q-points along a side of the
Brillouin Zone Nq increases (the total number of q-points in
the Brillouin Zone being N3

q). Thus, in this section, we first
isolate the divergent contribution to the ZPR and then study
analytically its convergence rate.

This study reveals that the q-point convergence can be
either constant, linear (1/Nq), or divergent (Nq) depending on
the state that is renormalized, depending on the use of the
adiabatic (Eq. (15)) or non-adiabatic (Eq. (17)) equation as
well as depending on the IR activity of the material. Table II
gives a summary of those behaviors.

A. Rapid convergence with Nq

1. IR-inactive materials in the non-adiabatic
approximation at VBM/CBM

For an IR-inactive material within the non-adiabatic ap-
proximation (Eq. (17)), we can model the q-point behavior of
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TABLE II. Convergence behavior of the renormalized eigenstates with the
densification of the q-grid. The only case where the renormalization diverges
is for an IR-active material at the VMB/CBM when the adiabatic approxima-
tion is used. The referenced subsections are given in parentheses.

q-convergence

Cases Adiabatic Non-adiabatic

IR-inactive
VBM/CBM 1/Nq (IV B 1) Flat (IV A 1)
Other Flat (IV A 2) Flat (IV A 2)

IR-active
VBM/CBM Nq (IV C) 1/Nq (IV B 2)
Other 1/Nq (IV B 2) 1/Nq (IV B 2)

the ZPR of the valence band maximum (VBM) with

lim
δ→0

 qc

0
d3q

1
εnk − εn′k+q + ωq + iδ

, (29)

where q is integrated in a sphere of radius qc around Γ. The
same derivation applies for the conduction band minimum
(CBM) with −ωq, the energy difference εnk − εnk+q being
negative. The phonon frequency shifts the poles of the func-
tion, so that the integrand is analytic over the domain of integra-
tion. The parabolic (∝ q2) behavior of the extrema leads from
Eq. (29) to

= lim
δ→0

 qc

0
d3q

1
q2 + ω + iδ

(30)

= lim
δ→0

 qc

0
dq

 π

−π
dφ

 π

0
dθ

q2 sin θ
q2 + ω + iδ

(31)

=

 qc

0
dq4π

q2

q2 + ω
(32)

= 4π
√
ω

( qc√
ω
− tan−1� qc√

ω

�)
. (33)

A Taylor expansion around qc = 0 reveals that

4π
√
ω

( qc√
ω
− tan−1� qc√

ω

�)
=

4π
√
ω

3

( qc√
ω

)3
+ O(q5

c), (34)

which means that the contribution from the integration around
q = 0 is simply proportional to the volume of integration, as
expected given the non-divergent nature of the integrand.

Thus, neglecting the q = 0 contribution in the q-point
sum of the non-adiabatic ZPR for a band extrema of an IR-
inactive material causes an error proportional to 1

N3
q

, whereas
discretization of the q-point integration over the BZ with the
rectangle method causes an error proportional to 1

N2
q

. There-
fore, the error caused by the neglected q = 0 contribution is
not visible in the global convergence behavior for this ZPR.
This behavior will thus be referred to as “flat” convergence
with respect to q-point grid density from now on.

Additionally, we can numerically integrate Eq. (29) on a
three dimensional grid of q-points using

V
N3
q


q

1
q2 + ω + iδ

, (35)

where V is the volume of integration and where the element of
volume is inversely proportional to the number of q-points N3

q

needed to discretize the grid. An example of the convergence

FIG. 3. Behavior of the numerical integral of Eq. (35) with respect to the
q-point density and δ for qc = 0.5 and ω = 0.01.

of Eq. (35) with 1
Nq

is shown on the top of Figure 3 for qc = 0.5
and ω = 0.01.

This function converges very quickly with increasing q-
sampling, which can also be seen on a real material like the
VBM of diamond (see the center of Figure 7(a)).

2. IR-inactive materials in the adiabatic
or non-adiabatic approximation
for a non-extremal eigenvalue

If the state that we would like to renormalize is not a VBM
nor a CBM, the denominator of the adiabatic (Eq. (15)) or
non-adiabatic (Eq. (17)) equations will be small when the state
that we consider (εnk) has almost the same energy as another
state (εn′k+q) (in the adiabatic case) or as another state minus a
phonon frequency (εn′k+q − ωmq) (in the non-adiabatic case).
As a result, the integrand in Eq. (29) is not analytic anymore
in these cases and a non-zero imaginary iδ is required to avoid
numerical instabilities.

To study analytically the adiabatic case, we will model the
energy difference (εnk − εn′k+q) by a shifted parabola with its
minimum at q0,

εk − εk+q = (q − q0)2 − q2
0. (36)

The ZPR has poles on a sphere of radius q0 centered on q
= q0 (chosen to be on the z-axis) and passing through the
origin. The integral on the spherical shell between radii of
values q0 − ∆ and q0 + ∆ gives a contribution that is linear
with ∆ (see Appendix B 1), as would any regular function
when integrated over a spherical shell. This indicates that
the integration of these poles will not contribute an error of
higher order than the remainder of the numerical integration.
Moreover, neglecting the q = 0 contribution in the numerical
integration yields an error proportional to 1

N3
q

in the IR-inactive
case (see Appendix B 2). Thus, these two numerical issues lead
to a q-point grid convergence that is flat for a non-extremal
eigenenergy of an IR-inactive material in the adiabatic frame-
work.

In the non-adiabatic case, the ω to be added to the right-
hand side of Eq. (36) only slightly reduces the radius of the
sphere at q0 (which thus does not touch the origin anymore)
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and the conclusion for the adiabatic case remains valid for the
numerical integration over this shell, i.e., it does not contribute
an error of higher order than the remainder of the numerical
integration. Also, the integrand at q = 0 is analytical in the non-
adiabatic case, so that only the first issue of the adiabatic case
persists in the non-adiabatic one, which leaves the convergence
behavior flat.

Therefore, in the present cases, the q-point integration
required to evaluate the ZPR converges just as well as if there
was no divergence issues in the integrand, so that no special
extrapolation is required. An example of this type of conver-
gence is given at the top of Figure 6(a) for diamond in the
adiabatic framework at a non-extremal energy.

Note that this well-behaved convergence behavior is
particular to non-extremal eigenenergies for IR-inactive mate-
rials in the adiabatic framework as well as any eigenvalue for
IR-inactive materials in the non-adiabatic framework. In other
cases, the discretized integral does not converge as quickly as
the rectangle method for an analytical integrand. It sometimes
converges linearly (∝ 1

Nq
) (see Subsection IV B) or even

diverges (∝ Nq) (see Subsection IV C).

B. Convergence proportional to the inverse of Nq

1. IR-inactive materials in the adiabatic approximation
at the VBM/CBM

IR-inactive materials with a parabolic energy dispersion
(VBM or CBM) have a q-dependence for the adiabatic ZPR
that behaves as qc

0
d3q

1
q2 + iδ

= 4πqc ∝
1

Nq
, (37)

when iδ = 0. Therefore, neglecting the q = 0 contribution in
the numerical integration yields an error proportional to 1

Nq

that dominates the 1
N2
q

error of the rectangle method.
The rate of convergence with q-densification can be

numerically tested by summing this function on a three dimen-
sional grid of q-points

1
N3
q


q,0

1
q2 + iδ

, (38)

where the q = 0 term has been omitted in the sum for numer-
ical reasons (as the expression must stand for vanishing δ).
The numerical integral of Eq. (38) is shown in Figure 4 and
converges towards 2π for qc = 0.5, as expected. Note that it
converges linearly with the densification of the q-point grid for
δ = 0.

2. IR-active materials in the adiabatic approximation
for non-extremal eigenvalues and in the non-adiabatic
approximation for any eigenvalues

In the case of IR-active materials, the GKK behave as 1/q2

for small q, even when the Born effective charge neutrality sum
rule is enforced with Eq. (27), since non-zero effective charges
are physically present in these materials. However, at VBM or
CBM, the phonon frequencyω in the non-adiabatic expression
(Eq. (17)) shifts the pole inside the bandgap. Therefore, the

FIG. 4. Behavior of the numerical integration of Eq. (38) with respect to the
q-point density and value of iδ for qc = 0.5.

parabolic eigenenergy dispersion is not problematic anymore.
Combining the behavior of the GKK and the eigenenergy
denominator yields

ℜ
 qc

0
d3q

1
q2(ω + iδ) . (39)

This case behaves the same way as Eq. (38). We thus obtain
the same linear behavior.

In the case of eigenvalues that are not at VBM or CBM, the
q-point integration in the adiabatic and non-adiabatic approx-
imations also exhibits a convergence that is linear with 1/Nq,
as explained at the end of Appendix B 2.

C. Increasing Nq does not lead to convergence
(IR-active materials in the adiabatic approximation
at the VBM/CBM)

In the case of IR-active materials, when we consider the
renormalization of a state at the VBM or the CBM, the adia-
batic equation diverges. Indeed,

V
N3
q


q

1
q2(q2 + iδ) (40)

diverges as Nq. An example of this case is given in the middle
left of Figure 5(b) for the VBM of boron nitride (BN) using the
adiabatic equation.

More specifically, neglecting the q = 0 contribution in the
numerical integration of Eq. (40) gives a convergence behavior
that can be modeled by the spherical integration of the sum-
mand of Eq. (40) in a shell from qc/Nq to qc. This gives, for
δ = 0, π

−π
dφ

 π

0
dθ

 qc

qc/Nq

dq
1
q4 = 4π

 qc

qc/Nq

dq
1
q2

= 4π
(

1
qc
− 1

qc/Nq

)
. (41)

As 1/Nq goes to 0, the value of this integral indeed diverges
linearly with the number of division Nq. This shows that for
IR-active materials, only the non-adiabatic equation can be
safely used.
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FIG. 5. Convergence study with respect to the (a) q-point grid density and (b) iδ parameter for the adiabatic direct bandgap ZPR of c-BN. The bottom figures
are the difference of the two figures above them.

V. BEHAVIOR OF THE iδ CONVERGENCES

After enforcing the charge neutrality by application of
Eq. (27), the theoretical rate of convergence of the ZPR can
be analyzed when the small imaginary parameter iδ tends to 0.
To do so, we proceed in the same way as in Section IV for the
q-point sampling: we first isolate the divergent contribution to
the ZPR and then study analytically its rate of convergence.

This study reveals that the δ convergence can be square-
root, linear, or Lorentzian-like, depending on the state that is
renormalized, the use of the adiabatic or non-adiabatic frame-
work as well as the IR-activity of the material. Table III gives
a summary of those behaviors.

A. Convergence proportional to the square-root
of δ (IR-inactive material in the adiabatic
approximation at the VBM/CBM)

For an IR-inactive material at the VBM or CBM in the
adiabatic framework, we can obtain the ZPR dependence on

TABLE III. Convergence behavior for iδ→ 0 at converged or extrapolated
q-point density. The only case where the renormalization diverges is for an
IR-active material at the VMB/CBM when the adiabatic approximation is
used. The relevant subsections are given in parentheses.

δ-convergence

Cases Adiabatic Non-adiabatic

IR-inactive
VBM/CBM

√
δ (V A) Lorentzian (V C 1)

Other δ (V B 1) δ (V B 1)

IR-active
VBM/CBM 1/

√
δ (V D) Lorentzian (V C 2)

Other δ (V B 2) δ (V B 2)

the (finite) δ value by analytically integrating Eq. (37),

ℜ


d3q
1

q2 + iδ
= 4π

 qc

0
dq

q4

q4 + δ2

= 4π
√
δ

 qc

0

dq
√
δ

q4

δ2

q4

δ2 + 1
. (42)

Carrying out the integration and expanding the result around√
δ

qc
= 0 yield

4πqc + 4πC
√
δ + O(δ), (43)

where C is a constant. This result matches the
√
δ behavior

observed in the numerical integration (see Eq. (38)), which is
presented at the bottom of Figure 4.

B. Convergence proportional to δ

1. IR-inactive materials in the adiabatic
and non-adiabatic approximations
at a non-extremal point

For IR-inactive materials, when considering a k-point
other than the VBM or CBM, the adiabatic equation can be
modeled as

ℜ
 qc

0
d3q

1
ε(q) + iδ

, (44)

where we have defined ε(q) = εk+q − εk.
Since the small iδ will only affect the integrand around

the pole at ε(q) = 0, we can determine the δ dependence of
this model ZPR by considering only a small range of energy η
around it. We can then re-write Eq. (44) as
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 η

−η
dEg(E) f (E), (45)

with g(E) , 
d3qδ(E − ε(q)) the density of states and

f (E) , 1
E + iδ

. (46)

We can make a Taylor expansion of the density of states
around E = 0 (since η is small),

g(E) = g(0) + g′(0)E + O(E2). (47)

The even terms in Eq. (47) will not contribute to the integral
sinceℜ f (E) is an odd function. Therefore, the leading term is
the first-order one. The integral can thus be rewritten as

δ

 η

−η

dE
δ

g′(0) E2

δ2

E2

δ2 + 1
= 2δg′(0)(η

δ
− tan−1(η

δ
)) . (48)

Expanding Eq. (48) around δ
η
= 0 yields

2g′(0)η − δg′(0)π, (49)

which is linear in δ.
In the non-adiabatic framework, the integral changes to

dE f (E + ω)g(E). (50)

Since this function has poles when E = −ω, we will now
integrate around this value −ω+η

−ω−η
dE f (E + ω)g(E). (51)

Substituting E + ω → u, we obtain η

−η
du f (u)g(u − ω). (52)

The density of states can again be Taylor expanded around−ω,
giving

g(u − ω) = g(−ω) + ug′(−ω) + O(u2). (53)

The same steps that led us from Eqs. (47)–(49) now yield

2g′(−ω)η − δg′(−ω)π, (54)

which is again linear in δ.
Thus, whether the adiabatic or the non-adiabatic approxi-

mation is used, the behavior of the ZPR of IR-inactive materials
for non-extremal eigenvalues is linear when δ → 0.

2. IR-active materials in the adiabatic
and non-adiabatic approximations
at a non-extremal point

For IR-active materials at non-extremal eigenvalues, we
can use a shifted parabola to model eigenenergy differences
(see Eq. (36)) and 1

q2 to model the |GKK |2. This yields
Eq. (B12) with an extra 1

q2 factor in the integrand, which leads
to Eq. (B19). From this starting point, the derivations presented
in Appendix B 3 show that the ZPR converges linearly with
δ in both the adiabatic and the non-adiabatic frameworks. In
practice, the value that is reached by the linear regime is very
high and tends to infinity at VBM or CBM.

C. δ convergence proportional to a Lorentzian

1. IR-inactive materials in the non-adiabatic
approximation at the VBM/CBM

When considering the non-adiabatic framework at the
VBM or CBM of an IR-inactive material, the ZPR convergence
behavior with respect to δ is

ℜ


d3q
1

q2 + ω + iδ
= 4πℜ

 qc

0
dq

q2

q2 + ω + iδ
, (55)

which yields

4πℜ
(
qc −
√
ω + iδ tan−1

( qc√
ω + iδ

))
. (56)

Plotting Eq. (56) as a function of δ reveals a Lorentzian-
like shape centered around δ = 0. This can also be seen in the
δ-dependence of the numerical integration of Eq. (55),

1
N3
q


Sqc

(q2 + ω)
(q2 + ω)2 + δ2 , (57)

where Sqc is a sphere of radius qc. This dependence is shown
at the bottom of Figure 3 for a cut-off radius qc = 0.5 and
ω = 0.01.

In practice, we also observe that non-adiabatic ZPR for
VBM/CBM of IR-inactive materials can be accurately fitted
by a Lorentzian function. We thus use this type of function to
extrapolate the ZPR at δ = 0.

2. IR-active materials in the non-adiabatic
approximation at the VBM/CBM

For IR-active materials, we get an extra 1
q2 factor in the

integrand of Eq. (55), which thus becomes

ℜ


d3q
1
q2

1
q2 + ω + iδ

= 4πℜ
 ∞

0
dq

1
q2 + ω + iδ

= 2πℜ
 ∞

−∞
dq

1
q2 + ω + iδ

. (58)

This integral can be performed by closing the contour of inte-
gration using a half-circle of infinite radius in the upper com-
plex plane (which does not contribute to the integral) and then
using the residue theorem. We obtain

2πℜ
 ∞

−∞
dq

1
q2 + ω + iδ

= 2π2 1
√
ω
�
1 + ( δ

ω
)2� 1

4

ℜe−
i
2 tan−1( δω )

= 2π2 1
√
ω
�
1 + ( δ

ω
)2� 1

4

cos
(1
2

tan−1� δ
ω

�)
. (59)

Plotting Eq. (59) reveals a Lorentzian-like shape cen-
tered around δ = 0. Accordingly, fitting the results using a
Lorentzian is also found to be a good approximation in practice
for IR-active materials.

D. Decreasing δ does not lead to convergence

The adiabatic ZPR for the VBM/CBM of an IR-active
material has already been shown to diverge with increasing q-
point sampling (see Subsection IV C). We now examine the
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δ-dependence of the ZPR, which has the form

ℜ


d3q
1

q2(q2 + iδ) = 4πℜ
 qc

0
dq

1
q2 + iδ

=
4π
√
δ

 qc

0

dq
√
δ

q2

δ

q4

δ2 + 1
. (60)

When qc/
√
δ → ∞, the integral in Eq. (60) converges

logarithmically to π

2
√

2
and we obtain

ℜ


d3q
1

q2(q2 + iδ) →
√

2π2

√
δ

. (61)

Therefore, Eq. (60) numerically diverges as 1√
δ

for small
δ. An example of this kind of divergence is given in the middle
right of Figure 9 in the supplementary material32 for the VBM
of β-AlN (IR-active) using the adiabatic equation.

VI. RESULTS ON DIFFERENT SEMICONDUCTORS

We will now examine five different semiconductors: two
of which are IR-inactive materials (diamond and silicon) and
three of which are IR-active materials (α-AlN, β-AlN, and
BN). Results are fully converged and parameter free (for
instance, iδ → 0 is used throughout). Also, in the case of IR-
active materials, only the non-adiabatic AHC theory is used
since, as outlined previously, the adiabatic theory breaks down
in this case.

We have used the local density approximation (LDA)
exchange-correlation functional, which is as good as general-
ized gradient approximation (GGA) functionals (or even bet-
ter) for the computation of dynamical properties, as shown
by He and coworkers.33 The implementation of the formalism
is done in ABINIT (v7.11),34 using a plane wave basis set

and norm-conserving pseudopotentials. For the computation
of phonon responses, we have used DFPT.35,36

Thermal expansion effects, that can be computed from
first principles using DFPT, see, e.g., Ref. 37, contribute only
little to the ZPR and temperature-dependence of the electronic
structure, as shown, e.g., in Figs. 4.5, 4.9, 4.12, and 4.13 of
Ref. 38.

A. IR-inactive materials

1. Diamond

Diamond is a metastable allotrope of carbon where the C
atoms are arranged into two interpenetrating face-centered cu-
bic lattices shifted along the body diagonal by 1

4
th of its length.

The space group associated with this spatial arrangement is
Fd3̄m (cubic, 227).

The pseudopotential was generated using the fhi98PP
code57 with a 1.5 atomic unit cut-off radius for pseudiza-
tion. The valence electrons of carbon that were treated
explicitly in our ab initio calculations are the 2s22p23d0 or-
bitals.

Careful convergence studies (error below 0.5 m hartree
per atom on the total energy) led to the use of a 6 × 6 × 6 Γ-
centered Monkhorst-Pack k-point sampling58 of the BZ and
an energy cutoff of 30 hartree for the plane wave basis set.
The Perdew and Zunger parametrization of LDA59 was used.
The relaxed lattice parameter is calculated to be 6.652 bohrs,
1.3% below the experimental value of 6.740 bohrs, measured
at room temperature54 (see Table IV for more information on
the structural properties).

The electronic band structure was computed at the DFT
level and gave a direct bandgap at Γ of 5.67 eV and an indirect
Γ − 0.727X bandgap of 4.25 eV, intrinsically below the exper-
imental bandgap of 5.48 eV at 0 K60 (see Table V). The phonon

TABLE IV. Convergence parameters for the different compounds studied. The space groups are given in
Hermann-Mauguin notation with the number in bracket being the crystallographic index number in international
tables. The k-points sampling are homogeneous and Γ-centered. All the pseudopotentials in this work use the
LDA exchange-correlation functional.

Lattice parameters (bohrs)

Space
group

Ecut
(hartree) k-grid

This work
(LDA)

Other DFT
(LDA)

Other DFT
(GGA)

Experiment
(300 K)

α-AlN P63mc
[186]

35 6× 6× 6 5.783/9.255 5.820/9.33539 5.913/9.48140 5.881/9.41541

5.880/9.40942

5.877/9.41143

β-AlN F4̄3m
[216]

35 6× 6× 6 8.130 8.20539 8.31740 8.25844

8.16445 8.30346 8.27742

c-BN F4̄3m
[216]

35 8× 8× 8 6.746 6.75447 6.85240 6.83348

6.75249 6.83150

6.81451

6.83352

C-d Fd3̄m
[227]

30 6× 6× 6 6.652 6.6528 6.75653 6.74054

Si Fd3̄m
[227]

20 6× 6× 6 10.170 10.22355 10.33540 10.2656
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TABLE V. The direct and indirect (when relevant) DFT electronic bandgaps are compared with other references
(theoretical or experimental). The star (*) sign denotes low temperature experiment (below 10 K) and no star
means room temperature.

Direct gap (eV) Indirect gap (eV)

Other DFT Other DFT
This work

LDA LDA GGA Expt.
This work

LDA LDA GGA Expt.

α-AlN 4.691 4.261 4.05640 6.28∗62

4.363 6.28∗64

4.4139 6.344

4.5265

4.7446

β-AlN 4.677 4.266 3.99540 3.308 3.30640

4.263 3.263

4.3539 3.261

4.7546

c-BN 8.890 8.667 14.550 4.446 4.449 4.45040 6.468

8.752 5.1852 6.469

8.849

C-d 5.670 5.57140 7.3∗60 4.250 4.113∗40 5.48∗60

4.12∗53

Si 2.567 2.5270 2.557∗40 3.378∗71 0.463 0.4570 0.612∗40 1.17∗71

frequencies are slightly overestimated (≤4%) with respect to
experiment (see Table VI).

For the calculations of the ZPR, we used 10 bands to
describe the active space in Eqs. (15) and (17).

The convergence studies with respect to q-point integra-
tion for the band edges and the direct bandgap of diamond are
shown in Figure 6(a), where the densest grid used is a 125
× 125 × 125 q-grid (43 680 q-points in the irreducible
Brillouin-Zone (IBZ)). The Γc15 state is not the bottom of the
conduction band, and therefore, there are other states in the
BZ with close energy. This leads to numerical instabilities as
the denominator of adiabatic Eq. (15) can diverge for small
iδ. To circumvent the issue, we first extrapolated the ZPR to
δ = 0 using linear fits and then converged this extrapolated
value with respect to q-point density. This convergence can
be found in Figure 6(b) and shows that large q-point grid is
required to enter the expected linear regime (see Section V B
for more information). The extrapolated ZPR is found to be
−277.61 meV.

The VBM (Γv25) ZPR converges linearly with q-point den-
sity and can thus be extrapolated to infinitely dense q-grid for
each value of iδ considered. Then, it can be smoothly extrapo-
lated to δ = 0 using a square-root fit, which yields 160.96 meV.
The adiabatic direct bandgap ZPR of diamond is thus found to
be −438.6 meV.

For the non-adiabatic direct bandgap of diamond, the
convergence can be found in Figure 7 and shows that the Γc15
state converges in a similar way than in the adiabatic case,
while the VBM has a flat convergence with respect to q-point
density and a Lorentzian behavior when δ → 0. The fitted
Lorentzian has three parameters: a multiplicative constant A,
the full width at half maximum (FWHM) Γ, and an additive
constant B,

A
Γ

2π

( Γ2 )2 + x2
+ B, (62)

where here A = 10.11, Γ = 0.55, and B = 121.90. The extrap-
olated ZPRs are −283.23 meV and 133.57 meV for the Γc15 and
Γv25 states, respectively. This leads to a −415.8 meV renormal-
ization of the direct bandgap due to electron-phonon interac-
tion at 0 K.

TABLE VI. Phonon frequencies at different high symmetry points. All
the DFT calculations (this work and references) use the LDA exchange-
correlation functional.

Phonon frequency (cm−1)

Points This work Other DFT Experiment

α-AlN ΓA1(TO) 609 61982 61483

ΓE1(TO) 678 67782 67383

ΓA1(LO) 893 89382 89383

ΓE1(LO) 924 91882 91683

β-AlN ΓTO 661 66282

ΓLO 907 90782

c-BN ΓTO 1068 104082 105684

ΓLO 1299 128582 130484

C-d ΓLTO 1330 132485 1331,86 133287

XTA 796 80085 803,86 80787

XTO 1098 109485 1077,86 107287

XLAO 1224 122885 1194,86 118487

LTA 555 56185 55286,88

LLA 1076 108085 103586,88

LTO 1235 123185 121086,88

LLO 1274 127585 124286,88

Si ΓLTO 515 51789 51788

XTA 136 14689 15088

XLA 409 41489 41088

XTO 460 46689 46388

XLO 409 41489 41088

LTA 105 11189 11488

LLA 376 37889 37888

LTO 490 49489 48788

LLO 411 41989 41788
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FIG. 6. Convergence study for the (a) q-point grid density and (b) iδ parameter for the adiabatic direct bandgap ZPR of diamond. The bottom figures are the
difference of the two figures above them. The adiabatic ZPR of the direct bandgap of diamond is −438.6 meV.

The convergences of the CBM for diamond are given in
Figures 1 and 2 of the supplementary material32 using the
adiabatic and non-adiabatic equations, respectively. For the
adiabatic case, the fact that the q-convergence is not smooth
for relatively small iδ is attributed to the finite k + q sampling.

Indeed, when the renormalization is computed at one of the
6 symmetry equivalent CBM k-points, the k + q sampling is
such that the other five equivalent k-points are not exactly on
the grid. The extrapolated ZPR of the CBM state is
−219.24 meV using a square root δ-fit for the adiabatic equa-

FIG. 7. Convergence study for the (a) q-point grid density and (b) iδ parameter for the non-adiabatic direct bandgap ZPR of diamond. The bottom figures are
the difference of the two figures above them. The non-adiabatic ZPR of the direct bandgap of diamond is −415.8 meV.
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TABLE VII. ZPR and adiabatic broadening for the different compounds studied at 0 K. The two experimental results for the direct bandgap renormalization
of diamond from Ref. 73 are extracted using first or second-derivative line-shape analysis. The two experimental ZPRs for the indirect bandgap of silicon from
Ref. 60 are obtained using a mass derivative of the gap and from linear extrapolation to 0 K.

ZPR (meV) (dGap/dT )T→∞ (meV/K) Broadening (meV)

Compounds Gap Adiabatic Non-adiabatic Experimental Non-adiabatic Experimental
Adiabatic

limit Experimental

α-AlN Γ−Γ −377.7 −23990 −0.772 −0.8360,76,90 117
β-AlN Γ−Γ −413.6 −0.763 118

Γ−X −334.4 −0.521 108
c-BN Γ−Γ −502.0 −0.639 315

Γ−X −405.6 −0.521 136
C Γ−Γ −438.6 −415.8 −320,73 −45073 −0.504 −0.60,73 −0.6973 180

Γ−0.727X −379.3 −329.8 −364,60 −41074 −0.435 −0.5460 63
Si Γ−Γ −47.1 −42.1 −0.147 31

Γ−0.848X −64.3 −56.2 −53,92 −62,60 −6460 −0.255 −0.3279,80 22 ∼3581

tion and −196.22 meV using a Lorentzian δ-fit for the non-
adiabatic equation (see Table VII for more information). The
indirect bandgap ZPR of diamond is thus found to be
−380.20 meV and −329.79 meV in the adiabatic and the non-
adiabatic approximations, respectively.

The temperature dependence of the direct and indirect
bandgaps is reported in Figure 8 for a 75 × 75 × 75 q-grid and
shows that the slope at high temperature for the non-adiabatic
renormalization with a Lorentzian extrapolation to δ = 0 is
−0.504 meV/K for the direct bandgap and −0.435 meV/K
for the indirect one. The phonon-induced broadening

1
2τ(adiabat ic,RI A)

nk
of Eq. (19) is calculated (with a 75 × 75

× 75 q-grid) to be 180 meV and 63 meV for the direct and
indirect bandgaps of diamond at 0 K, respectively.

Our non-adiabatic result of −329.79 meV for the indirect
bandgap ZPR of diamond underestimates the experimental one
(−364 meV60) by 9.4%. Since our calculation neglects several
effects like anharmonicity, non-rigid-ion terms, or many-body
GW corrections, we are surprisingly close to the experimental
value. Actually, depending on the extrapolation scheme, the
same experimental data can give widely varying ZPR, ranging
from−290 to−510 meV for the indirect bandgap of diamond.74

The most accurate extrapolation scheme based on 4th-order
phonon dispersion yields an experimental ZPR of−410 meV.74

Our non-adiabatic result at the DFT level would underestimate
the experimental one by 20% in that case, closer to what is
expected from this level of theory.

The measured slope at high temperature for the indi-
rect bandgap of diamond is −0.54 meV/K.60 The measured
slope at high temperature for the direct bandgap is −0.60 or
−0.69 meV/K,73 depending on the analysis.75 Our theoretical
values for the indirect and direct bandgaps underestimate the
experimental ones by 19% and 16%, respectively. We hypoth-
esize that this underestimation of the slope at high temperature
for the direct bandgap of diamond is due to the underestimation
of the ZPR within DFT. Indeed, as discussed in Ref. 9, the
correction brought by GW to the ZPR is quite substantial for
the direct bandgap (−209 meV). Since the ZPR is directly
linked with the slope at high temperature, it is not surprising
that we witness such an underestimation with respect to the
experimental results. We did not compute such GW correction
for ZPR of the indirect bandgap of diamond but expect from
the results of Figure 8 to have a smaller correction.

It is worthwhile to note that the complete lack of experi-
mental data for low temperature (T < 100 K) and the relatively
large error bars (up to ±10 meV) between 200 K and 350 K
generate an uncertainty of several meV on the experimental
ZPR.76 This calls for new, reliable, and wide range temperature

FIG. 8. Temperature dependence of the
diamond gaps using the non-adiabatic
temperature dependence on a 75×75
×75 q-grid with Lorentzian extrapo-
lation to vanishing imaginary param-
eter δ. The slopes at high tempera-
ture are −0.504 meV/K for the direct
gap of diamond and −0.435 meV/K
for the indirect one. The experimental
points from the works of Clark et al.72

and Logothetidis et al.73 (using first or
second-derivative line-shape analysis)
are shifted so that the lowest tempera-
ture point matches the theoretical line.
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FIG. 9. Electronic band structure (plain
black line), non-adiabatic renormaliza-
tion (dashed line), and phonon-induced
broadening (width around the dashed
line) at 0 K using a 75×75×75 q-point
grid and δ→ 0 for diamond, where the
dots are the actual renormalization cal-
culation. A spline function is used to
connect the renormalization dots.

measurement of the evolution of the bandgap with temperature
in diamond. We hope that our theoretical study will stimulate
such experimental interest.

Finally, the non-adiabatically renormalized electronic
band structure of diamond at 0 K along the L − Γ − X high
symmetry line is shown in Figure 9 for a 75 × 75 × 75 q-
point grid and a δ extrapolated to zero either linearly (for non-
extremal eigenvalues) or with a Lorentzian (for the VBM and
CBM).

2. Silicon

Silicon is a tetravalent metalloid widely used in integrated
circuits and semiconductor electronics. It has a diamond cubic
crystal structure with a Fd3̄m (cubic, 227) space group.

The pseudopotential used for silicon was generated us-
ing the fhi98PP code57 with a 1.0247 a.u. cut-off radius for
pseudization. The pseudopotential is a Troullier-Martins with
the Perdew/Wang77 parametrization of LDA. The valence elec-
trons of silicon, treated explicitly in the ab initio calculations,
are the 3s23p2 orbitals.

Careful convergence checks (error below 0.5 m hartree
per atom on the total energy) lead to the use of a 6 × 6 × 6 Γ-
centered Monkhorst-Pack k-point sampling58 of the BZ and
an energy cutoff of 20 hartree for the plane wave basis set.
The relaxed lattice parameter is calculated to be 10.170 bohrs,
0.9% below the experimental value, measured at room temper-
ature56 (see Table IV for more information on the structural
properties).

The electronic band structure was computed at the DFT
level and gave a direct gap at Γ of 2.567 eV and an indirect
Γ − 0.848X gap of 0.463 eV, below the experimental values
of 3.378 and 1.17 eV at ∼10 K71 for the direct and indirect
gaps, respectively (see Table V). Many ab initio simulations

have been performed on silicon and give similar values to
ours. For example, Ref. 70 got a direct bandgap of 2.52 eV
and an indirect one of 0.45 eV, also using the ABINIT soft-
ware. The phonon frequencies are slightly underestimated
with respect to experiment apart for the 136 cm−1 XTA mode
that underestimates quite strongly the 150 cm−1 one (see
Table VI).

For the calculations of the ZPR, we used 10 bands to
describe the active space in Eqs. (15) and (17). The conver-
gence of the direct bandgaps of silicon is shown in Figure 3
of the supplementary material32 for the adiabatic equation and
gives a linearly δ-extrapolated ZPR of −6.23 meV for the Γc15
state and a square-root δ-extrapolated ZPR of 40.87 meV for
the VBM, thus leading to an adiabatic ZPR of −47.1 meV for
the direct bandgap. The non-adiabatic ZPR (see Figure 4 of
the supplementary material32) is calculated to be −7.36 meV
for the Γc15 state and 34.87 meV for the VBM. The non-
adiabatic bandgap ZPR is therefore slightly smaller than the
adiabatic one with a value of −42.1 meV. The densest grid
used is a 100 × 100 × 100 q-grid (22 776 q-points in the IBZ).
The convergences of the adiabatic and non-adiabatic indirect
bandgap of silicon are shown in Figures 5 and 6 of the sup-
plementary material,32 respectively. The adiabatic ZPRs are
−23.28 meV for the CBM and 40.87 meV for the VBM, leading
to −64.3 meV renormalization of the gap. The non-adiabatic
ZPRs are −21.43 meV for the CBM and 34.75 meV for the
VBM, leading to a smaller −56.2 meV renormalization of
the gap.

Such values can be compared with those of Ref. 55: −57
and −22 meV for the indirect and direct bandgap renormaliza-
tions of silicon. These results were obtained using a 4 × 4 × 4
supercell within the adiabatic AHC framework. Their results
match well those we obtained with the same framework and
q-grid: −52 and −29 meV for the indirect and direct bandgaps,

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

81.240.19.109 On: Sat, 01 Aug 2015 18:35:15



102813-16 Poncé et al. J. Chem. Phys. 143, 102813 (2015)

FIG. 10. Adiabatic temperature depen-
dence of the silicon gaps using a 75
×75×75 q-grid and a Lorentzian δ-
extrapolation. The slopes at high tem-
perature are −0.147 meV/K for the di-
rect gap of silicon and −0.255 meV/K
for the indirect one. The experimen-
tal data from Ref. 79 (black circles)
and Ref. 80 (blue diamond) are shifted
so that the lowest temperature point
matches the theoretical line.

respectively (as can also be seen in Figures 3 and 5 of the
supplementary material32). Earlier, Monserrat and Needs78 had
obtained a ZPR of the indirect bandgap of silicon of −60 meV
using a 5 × 5 × 5 supercell, again in fairly good agreement with
our results.

The non-adiabatic temperature dependence of direct and
indirect Γ − 0.848X bandgaps obtained with a 75 × 75 × 75 q-
grid and a Lorentzian δ-extrapolation is reported in Figure 10
and gives slopes at high temperature of −0.147 and −0.255
meV/K, respectively.

The experimental ZPRs of the silicon indirect gap are
−62 meV (obtained from mass derivative of the gap) and
−64 meV (obtained from linear extrapolation to 0 K60). The
measured linear slope at high temperature is−0.32 meV/K.79,80

Those experimental results are larger than the theoretical ones
we obtained using the non-adiabatic AHC equation, as ex-
pected for DFT calculations. This is related to the underesti-
mation of the ZPR by DFT with respect to GW calculations.

Additionally, we present in Figure 11 the phonon-induced
broadening of the direct and indirect gaps of silicon with
temperature. The direct and indirect gap broadenings at 0 K
are computed to be 31 meV and 23 meV, respectively. The
experimental broadening, measured with spectroscopic ellip-
sometry in Ref. 81 (red dots), is attributed to the broadening of
the E1 = Λ

v
3 − Λ

c
1 direct transition with temperature. In Ref. 81,

it is also mentioned that the measured values at higher temper-

ature (black dots) are difficult to attribute to the broadening of
one particular transition since the E1 gap is nearly degenerate
with the E′0 = Γ

v
25′ − Γ

c
15 transition. Also, since the ellipsome-

try measurement is a spectroscopic measurement, it can only
probe direct transitions. In consequence, we should compare
the broadening results (both black and red dots) with the silicon
red line (direct-gap E′0).

Finally, the non-adiabatically renormalized electronic
band structure of silicon at 0 K along the L − Γ − X high
symmetry line is shown in Figure 12 for a 75 × 75 × 75 q-point
grid and δ extrapolated to zero.

B. IR-active materials

1. Aluminum nitride

Aluminum nitride in the wurtzite structure (α-AlN) has
one of the widest gaps among nitride semiconductors. It has
a P63mc (hexagonal, 186) space group. The zincblende form
of aluminum nitride (β-AlN) has an F4̄3 m (cubic, 216) space
group and has been reported to be experimentally metastable.42

We will study the temperature-dependence properties of these
two phases using the non-adiabatic framework.

The aluminum and nitrogen pseudopotentials were gener-
ated using the fhi98PP code57 with a 1.0247 a.u. cut-off
radius for pseudization and a maximum angular channel of

FIG. 11. Temperature dependence of
the silicon gaps adiabatic broadening
using a 75×75×75 q-grid. The exper-
imental data (red and black dots) are
from Ref. 81.
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FIG. 12. Electronic band structure
(plain black line), non-adiabatic renor-
malization (dashed line), and phonon-
induced broadening (width around the
dashed line) at 0 K with a 75×75
×75 q-point grid and δ→ 0 for silicon,
where the dots are the actual renormal-
ization calculation. A spline function
is used to connect the renormalization
dots.

l = 2. Both are Troullier-Martins pseudopotentials that use
the Perdew/Wang77 parametrization of the LDA. The valence
electrons of aluminum and nitrogen treated explicitly in the
calculations are the 3s23p1 and 2s22p3 orbitals, respectively.

Convergence checks (error below 0.5 m hartree per atom
on the total energy) lead to the use of a 6 × 6 × 6 Γ-centered
Monkhorst-Pack k-point sampling58 of the BZ and an energy
cutoff of 35 hartree for the plane wave basis set. We used 18
bands to describe the active space in Eqs. (15) and (17).

The relaxed lattice parameters are found to be a = 5.783
and c = 9.255 bohrs forα-AlN and a = 8.130 bohrs for β-AlN.
These values are at maximum 2.3% below the experimental
ones (see Table IV).

For α-AlN, we find a direct gap at Γ of 4.691 eV. This is
well above the 4.056 eV gap computed within the Materials
Project using GGA40 but well in the range of other LDA gaps
(see Table V). These DFT values naturally underestimate the
experimental gap of 6.28 eV at 5 K.62,64 We obtain for the
zincblende β-AlN an indirect Γ − X bandgap of 3.308 eV,
almost identical to the Materials Project value (see Table V).
The value we obtained for the direct gap at Γ of 4.677 eV is a
bit above most LDA values reported in the table. However, one
must consider that the 4.2 eV LDA direct gap calculation per-
formed in Ref. 63 is done at the experimental lattice parameter,
in contrast to ours. Our phonon frequencies are within 1% of
the experimental ones for α-AlN (see Table VI). Note that no
experimental values were found for the metastable zincblende
β-AlN. Still, our results agree very well with those of another
DFT study, as presented in Table VI.

The q-point convergence for the adiabatic ZPR of the
direct gap of α-AlN is shown in Figure 7 of the supplementary
material.32 It diverges at dense q-grid, as expected since AlN is
an IR-active material. The non-adiabatic direct bandgap ZPR
shown in Figure 8 of the supplementary material32 converges

linearly with the q-point density and has a Lorentzian behavior
for δ → 0. We thus find a non-adiabatic ZPR of −183.5 meV
for the CBM and of 194.2 meV for the VBM, leading to a ZPR
of the direct bandgap of α-AlN of −377.7 meV. The densest
q-grid used is a 34 × 34 × 34 grid (2052 q-points in the IBZ).

For the same reason than α-AlN, the β-AlN adiabatic
ZPR diverges, as shown in Figures 9 and 11 of the supple-
mentary material.32 The non-adiabatic direct bandgap ZPR
shown in Figure 10 of the supplementary material32 converges
linearly with the q-point density and the δ → 0 behavior can
be fitted by a line or a Lorentzian, as appropriate for the
state studied. We obtain a ZPR of −187.54 meV for the CBM
and of 226.08 meV for the VBM, thus leading to a direct
bandgap ZPR of −413.62 meV for β-AlN. The non-adiabatic
indirect bandgap ZPR of β-AlN is shown in Figure 12 of the
supplementary material32 and converges linearly with the q-
point density and has a Lorentzian behavior for δ → 0. The
extrapolation gives a ZPR of −108.36 meV for the CBM,
resulting in a −334.4 meV ZPR of the indirect bandgap of β-
AlN (see Table VII for more information). The densest q-grid
used is a 100 × 100 × 1000 grid (22 776 q-points in the IBZ).

The temperature dependence of the three gaps is reported
in Figures 13 and 14. Their slopes at high temperature are
found to be −0.772, −0.521, and −0.763 meV/K for the direct
gap of α-AlN, the indirect bandgap of β-AlN, and the direct
bandgap of β-AlN, respectively.

The phonon-induced broadening is found to be 117 meV
for the direct bandgap of α-AlN using a 34 × 34 × 34 q-grid.
The broadening of the direct and indirect bandgaps of β-
AlN at 0 K is 118 meV and 108 meV, respectively, for a
75 × 75 × 75 q-grid.

The experimental ZPR for α-AlN has been obtained by
linearly extrapolating to 0 K the change of the direct bandgap
with temperature and yields a value of −239 meV, with a
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FIG. 13. Non-adiabatic temperature
dependence of the α-AlN gaps using
a 34×34×34 q-grid and a Lorentzian
extrapolation to δ = 0. The slope at high
temperature is −0.772 meV/K for the
direct gap of α-AlN. The experimen-
tal data from Ref. 90 (black circles)
and Ref. 91 (blue diamond) are shifted
so that the lowest temperature point
matches the theoretical line.

slope at high temperature of −0.83 meV/K,60,76,90 in relatively
good agreement with our −0.772 meV/K value. The obvious
disagreement with our theoretical value for the direct bandgap
ZPR (−369 meV versus −239 meV) can be attributed to the
fact that the experimental data set measured by Brunner et al.90

is very scarce and within a narrow temperature range (4-
298 K). As pointed out by Pässler76 for this compounds: “this
illustrates the great importance of extending experimental
measurements in wide bandgap materials far beyond room
temperature.”

Finally, we show in Figures 15 and 16 the non-adiabatically
renormalized electronic band structure at 0 K along the highest
symmetry path Γ −M for α-AlN and along the L − Γ − X path
of β-AlN. The thickness of the lines is associated with the
lifetime of the electronic state computed with Eq. (19).

2. Boron nitride

BN exists in various crystalline forms. Its most stable
phase, under normal conditions, is a hexagonal layered struc-
ture. The cubic boron nitride (c-BN) has a zincblende structure
and is isoelectronic to diamond. We will only study the c-BN
polymorph here.

The boron and nitrogen pseudopotentials were generated
using the fhi98PP code57 with a 1.0247 a.u. cut-off radius
for pseudization and a maximum angular channel of l = 2.

Both of them are Troullier-Martins pseudopotentials that use
the Perdew/Wang77 parametrization of LDA. The valence elec-
trons of boron and nitrogen treated explicitly in the calculations
are the 2s22p1 and 2s22p3 orbitals, respectively.

Careful convergence checks (error below 0.5 m hartree per
atom on the total energy) lead to the use of an 8 × 8 × 8 Γ-
centered Monkhorst-Pack k-point sampling58 of the BZ and an
energy cutoff of 35 hartree for the plane wave basis set.

The relaxed lattice parameter is found to be 6.746 bohrs,
1.3% below the experimental value of 6.833 bohrs48 (see
Table IV for more information on the structural properties).

The electronic band structure was computed at the DFT
level and yields a direct gap at Γ of 8.890 eV and an indi-
rect Γ − X gap of 4.446 eV, below the experimental value
of 6.4 eV for the indirect gap at 300 K69 (see Table V).
The phonon frequencies are within 2% of the experimental
ones for c-BN (see Table VI). In the ZPR calculations, we
use 18 bands to describe the active space (see Eqs. (15)
and (17)).

The c-BN is also an IR-active material and therefore its
adiabatic ZPR diverge, as shown in Figures 16 and 14 of the
supplementary material.32 The non-adiabatic direct bandgap
ZPR shown in Figure 13 of the supplementary material32

converges linearly with the q-point density and the δ → 0
behavior can be fitted by a line or a Lorentzian, as appropriate
for the state studied. This yields a ZPR of −301.48 meV for

FIG. 14. Non-adiabatic temperature
dependence of the β-AlN gaps using a
75×75×75 q-grid and a Lorentzian ex-
trapolation to δ = 0. The slopes at high
temperature are −0.763 meV/K for the
direct gap of β-AlN and −0.521 meV/K
for the indirect one. No experimental
data were found in the literature.
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FIG. 15. Electronic band structure (plain black line), non-adiabatic renormalization (dashed line), and phonon-induced broadening (width around the dashed
line) at 0 K with a 34×34×34 q-point grid and δ→ 0 for α-AlN, where the dots are the actual renormalization calculation. A spline function is used to connect
the renormalization dots.

the Γc1 state and of 200.5 meV for the VBM, thus leading
to a direct bandgap ZPR of −502.0 meV for c-BN. The
non-adiabatic indirect bandgap ZPR of c-BN is shown in
Figure 15 of the supplementary material32 and converges
linearly with the q-point density and has a Lorentzian behavior
for δ → 0. This yields a ZPR of −205.08 meV for the CBM,

thus leading to an indirect bandgap ZPR of −405.6 meV for
c-BN (see Table VII for more information). The densest q-
grid used is a 100 × 100 × 1000 grid (22 776 q-points in the
IBZ).

The non-adiabatic temperature dependence of direct and
indirect gaps is reported in Figure 17 for a 75 × 75 × 75 q-grid

FIG. 16. Electronic band structure
(plain black line), non-adiabatic renor-
malization (dashed line), and phonon-
induced broadening (width around the
dashed line) at 0 K using a 75×75
×75 q-point grid and δ→ 0 for β-AlN,
where the dots are the actual renormal-
ization calculation. A spline function
is used to connect the renormalization
dots.
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FIG. 17. Non-adiabatic temperature
dependence of the c-BN gaps using a
75×75×75 q-grid and a Lorentzian ex-
trapolation to δ = 0. The slopes at high
temperature are −0.639 meV/K for the
direct gap of c-BN and −0.521 meV/K
for the indirect one. No experimental
data were found in the literature.

FIG. 18. Electronic band structure
(plain black line), non-adiabatic renor-
malization (dashed line), and phonon-
induced broadening (width around the
dashed line) at 0 K using a 75×75
×75 q-point grid and δ→ 0 for β-AlN,
where the dots are the actual renormal-
ization calculation. A spline function
is used to connect the renormalization
dots.

with extrapolation to δ = 0 and gives slopes at high tempera-
ture of −0.639 and −0.521 meV/K, respectively. The phonon-
induced broadening is calculated to be 315 meV and 136 meV
for the direct and indirect bandgaps of c-BN at 0 K, respec-
tively, using a 75 × 75 × 75 q-grid.

Finally, the non-adiabatic renormalized electronic band
structure of c-BN at 0 K along the L − Γ − X high-symmetry
line is shown in Figure 18 for a 75 × 75 × 75 q-point grid and
δ → 0.

VII. CONCLUSIONS

In the present work, we demonstrated that electron-phonon
renormalization of eigenenergies within the adiabatic AHC
framework diverges in IR-inactive materials due to the pres-
ence of a residual Born effective charge in ab initio calculations
stemming from the finite k-point sampling of the BZ. After

proposing a solution to this issue, we analyze theoretically
the adiabatic and non-adiabatic convergences with q-point
sampling and numerical broadening parameter iδ, depending
on the IR activity of the materials, taking into account whether
the state renormalized is at band extrema or elsewhere. We
demonstrate that unlike the adiabatic AHC formalism, the
non-adiabatic AHC formalism has no divergence problem
for IR-active materials and should therefore be used in these
cases.

We believe that such breakdown of the adiabatic theory is
not an artifact of the perturbative expansion of DFPT but should
also be observed in the FP and MD cases. Indeed, in such cases,
the electric field associated with any IR-active (LO) phonon
mode present in IR-active materials will induce a spatially
extended linear potential change. For sufficiently large super-
cells, pathological phenomena will appear. In particular, it is
well established that such linear potential change has to be
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dealt carefully, with issues related to cross convergence of the
strength of the electric field and sampling of wave vectors (or
size of supercell).93–95

We then use our analysis of the convergence behavior
of the renormalization to devise a systematic procedure to
converge the ZPR and apply it to five semiconductors/insulators
(diamond, silicon, and the α and β phases of aluminum
nitride and boron nitride). For these materials, we present
the non-adiabatic renormalized electronic band structure (at
the density functional theory level) due to electron-phonon
coupling (see Eqs. (16) and (17)) as well as the phonon induced
lifetime in the adiabatic limit (see Eq. (19)). We also obtain the
temperature dependence of the direct and indirect bandgaps
of these materials and compare them with experiment when
available.

We find that the non-adiabatic ZPR at the DFT level
systematically underestimates the experimental results (by
less than 10%), except in α-AlN, where the theoretical value
is larger than the experimental value of Ref. 90. The latter
observation raises doubts about the accuracy of the experi-
mental result in that case, where the experimental ZPR was
obtained by linear extrapolation to 0 K of gaps within a
very limited temperature range (4-298 K, where the linear
regime was not yet achieved). We hope that our work will
motivate experimental studies relying on wider temperature
ranges for the estimation of the ZPR. We also think that the
present approach might be useful in the future to compute more
evolved temperature-dependent properties, such as optical
properties.
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APPENDIX A: DERIVATION
OF THE RENORMALIZATION FACTOR
1. Minimization of the variational second-order
electronic energy

The variational second-order electronic energy without
non-linear core correction can be written as (see Eq. (60) of
Ref. 31)

E(2)
−q,q =

Ω0

(2π)3

BZ

dk
occ
n

sn
(⟨u(1)

nk,q|H (0)
k+q,k+q − ε

(0)
nk|u(1)

nk,q⟩ + ⟨u(1)
nk,q|v (1)ext,k+q,k|u(0)

nk⟩ + ⟨u(0)
nk|v (1)ext,k,k+q|u(1)

nk,q⟩

+ ⟨u(0)
nk|v (2)ext,k,k|u(0)

nk⟩
)
+

1
2


Ω0

d2(nεxc)
dn2

����n(0)(r)
|n(1)

q (r)|2dr + 2πΩ0


G,0

|n(1)
q (G)|2

|q +G|2 + n(1)∗
q (G = 0)2π

q
w
(1)
q

+ n(1)
q (G = 0)2π

q
w
(1)∗
q + 2πΩ0

|n(1)
q (G = 0)|2

q2 , (A1)

where we follow the notation of Ref. 31, i.e., the superscripts
(0) and (1) refer to the unperturbed and first-order perturbation
(here the nucleus motion) of the periodic part of the wave-
function, sn is the spin degeneracy factor, v (1)

ext,k+q,k is the first-
order perturbed potential external to the electronic system that
includes the ionic potential

v
(1)
ext,k+q,k = v

(1)
sep,k+q,k + v̄

(1)
loc,q, (A2)

and εxc is the exchange-correlation energy per electron

d2(nεxc)
dn2

����n(0)
=

dvxc
dn

����n(0)
. (A3)

The second-order change of the nonlocal potential v (2)sep,k,k is
given in Eq. (54) of Ref. 31.

The first-order change of the local potential of Eq. (24) for
G = 0 can be written as

lim
q→0

v̄
(1)
loc,q(0) =

4π
Ω0

1
q
w
(1)
q , (A4)

with

w
(1)
q = −i

qα
q

e−iq·τκ
(
− Zκ +

q2

4π
Cκ +O(q4)) . (A5)

To write Eq. (A1) in a more compact form, we define the
following vectors:

xi , ⟨G|u(1)
nk,q⟩, (A6)

ui , snwnk⟨G|u(0)
nk⟩, (A7)
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wi , snwnk⟨G|v (1)
ext,k+q,k|u(0)

nk⟩, (A8)

where wnk is the weight of the k-point (which is zero for unoc-
cupied states) and where the index i stands for the combined
plane wave component G, band index n, and wave-vector k
indices. It will later be useful to note that

u†x =
Ω0

(2π)3

BZ

dk
occ
n

s⟨u(0)
nk|u(1)

nk,q⟩ =
Ω0

2
n(1)

q (G = 0). (A9)

In addition, we define the following scalars:

a ,
8π
Ω0

1
q2 , (A10)

b ,
4π
Ω0q

w
(1)
q , (A11)

c ,
Ω0

(2π)3

BZ

dk
occ
n

sn⟨u(0)
nk|v (2)ext,k,k|u(0)

nk⟩. (A12)

Finally, we define a matrix A such that

x†Ax ,
Ω0

(2π)3

BZ

dk
occ
n

sn⟨u(1)
nk,q|H (0)

k+q,k+q

− ε(0)
nk|u(1)

nk,q⟩ +
1
2


Ω0

d2(nεxc)
dn2

����n(0)(r)
|n(1)

q (r)|2dr

+ 2πΩ0


G,0

|n(1)
q (G)|2

|q +G|2 . (A13)

Using the above definitions (Eqs. (A6)-(A8) and (A10)-(A13)),
Eq. (A1) can be re-expressed in short-hand notation

E(2)
−q,q = x†Ax + a(u†x)(x†u)

+ (bx†u + x†w + (c.c.)) + c. (A14)

The physical value of the first-order perturbed periodic
part of the wavefunction x is the one that minimizes E(2)

−q,q (we
will refer to it as x1),

δE(2)
−q,q = ({δx†1(Ax1 + (b + a(u†x1))u + w)} + (c.c.))
= 0. (A15)

The real part of the quantity between curly brackets is therefore
zero

ℜ{δx†1(Ax1 + (b + a(u†x1))u + w)} = 0. (A16)

For the preceding relation to hold for any δx, the quantity in
parenthesis () must be zero,

Ax1 + (b + a(u†x1))u + w = 0, (A17)

which leads to

x1 = −(b + a(u†x1))A−1u − A−1w. (A18)

We define

x1 , x1a + x1b, (A19)

where

x1a , −A−1w, (A20)

and we are left with

x1b = −(b + a(u†(x1a + x1b)))A−1u. (A21)
By defining

b′ = b + a(u†x1a), (A22)

Eq. (A21) becomes

x1b = −(b′ + a(u†x1b))A−1u. (A23)

By multiplying the preceding equation by u† and isolating
u†x1b, we obtain

u†x1b =
−b′u†A−1u

1 + a(u†A−1u) . (A24)

Substituting this result back in Eq. (A23), we obtain x1b,

x1b =
−b′

1 + a(u†A−1u)A−1u (A25)

and, using Eqs. (A19), (A20), and (A22), we finally have

x1 = −A−1w +
−b + a(u†A−1w)
1 + a(u†A−1u) A−1u. (A26)

Substituting Eq. (A17) into Eq. (A14), we obtain the value of
E(2)
−q,q at the minimum x1,

Ẽ(2)
−q,q , b∗u†x1 + w†x1 + c. (A27)

Then, substituting Eq. (A26) into Eq. (A27), we finally
obtain

Ẽ(2)
−q,q = −w†A−1w + c +

(−bw†A−1u + (c.c.))
1 + au†A−1u

+
−|b|2u†A−1u + a|w†A−1u|2

1 + au†A−1u
. (A28)

2. Macroscopic dielectric constant

From Eq. (B3) of Ref. 31 and Eq. (A9), we can deduce
that the second-derivative of the total energy with respect to
a monochromatic electric field of wavevector q located inside
the first BZ is

Ee f (2)
−q,q =

Ω0

(2π)3

BZ

dk
occ
n

sn
(⟨u(1)

nk,q|H (0)
k+q,k+q − ε

(0)
nk|u(1)

nk,q⟩ + ⟨u(1)
nk,q|u(0)

nk⟩ + ⟨u(0)
nk|u(1)

nk,q⟩
)
+ 2πΩ0

|n(1)
q (G = 0)|2

q2

+
1
2


Ω0

d2(nεxc)
dn2

����n(0)(r)
|n(1)

q (r)|2dr + 2πΩ0


G,0

|n(1)
q (G)|2

|q +G|2 = x†Ax + x†u + u†x + a(u†x)(x†u), (A29)
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where we have used the short-hand notation defined before. In
the same spirit as Eq. (A15), we can find the value of x that
minimizes Eq. (A29) (that we will call x2) and deduce

Ax2 + a(u†x2)u + u = 0, (A30)

which gives

x2 = (−a(u†x2) − 1)A−1u. (A31)

Multiplying Eq. (A30) by u† and isolating x2 allows us to obtain

x2 = −
A−1u

1 + a(u†A−1u) . (A32)

Substituting Eq. (A30) and then Eq. (A32) into Eq. (A29), we
obtain the value of Ee f (2)

−q,q at the minimum x2,

Ẽe f (2)
−q,q , u†x2 = −

u†A−1u
1 + a(u†A−1u) . (A33)

We can also define a total energy where the divergent
G = 0 hartree contribution has been removed. The resulting
term is analytic

Ee f ,an(2)
−q,q = x†Ax + x†u + u†x (A34)

= u†x + x†(Ax + u). (A35)

The location x3 of the minimum of Ee f ,an(2)
−q,q can be obtained

in a similar way to Eq. (A32),

Ax3 + u = 0⇒ x3 = A−1u. (A36)

Substituting Eq. (A36) into Eq. (A34), we obtain the value of
Ee f ,an(2)
−q,q at the minimum x3,

Ẽe f ,an(2)
−q,q = −u†A−1u. (A37)

Comparing Eqs. (A33) and (A37), we deduce

Ẽe f (2)
−q,q =

Ẽe f ,an(2)
−q,q

1 − aẼe f ,an(2)
−q,q

. (A38)

The polarizability χ(r,r′) is defined as the microscopic
response to a change of external potential that gives the total
change of electronic density δn(r),

δn(r) =

Ω0

χ(r,r′)δvext(r′) (A39)

⇒ δn(r)
δvext(r′) = χ(r,r′). (A40)

Transforming to reciprocal space and taking the
(G,G′) = (0,0) matrix element yield

n(1)
q (G = 0) = χq(G = 0,G′ = 0), (A41)

where (1) superscript refers to the first-order perturbation in
the external potential due to the electric field. Taking a long
wavelength monochromatic electric field as the perturbation

v
(1)
ext,q(r,r′) = eiq·rδ(r,r′) (A42)

gives in reciprocal space

v
(1)
ext,k+q,k(G,G′) = δG,G′. (A43)

Also, Eq. (A33) tells us that

Ẽe f (2)
−q,q = u†x2 (A44)

=
Ω0

2
n(1)

q (0) (A45)

=
Ω0

2
χq(0,0), (A46)

where the second and third equalities stem from Eq. (A9) and
(A41), respectively.

The dielectric function is defined as (see Eq. (23) of
Ref. 96, for example)

ε−1
q (G,G′) = δG,G′ +

4π
|q +G|2 χq(G,G′), (A47)

and the macroscopic dielectric function, which is an average
response to an applied field is (see Eq. (15) of Ref. 96, for
example)

εM(q) = 1
ε−1

q (0,0) . (A48)

Therefore, using Eqs. (A10), (A46), and (A47), we obtain

εM(q) = 1

1 + aẼe f (2)
−q,q

. (A49)

Using Eqs. (A37) and (A38) finally yields

εM(q) = 1 − aẼe f ,an(2)
−q,q (A50)

= 1 + a(u†A−1u). (A51)

3. Born effective charge

Following the phenomenological discussion of Born and
Huang (see p. 265 of Ref. 23), in the long-wavelength limit, we
can expand the total energy density Etot (including the vacuum
energy) quadratically with respect to the ionic displacement
Uκα of each atom κ in each direction α and with respect to the
macroscopic electric field Eα in each direction α,

Etot =
1
2


κκ′


γδ

U∗κγCan
κγ
κ′δ

Uκ′δ −
Ω0

8π


γδ

EγϵγδEδ

−

κγ,δ

U∗κγZ∗κγ,δEδ, (A52)

where Ω0 is the volume, Can
κα
κ′β
= ∂2E

∂RκαRκ′β
is the analytic inter-

atomic force constant (IFC), ϵαβ =
∂2E

∂EαEβ
is the dielectric

function, and Z∗κα,β =
∂2E

∂RκαEβ
the Born effective charge. Can

κα
κ′β

is associated to the second-order energy (see Eq. (A1)) where
the non-analytic terms in q have been removed

Ean(2)
−q,q =

1
2

∂2Ean

∂Rκα∂Rκα
, x†Ax + x†w + w†x + c. (A53)

The solution x4 that minimizes Eq. (A53) is

x4 = −A−1w, (A54)

which leads to the following value for Ean(2)
−q,q at the variational

minimum:

Ẽan(2)
−q,q , −w†A−1w + c = Can

κα
κα
. (A55)
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We now define the electric displacement D , E + 4πP
and the polarizability

Pα , −
1
Ω0

∂(E + Ω0
8π E

2)
∂Eα

, (A56)

where we have excluded the energy of the electric field
in vacuum. We can combine this with the absence of free
charge (∇ ·D(r) = 0⇒ q ·D(q) = 0) and magnetic field
(∇ × E(r) = 0⇒ q × E(q) = 0) to deduce the form of the
electric field from Eq. (A52),

Eα = −
4π
Ω0


κγ,δU∗κγZ∗κγ,δqδ

γδqγϵγδqδ
qα. (A57)

Substituting Eq. (A57) into Eq. (A52) yields

E(2)
−q,q = Ẽan(2)

−q,q +
2π
Ω0

(γZ∗κα,γqγ)2
γδqγϵγδqδ

. (A58)

We also introduce a mixed term

Ẽmix(2)
−q,q , −w†A−1u. (A59)

Injecting Eqs. (A59), (A55), and (A37) into Eq. (A28), we can
express E(2)

−q,q at the minimum as

Ẽ(2)
−q,q = Ẽan(2)

−q,q +
(bẼmix(2)

−q,q + (c.c.))
1 − aẼe f ,an(2)

−q,q

+
a|Ẽmix(2)

−q,q |2 + |b|2Ẽe f ,an(2)
−q,q

1 − aẼe f ,an(2)
−q,q

, (A60)

where the numerator of this equation should be a square to
establish the connection with the effective charges Z∗κα,γ of
Eq. (A58). To obtain this link, we can compare Eqs. (A10) and
(A11), which yields

|b|2 = 2π
Ω0

a|w(1)
q |2. (A61)

Thus, Eq. (A60) becomes

Ẽ(2)
−q,q = Ẽan(2)

−q,q −
2π
Ω0

|w(1)
q |2 +

(
bẼmix(2)
−q,q + (c.c.)

)
εM(q)

+
a|Ẽmix(2)

−q,q |2 + 2π
Ω0
|w(1)

q |2
εM(q) , (A62)

where we have introduced the macroscopic dielectric function
using Eqs. (A51) and (A37). The second term will be canceled
by a contribution from the Ewald ion-ion energy to the lowest
order in q and can therefore be included in the analytic part31

ẼEw,an(2)
−q,q = Ẽan(2)

−q,q −
2π
Ω0

|w(1)
q |2. (A63)

The non-analytic term in q = 0, i.e., the remainder of Ẽ(2)
−q,q,

can be written as
1

q2εM(q)
2π
Ω0

|qw(1)
q + 2Ẽmix(2)∗

−q,q |2, (A64)

where we have replaced a and b by their definition Eqs. (A10)
and (A11).

For vanishing q, we have at the lowest order (see Eq. (A5))

w
(1)
q =

qα
q

iZκ + O(q). (A65)

Moreover, the macroscopic dielectric constant can be written
as

εM(q) = 1
q2


γδ

qγεγδqδ. (A66)

Eq. (A62) thus becomes

Ẽ(2)
−q,q = ẼEw,an(2)

−q,q +
2π
Ω0

|qαZκ − 2iẼmix(2)∗
−q,q |2

γδqγεγδqδ
, (A67)

where we have obtained the form desired, suitable for compar-
ison with Eq. (A58).

By making this comparison, we deduce
γ

Z∗κα,γqγ = qαZκ + 2iẼmix(2)
−q,q , (A68)

where we took the complex conjugate of the quantity in the
norm of Eq. (A67).

The total Born effective charge is the sum of the ionic
charge on the atom κ and the electronic charge belonging to
this atom 

γ

Z∗κα,γqγ =

γ

(Zκδαγ + ∆Zκα,γ)qγ, (A69)

which naturally gives

2iẼmix(2)
−q,q =


γ

∆Zκα,γqγ. (A70)

The last equation leads, in short hand notation, to the following
relation (see Eq. (A59)):

− u†A−1w =
i
2


γ

∆Zκα,γqγ. (A71)

Finally, to the lowest order in q, we deduce from the preceding
relation, Eqs. (A10) and (A11),

b − au†A−1w =

γ

4πiqγ
Ω0q2 (Zκ + ∆Zκα,γ) (A72)

=

γ

4πiqγ
Ω0q2 Z∗κα,γ. (A73)

4. Derivation of Eq. (27)

The first-order Hartree potential diverges as 1/q because
of a residual electric charge in the first-order density. The first-
order density at G = 0 can be written using Eq. (A9) as

n(1)
q (0) = 2

Ω0
u†x1, (A74)

and Eq. (A26) as

n(1)
q (0) = 2

Ω0

(
− u†A−1w − (b − a(u†A−1w))

1 + a(u†A−1u) u†A−1u
)
. (A75)

Using Eqs. (A51), (A66), (A71), and (A73), we have

n(1)
q (0) = 2

Ω0

( i
2


γ

∆Zκα,γqγ

−


γ

4πi
Ω0q2 Z∗κα,γqγ

1
q2


γδ qγϵγδqδ

u†A−1u
)
. (A76)
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Using Eq. (A51) to replace u†A−1u by εM(q)−1
a

and then Eqs.
(A10), (A66), and (A69), we finally deduce

n(1)
q (0) = −


γ

iqγ
Ω0

(
Zκδαγ −

Z∗κα,γ
1
q2


γδqγϵγδqδ

)
. (A77)

The first-order Hartree term

v
(1)
H,q(0) = 4π

n(1)
q

q2 (A78)

can then be renormalized to account for the slow k-point
convergence of the Born effective charges by enforcing effec-
tive charge neutrality within the primitive cell. To do so, we
introduce the average Born effective charge per atom

Z̄αγ =
1

Nat


κ

Z∗κα,γ, (A79)

where Nat is the number of atoms in the primitive cell and
subtract it from Z∗κα,γ,

v
ren(1)
H,q (0) = −


γ

4πiqγ
Ω0q2

(
Zκδαγ −

(Z∗κα,γ − Z̄αγ)
1
q2


γδqγϵγδqδ

)
, (A80)

which finally gives

v
ren(1)
H,q (0) = v

(1)
H,q(0)


γqγ

(
Zκδαγ −

(Z∗κα,γ−Z̄αγ)
1
q2


δ,ξqδϵδξqξ

)


γqγ
(
Zκδαγ −

Z∗κα,γ
1
q2


δ,ξqδϵδξqξ

) . (A81)

APPENDIX B: BEHAVIOR OF THE ZPR
WITH THE SHIFTED PARABOLA MODEL

In this appendix, we study the behavior of the shifted
parabola energy model presented in Eq. (36) to mimic the ZPR
of IR-active or -inactive materials at points of the BZ that are
not VBM nor CBM.

In spherical coordinates, Eq. (36) can be re-expressed as

ε(q) = q2 − 2qq0 cos θ, (B1)

where we have chosen the shift q0 along the z-Cartesian axis.
This function vanishes when q = 0 or q = 2q0 cos θ. The last
root is a sphere centered around q0 with radius q0.

1. Integration on the spherical shell of poles

In this section, the convergence behavior of the ZPR of
an IR-active material is analyzed in the case δ = 0. The poles
of the integrand of the ZPR form a sphere centered around
q = q0. To study their impact, we introduce the new variable
q̃ = q − q0 and express the ZPR as an integral on a sphere of
radius qc, qc

0
dq̃

 π

0
dθ

 π

−π
dφ

sin(θ)
(q̃ + q0)2

q̃2

q̃2 − q2
0

= 2π
 qc

0
dq̃

q̃2

q̃2 − q2
0

 π

0
dθ

sin θ
q̃2 + 2qq0 cos θ + q2

0

. (B2)

The radial part of Eq. (B2) can be integrated to

−2π
q0

 qc

0
dq̃

q̃
q̃2 − q2

0

ln
( |q̃ + q0|
|q̃ − q0|

)
. (B3)

As we would like to understand the behavior of the poles
when integrated, we restrict the integral on a small spher-
ical shell around q̃ = 0, with q0 − ∆ < q̃ < q0 + ∆. Expressing
everything in terms of a new variable u = q̃ − q0, we obtain

−2π
 ∆

−∆
du

1
u

1 + u
q0

u + 2q0
ln

( |2q0 + u|
|u|

)
, (B4)

which may be re-written as ∆

−∆
duF(u)1

u
+ G(u) ln(|u|)

u
, (B5)

with

F(u) = −2π ln(|2q0 + u|)
1 + u

q0

u + 2q0
, (B6)

G(u) = 2π
1 + u

q0

u + 2q0
. (B7)

The functions F(u) and G(u) are analytic within the integration
range and can be Taylor expanded. Restricting the expansion
to first-order, one gets ∆

−∆
duF(0)1

u
+ G(0) ln(|u|)

u
+

 ∆

−∆
duF ′(0) + G(0) ln(|u|).

(B8)

As 1/u and ln(|u|)/u are odd functions of u, the first two terms
of Eq. (B8) are zero. The first contributing terms arise from
F ′(0) and G′(0),

F ′(0)
 ∆

−∆
du = 2F ′(0)∆, (B9)

G′(0)
 ∆

−∆
du ln(|u|) = 2G′(0)(∆ ln∆ − ∆), (B10)

which show that the integral on the spherical shell behaves
linearly with the width of the shell, as would any regular
function do.

In the case of IR-inactive materials, the 1/q2 prefactors is
not present. This makes the derivation easier since no angular
dependence is present (G(u) = 0). The conclusion is nonethe-
less the same

F(u) =
(1 + u

q0
)2

u + 2q0
= F(0) + F ′(0)u + O(u2), (B11)

i.e., the first non-zero term in the integral of Eq. (B8) is linear
in 2F ′(0)∆.

2. Integration of the q = 0 pole

For IR-inactive materials in the non-adiabatic approxima-
tion at a point different from the CBM or VBM, the function
that should radially be integrated is

ℜ
 qc

0
dq3 1

(q2 − qq0 cos θ + ω + iδ) . (B12)
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The last integral leads to

2π
 qc

0
dqq2

 π

0
dθ

sin θ(q2 − qq0 cos θ + ω)
((q2 − qq0 cos θ + ω)2 + δ2) , (B13)

which gives the following radial integral:

2π
 qc

0
dq

q
4q0

ln
( (q2 + 2qq0 + ω)2 + δ2

(q2 − 2qq0 + ω)2 + δ2

)
. (B14)

When δ = 0, this function behaves quadratically when q
tends to 0 because the lowest order of the Taylor expansion of
the logarithm is linear in q. Therefore, the integral on a sphere
of radius ∆ of this function is ∆

0
dq

q
4q0

ln
( (q2 + 2qq0 + ω)2
(q2 − 2qq0 + ω)2

)
= C∆3 + O(∆4). (B15)

However, for IR-active materials, the function to integrate
is similar to a Lindhard function97

1
4qq0

ln
( (q2 + 2qq0 + ω)2 + δ2

(q2 − 2qq0 + ω)2 + δ2

)
. (B16)

This function actually tends to a finite value because of the
linear behavior of the logarithm in q that cancels the denomi-
nator. Eq. (B16) for δ = 0 gives ∆

0

1
4qq0

ln
( (q2 + 2qq0 + ω)2
(q2 − 2qq0 + ω)2

)
= A∆ + O(∆2). (B17)

The same arguments also holds for the IR-active adiabatic case ∆

0

1
2qq0

ln
(2q0 + q

2q0 − q

)
= A∆ + O(∆3). (B18)

3. Integration on a spherical shell around q = 0

In this section, we focus only on the δ-behavior of IR-
active materials in the non-adiabatic framework, where Eq.
(B16) has to be integrated.

The integrand has 3 poles: the first pole appears when
q = 0 and the two second are the two real roots (if any) of
q2 − 2qq0 + ω, which we call q1 and q2 with q1 < q2.

Actually, when q = 0, the integrand does not diverge when
δ → 0, as shown in Appendix B 2. We will therefore focus
here on q = q2 since the behavior with respect to δ at q = q1
is similar.

The integration around q2 is given by

2π
 q2+∆

q2−∆
dq

1
4qq0

ln
( (q2 + 2qq0 + ω)2 + δ2

(q2 − 2qq0 + ω)2 + δ2

)
. (B19)

We introduce the change of variable u = q − q2, and we cons-
ider δ ≪ ∆ ≪ q2,

2π
 ∆

−∆
du

1
4q2q0

ln
( ((q1 + q2)(2q2))2
((q2 − q1)(u))2 + δ2

)
. (B20)

This integral can be expressed as

2π
4q2q0

(
2∆ ln

(
4(q1 + q2)q2

2

)
− 2∆ ln(δ2)

−
 ∆

−∆
du ln

(u2(q2 − q1)2
δ2 + 1

))
(B21)

and yields

2π
4q2q0

(
2∆ ln

(
4(q1 + q2)q2

2

)
− 2∆ ln(δ2)

− δ

q2 − q1

2∆(q2 − q1)
δ

(
ln

(∆2(q2 − q1)2
δ2 + 1

)
− 2

)
− δ

q2 − q1
4tan−1

(∆(q2 − q1)
δ

))
. (B22)

When ∆/δ is large, Eq. (B22) reduces to

2π
4q2q0

(
2∆ ln

�
4(q1 + q2)q2

2

�
− 2∆ ln(δ2) − δ

q2 − q1

× 2∆(q2 − q1)
δ

2 ln
(∆(q2 − q1)

δ

)
− δ

q2 − q1
4
π

2

)
, (B23)

which behaves as

C1 − C2δ. (B24)

The same procedure applies when ω = 0. In this case,
the poles are q1 = 0 and q2 = 2q0. The ZPR convergence of a
non-extremal eigenvalue of an IR-active material is thus linear
with respect to δ in both the non-adiabatic and the adiabatic
frameworks.
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