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In the simplest picture, a “self-trapped” polaron forms when an excess electron or hole deforms
a crystal lattice, creating a potential well with bound states. Properties of self-trapped polarons
in methylammonium lead iodide perovskite (MAPbI3), which is widely used as solar cell absorber,
are of great interest, and are a subject of ongoing investigations and debates concerning the ex-
istence of large polarons with the co-presence of metastable self-trapping. Herein, we employ a
self-interaction-free density functional theory method to investigate the stability of small polarons
in tetragonal MAPbI3 phase. The electron small polaron is found to be unstable, while the hole
small polaron is found to be metastable at realistic operation temperatures of solar cells. Further,
the hole polaron is found to have a hole band close to the conduction band, which in conjunction
with its metastability suggests that small polarons will have an appreciable effect on charge-carrier
recombinations in MAPbI3. Further, we posit that the existence of the metastable polarons in ad-
dition to the large polarons may explain the experimentally observed non-monotonic temperature
dependence of bimolecular charge-carrier recombination rate in tetragonal MAPbI3 phase.

PACS numbers: To be checked : 71.20.Ps, 78.20.-e, 42.70.-a

I. INTRODUCTION

The search for energy sources with less adversarial en-
vironmental impact is presently of fundamental impor-
tance for basic and applied scientific research. Metal-
halide perovskite semiconductors have shown excellent
performance in optoelectronic applications such as solar
cells, light-emitting diodes, and detectors1–17. In partic-
ular, methylammonium lead iodide perovskite (MAPbI3)
in its tetragonal phase, which is thermodynamically sta-
ble from 160 K to 315 K, is a promising solar absorber
material, because it combines high power conversion effi-
ciency and low cost, two key properties of a disruptive so-
lar cell technology, which can secure long-term economic
growth and would help to reduce the burning of fossil
fuels to generate electrical energy. The race for power
conversion efficiency is interdisciplinary, touching chem-
istry and physics at the same time, in addition being a
very timely topic. Indeed, the class of metal-halide per-
ovskites has achieved a solar power conversion efficiency
equal to 22.1%, which is an impressive record considering
that the first perovskite-based solar cell was fabricated
only ten years ago2,9. In MAPbI3 as in all infra-red ac-
tive semiconductors, bare charge carriers are expected to
dress and form polarons due to electron-phonon coupling
arising e.g. from Fröhlich interaction with the longitu-
dinal optical (LO) phonons18–20. A self-trapped polaron
forms when an excess electron or hole deforms a crys-
tal lattice creating a potential well with bound states.
The extent of a polaron depends of the subunits where

it is localized. We define small polaron when polaron
wavefunction is localized within the size of the order
of the shortest inter-atomic distance. A large polaron
is defined when the polaron wavefunction is delocalized
on several unit cells. It is noteworthy that for photo-
voltaic applications, large polarons appear not to be sig-
nificantly detrimental, while small polarons limit charge-
carrier mobilities substantially and lead to charge-carrier
self-trapping and fast non-radiative recombination19–23.
Further, small polarons with an associated exciton can
generate broadband luminescence, which is important for
solid-state lighting as well as other applications such as
gamma-ray detection24,25.

There is a large consensus in the metal-halide per-
ovskite field that tetragonal MAPbI3 phase is charac-
terized by (i) a remarkable long-range diffusion length,
LD

14,26–29; (ii) electron-hole recombination rates that
are five orders of magnitude lower than that predicted
by Langevin model14,17,20,30; (iii) temperature depen-
dence of carrier mobility that follows µ ∝ T−(3/2)29,31–38.
In relation to (ii) one should however realize that the
Langevin model generally applies to low-mobility semi-
conductors, and hence it is questionable whether it is
applicable in the halide perovskites that have moderate
carrier mobilities15.

Many experimental studies focused on charge-
recombination in MAPbI3 to explain the charge-
carrier mobility14,15,17,31,39,40. The rates for charge-
recombination can be correlated through a differential
equation that describes the variation of charge carrier
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density, n, as a function of pulsed excitation time, t :

∂n

∂t
= G− k1n− k2n2 − k3n3 = G− nRT (n), (1)

where G is the charge-density generation rate, k1 is the
monomolecular charge-recombination rate constant, k2
is the bimolecular electron-hole recombination rate con-
stant, and k3 is the Auger recombination rate constant.
RT (n) is the total charge recombination rate, equal to
k1 + k2n + k3n

2. k1 describes by definition processes
involving one “particle” at a time, which in a typical
semiconductor may consist of a hole in the valence band,
or an electron in the conduction band, or a combined
electron-hole pair as an exciton. k2 describes the charge
carrier recombination between electrons and holes in a
direct semiconductor and can be viewed as the reverse
process of light absorption by continuum states41. k3 de-
scribes a many-body process involving recombination of
an electron with a hole, accompanied by energy and mo-
mentum transfer to a further electron or a hole, like in an
Auger process. While Auger recombination is insignifi-
cant for the operation of photovoltaic cells at standard
solar illumination intensities, it is likely to play a crucial
role for the development of lasers based on metal-halide
perovskites.42,43

In the most interesting tetragonal phase of MAPbI3,
k1 monotonically is found to increase with tempera-
ture while k2 decreases non-monotonically with temper-
ature and is associated with a small peak around room
temperature14,15,17,31,39,40. The k1 temperature depen-
dence is consistent with a charge recombination process
assisted by ionized impurities. On the other hand, the
decrease of k2 upon heating is consistent with the re-
combination between electrons in the conduction band
and holes in the valence band, i.e., with large polarons.
However, this interpretation does not explain the non-
monotonic behaviour, as we elaborate below. In the large
polaron regime, an early study included the effects com-
ing from acoustic phonon scattering and described the
carrier lifetime by the semi-classical Boltzmann trans-
port theory44. However a later study more correctly took
into account the polar-optical phonon mode scattering,
leading to a mobility µ proportional to T−(0.46)20. This
model however disagrees with optical-pump, terahertz-
probe spectroscopy and time-resolved microwave conduc-
tivity (TRMC) measurements that although confirms a
large polaron regime in tetragonal MAPbI3 phase, shows
µ ∝ T−(3/2)14,15,17,31,39,40. The rapid decrease of the
conductivity with temperature and the non-monotonic
behavior of k2 are puzzling, and are particularly incon-
sistent with a picture where exclusively large polarons are
charge carriers in tetragonal MAPbI3 phase. While the
temperature dependence of conductivity is influenced by
several factors, k2 temperature dependence in these ma-
terials is determined only by the properties of polarons
(small versus large). Thus, analysis of the variation of
k2 with temperature allows us to understand the type

of charge carrier present. Namely, a monotonic decrease
of k2 with increasing temperature is a signature of large
polarons, while k2 should monotonically increase if self-
trapping and small polaron formation occur. Therefore,
the observed non-monotonic behavior of k2 in tetrago-
nal MAPbI3 phase around room temperature suggests
the co-presence of small and large polarons. Moreover,
the observed small Stokes shifts of the order of meV
between absorption onset and photoluminescence emis-
sion peaks40,45 also indicate a metastable small electron
and/or hole polaron with an energy level close to valence
band maximum and/or conduction band minimum, re-
spectively.

Experimental results are supportive of the presence of
metastable self-trapping in tetragonal MAPbI3, which is
not seen in theoretical studies that show instead very sta-
ble self-trapping with stabilization energy on the order of
eV 46–48, or very unstable self-trapping with similar or-
der of magnitude49. The disagreement between the the-
oretical studies as well as between experiment and the-
ory reflects the inherent complexity of the first-principles
description of polarons in semiconductors. The major
problem is due to errors in standard exchange-correlation
functional approximations of density-functional theory
(DFT), in particular the self-interaction error (SIE).
The GW approximation is a more accurate but com-
putationally expensive approach to calculate electronic
structure, which was successfully used to produce ac-
curate calculations of the electronic band structure in
agreement with experiments22,23,41,50–52. However, the
computation of total energies within GW is challenging,
and, consequently, GW has not been used to obtain the
atomic structure of small polarons. Other studies fo-
cused on first-principles calculations of electron-phonon
coupling44,52–54, without discussing the small polaron
stability. Conventional local and semi-local exchange-
correlation approximations in DFT, namely the local
density approximation (LDA) and generalized gradient
approximation (GGA), have been reported to lead to
delocalization of the polaron over many unit cells due
to SIE, which would lead to a severe overestimation of
the polaron size55–58. DFT+U that typically works well
for strongly correlated systems can be used to localize
the polaronic states, but the results would strongly de-
pend on the value of U that could require nonphysi-
cal values to localize the polaron state55–59. Further-
more, hybrid functionals depend on adjustable parame-
ters, which are intrinsically affected by systems on which
they were parameterised55–58. Thus, to correctly describe
polaron self-trapping in MAPbI3, it is imperative to em-
ploy an approach that mitigates the SIE. Such an ap-
proach was introduced recently and was called polaron
self-interaction correction (pSIC)55–58. In this work we
will investigate electron and hole self-trapping in tetrago-
nal MAPbI3 using pSIC in conjunction with a method to
also mitigate the artificial finite-size effects.55. Given the
importance of polarons in MAPbI3, we expect that our
findings will have a strong impact on subsequent stud-
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ies that are focused on efficiency improvements of solar
absorbers with important scientific and economical con-
sequences in this field.

Sections II and III present the development of polaron
self-interaction correction theory and computational pa-
rameters, respectively. Our results are presented in
Sec. IV, focusing first on polaron formation energies and
associated atomic displacements, then analysing the elec-
tronic structure.

II. THEORETICAL BACKGROUND

The binding energy of the hole E+
bind or electron E−

bind
polaron can be computed as follows:

E±
bind = Edist(Ne ∓ 1)− Eperf (Ne ∓ 1), (2)

where Edist and Eperf are the total energies of the dis-
torted and pristine structures, and the numbers in the
parenthesis indicate the total number of electrons in the
system, with Ne corresponding to the neutral case. A
negative E±

bind indicates an energy gain due to the distor-
tion that results in self-trapping. In the Fröhlich model,
in which the polaron is large compared to the unit cell,
the long-range interaction of electrons or holes with po-
lar phonon modes is always attractive and results in self-
trapping for any polar crystal. In this model, by con-
struction, there is no self-interaction of the electron or
hole. For intermediate and strong electron-phonon cou-
pling, short-range interactions become increasingly im-
portant as the polaron radius becomes comparable to the
unit cell size. In such a case, the polaron formation can-
not anymore be described by macroscopically averaged
properties as in Fröhlich model, and a first-principles
treatment at the atomic scale is needed.

The polaron as a special kind of point defect can be
simulated from first-principles using a cluster or super-
cell approach by computing E±

bind according to Eq. (2)
with explicit charge. The cluster approach, if used with-
out embedding, may lead to artificial localization and
spurious boundary effects. On the other hand, the appli-
cation of the standard supercell approach is challenging.
First, the explicit use of charge leads to wrong long-range
behavior due to the interaction with neighboring cells,
which ought to be corrected a posteriori using Makov-
Payne60 or Freysoldt et al.61 approaches. More impor-
tantly, typically charge localization in the pristine crys-
tal takes place only if the supercell is chosen sufficiently
large and self-interaction is reduced even in the case of
strong electron-phonon coupling. (Semi-)local exchange-
correlation functionals do not address the self-interaction
problem, while hybrid functionals allow one to attenuate
it by including some fraction of exact exchange, which
is however an ad hoc procedure, and the results may be
very sensitive to the fraction value.55 All of this makes
the supercell approach with explicit charges prone to
large errors in MAPbI3, considering the weak to medium
electron-phonon interactions.

Herein we use pSIC57,58 in conjunction with Perdew-
Burke-Ernzerhof (PBE)62 and Heyd-Scuseria-Ernzerhof
(HSE06) functionals.63 Additionally, we account for van
der Waals dispersion interactions using Tkatchenko-
Scheffler (vdW-TS) method64, and spin-orbit cou-
pling (SOC) effects using a perturbative approach65.
In the following, we denote these approaches as
PBE/HSE+SOC(vdW-TS). Our results as well as pre-
vious studies66–68 show in particular that dispersion cor-
rections are needed to accurately describe MAPbI3.

pSIC follows the supercell approach but computes the
polaron structure and energetics by adding to the neu-
tral system a small fractional charge and removing the
quadratic dependence on this charge to predict the fully
charged system, thus suppressing the interaction of this
charge with itself. We briefly review the formalism. For
the case of the hole polaron, the ionization energy (IP),
which is the difference of total energies between systems
with Ne−1 and Ne electrons, is connected with the high-
est occupied orbital for the neutral system εHOMO (Ne):

IP = E(Ne − 1)− E(Ne) = −εHOMO(Ne). (3)

Hence, E+
bind from Eq. (2) becomes

E+
bind = ∆E −∆εHOMO, (4)

where ∆E = Edist(Ne) − Eperf (Ne) and ∆εHOMO =
εHOMO
dist (Ne)− εHOMO

perf (Ne), both of which are evaluated
for the neutral system.

In pSIC,57,58 εHOMO(Ne) is evaluated from Janak’s
theorem69 and utilizes a finite-difference approximation
of the derivative of the total energy under three different
charge constraints, namely,

εHOMO(Ne) =
∂EDFT
∂Ne

∣∣∣
Ne−δ

≈ 1

2δ

(
3EDFT [Ne]− 4EDFT [Ne − δ]

+EDFT [Ne − 2δ]

)
, (5)

which eliminates the quadratic self-interaction within
DFT, unlike the straight DFT evaluation of the IP in
Eq.(3). In the second member of the equality Eq.(5), δ
is a positive infinitesimal. The optimized geometries are
obtained by calculating the forces from the shifted po-
tential energy surface E − εHOMO of the neutral system
derived from:

F+
i = −∇iE +∇iεHOMO = −∇iE+

pSIC , (6)

where i denotes a virtual displacement of some atom
along a given direction. The first term in Eq. (6) is the
usual force in the neutral system that is readily available
from DFT calculations. The second term is the contri-
bution from the highest occupied orbital, which is then
approximated using the pSIC.
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The pSIC formalism for the electron polaron is similar,
starting with

EA = E(Ne + 1)− E(Ne) = +εLUMO(Ne), (7)

which connects the electronic affinity (EA) with the low-
est unoccupied orbital for the neutral system εLUMO

(Ne). In this case the E−
bind of Eq. (2) becomes

E−
bind = ∆E + ∆εLUMO, (8)

where ∆E = Edist(Ne) − Eperf (Ne) and ∆εLUMO =
εLUMO
dist (Ne) − εLUMO

perf (Ne), both of which are evaluated

for the neutral system. In pSIC, εLUMO(Ne) becomes

εLUMO(Ne) =
∂EDFT
∂Ne

∣∣∣
Ne+δ

≈ 1

2δ

(
− 3EDFT [Ne] + 4EDFT [Ne − δ]

−EDFT [Ne − 2δ]

)
. (9)

The optimized geometries are obtained by calculating
the forces from the shifted potential-energy surface E +
εLUMO of the neutral system derived from:

F−
i = −∇iE −∇iεLUMO. (10)

The distorted structures for hole and electron polarons
are obtained by minimizing the pSIC forces computed
from the DFT forces of the system under three different
charge constraints, with the following explicit formula

∂E±
pSIC

∂ ~Ri
=

(
1− 3

2δ

)
∂EDFT

∂ ~Ri
[Ne]

+
1

2δ

(
4
∂EDFT

∂ ~Ri
[Ne ± δ]−

∂EDFT

∂ ~Ri
[Ne ± 2δ]

)
(11)

Instead of the traditional approach that obtains the
equilibrium configuration under ±1 extra charge for
the hole/electron polaron, this approach uses the forces
from the neutral system and two additional calculations
with small fractional charges ±δ and ±2δ. EDFT [Ne],
EDFT [Ne±δ], and EDFT [Ne±2δ] are the energies of neu-
tral and charged systems, and ∂E

∂ ~Ri
is the negative of the

atomic force on atom i for each system. The variation of
charge is generated by removing (hole) or adding (elec-
tron) electrons by a small amount δ. With this approach,
the remaining error due to numerical differentiation is
O(δ3). Thus,58

F±
i = Fi(Ne)

+
1

2δ

[
4Fi(Ne ∓ δ)− 3Fi(Ne)− Fi(Ne ∓ 2δ)

]
(12)

To optimize the structure, we use pSIC on top of PBE,
which is believed to accurately predict band edge varia-
tions induced by geometry changes, if not the band gap
itself.57,58,70,71

Sadigh et al.57,58,71 showed that treating the polaron
on the potential-energy surface for E±

bind drastically re-
duces the impact of the underlying functional and, even
with semi-local functionals like PBE, self-trapping of the
polaron happens and can be relatively well described.
However, Kokott et al.55 showed that this approach leads
to a strong dependence on the supercell size due to
the long-range effects of ionic response, which can nev-
ertheless be properly accounted for using a correction
scheme55. The value for fractional charge δ=0.025e was
used in our calculations, in line with previous studies55.

III. COMPUTATIONAL DETAILS

The DFT calculations are carried out using all-electron
FHI-aims employing a tier-2 basis set for structural op-
timization and a tight tier-2 basis set to compute the
energies and band structure. For the bulk tetragonal
phase of MAPbI3, we used the lattice constants a =
8.995 Å and c = 12.685 Å, which are the equilibrium
lattice constants at room temperature predicted using
quasi-harmonic approximation.68,72 The computed room
temperature lattice constants a and c respectively over-
estimate by 1% and 0.1 % the experimental values mea-
sured on large crystalline samples73.

For to polaron computations, to optimize the geome-
try, we evaluate first the pSIC forces on top of Perdew-
Burke-Ernzerhof (PBE)62 with Tkatchenko-Scheffler van
der Waals dispersion correction64. Then using the op-
timized structure the final pSIC energy is calculated
by taking into account perturbative spin-orbit coupling
(SOC)65. While SOC corrections are needed to correctly
describe the electronic structure in MAPbI3, these also
have appreciable effect for the energitics in MAPbI3 as
shown before.51,74 The final energy is also calculated in
the framework of pSIC taking into account SOC and vdW
correction but using Heyd-Scuseria-Ernzerhof (HSE06)63

DFT functional. The polaron structural optimization
was carried out using 2×2×1 Γ-centered k-point mesh
for the 2×2×2 supercell (a = 17.99 Å and c = 25.37 Å)
with 384 atoms. The final polaron energies are reported
using 4×4×2 Γ-centered k-point mesh in the same super-
cell. We found the difference between the formation ener-
gies obtained with 2×2×1 and 4×4×2 Γ-centered k-point
meshes to be less than 0.02 eV. The optimization conver-
gence cutoff is 10−5 eV /Å for the maximum net force on
atoms, while the while the self-consistent-field conver-
gence criterion is based on total energy difference equal
to 10−5 eV. The band structures were generated taking
into account SOC. The band structures of hole and elec-
tron polarons were generated from the bands structures
of charged systems (i.e., +1 for hole and -1 for electron
polaron).
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IV. RESULTS AND DISCUSSION

We have investigated the polaron states in tetragonal
MAPbI3 using a 2×2×2 supercell with 384 atoms. Band
structure calculated with PBE, HSE06, and accurate GW
calculations agree that the conduction band minimum
(CBM) is composed mainly of 6p-orbitals of lead, while
the valence band maximum (VBM) is composed of 6s-
orbitals of lead and 5p-orbitals of iodine14,35,51,52. The
self-trapping is expected to take place via the orbitals
of CBM (VBM) in case of electron (hole) polaron, as
already seen in previous studies without self-interaction
correction75–82. Starting from the ground configuration
of MAPbI3, we have optimized the polaron states using
different initial configurations that vary by the amount
of displacements of one of the Pb-I bonds associated with
the polaron site. To assess if the methylammonium (MA)
dipole moment has an effect on the polaron state, we have
utilized initial guess structures with different orientations
of dipole moment of MA. The MA dipole moments within
a sphere of radius ∼6 Å, for an electron were preferen-
tially oriented toward the polaron site, or away from it
in case of hole. The model of MA dipole moment was
done to evaluate its impact on the geometry of the struc-
ture, as its presence in MAPbI3 is supported by optical-
pump, terahertz-probe30. However, we have observed in
our calculations that structures produced with different
MA dipoles as initial guess have no effect on the final
optimized polaron structures.

To evaluate the stability of small polaron, we have
calculated the polaron binding energies, Eqs. (4) and
(8), corrected for fictitious long-range interactions,
Eel−stcorr (Ω), due to finite supercell volume, Ω,55 see Tab. I.

TABLE I: Polaron formation energies and polaron levels in
eV before and after correcting for fictitious long electrostatic
interactions, Eel−st

corr (Ω). Values are obtained from pSIC on
top of PBE+SOC(vdW-TS) and HSE+SOC(vdW-TS).

h+ ∆E ∆εHOMO ∆εHOMO
corr E+

bind E+
bind,corr

PBE 0.999 0.888 1.215 0.111 -0.052
HSE 1.459 0.993 1.320 0.466 0.302

e− ∆E ∆εLUMO ∆εLUMO
corr E−

bind E−
bind,corr

PBE 1.447 -0.118 -0.444 1.329 1.166
HSE 1.444 -0.170 -0.497 1.274 1.110

Eel−stcorr (Ω) is a generalisation of Freysoldt et al.
correction61 that takes into account also the acoustic
phonon deformation potential (ADP), which is described
by the real part of dielectric constant at high frequency,
ε(∞), via a modification of the long-range interaction
potential55:

Eel−stcorr (Ω) = −

(
1

ε(∞)
− 1

ε(0)

)
e2

rε0
, (13)

where r is the distance from the polaron site, e is the
electron charge and ε0 is the vacuum permittivity. For

MAPbI3 at room temperature, the experimental values
of ε(∞) and ε(0) (the real part of dielectric constant at
low frequency) are 5.4 and 60, respectively34, and the
corresponding correction is −0.163 eV for both hole and
electron polarons (see Tab. I). Thus, we find that the
correction very weakly depends on polaron radii, which
are substantially different for the electron (3.24 Å) and
hole (1.09 Å) cases. The correction for the polaron level
with respect to band edge is twice the binding-energy
correction in accordance with the Pekar’s theorem83, and
it is expressed in case of HOMO as55 as follows:

∆εHOMO
corr = ∆εHOMO + 2Eel−stcorr (Ω), (14)

and similarly for LUMO level. As seen from Tab. I,
E−
bind,corr calculated with both PBE+SOC(vdW-TS) and

HSE+SOC(vdW-TS) agree with each other showing an
unstable electron polaron with a positive binding energy
that is much higher than thermal energy at normal con-
ditions. E+

bind,corr calculated with PBE+SOC(vdW-TS)

and HSE+SOC(vdW-TS) are close to zero suggesting
that the sign is ambiguous. The geometry was opti-
mized with pSIC+PBE and subsequently the calculation
of total energy and electronic structure was performed
with the more accurate but computationally expensive
HSE84–89. Thus, the hole binding energy obtained with
HSE+SOC(vdW-TS) is overestimated by ∼0.1 eV 84–89,
so that our estimated value for the binding energy be-
comes 0.2 eV, a value whose uncertainty is estimated 0.1
eV, due to e.g. HSE inherent errors89 or electron-phonon
effects90. Moreover, the Coulomb interaction of localized
holes with compensating electrons in photoexcited sam-
ple will further stabilize the self-trapped state. In addi-
tion, the excess photon energy above the gap can push
the system close to the metastable state during thermal-
ization. Thus, the small hole polaron is metastable and
can be present at room temperature in photoexcited ma-
terials. Such 0.2 eV hole polaron formation energy must
be provided by thermal fluctuations, which for room tem-
perature operation mode delivers about one such small
polaron over ten thousand generated holes. This explains
the observed small increase of k2 around room tempera-
ture. At higher temperatures, the life-time of small hole
polarons decreases, and the k2 temperature dependence
is again consistent with large-polaron picture (i.e., mono-
tonically decreases).

Looking in detail at structural rearrangements asso-
ciated with the polaron, we can observe in Fig. 1 that
the polaron stabilization is accompanied by considerable
structural changes, including bond compression and di-
latation, or even formation of a new bond of 3.5 Å be-
tween two iodine atoms in the case of the hole polaron.
As seen in Fig. 1, the polaron disrupts the octahedral
symmetry of the lattice near the localization site. For
example, the electron localized at Pb disrupts the equiva-
lent Pb-I bonds of ∼3.2 Å with the six neighboring iodine
atoms. This breaking of octahedral symmetry induces an
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FIG. 1: Atomic structure of the (a, b) electron and (c, d)
hole polarons near the localization site before (a, c) and after
(b, d) optimization. Bond lengths and Löwdin charges are
shown. Pb and I are represented as purple and green spheres,
respectively.

axial elongation from 3.2 to 4.2-4.5 Å. While, the equa-
torial bonds have a slight variation by ∼0.1 Å. Our re-
sults are in line with those were obtained on MAPbI3
with isolated cluster approach46–48 where an axial varia-
tion is obtained from 3.3 to 4.2 Å and equatorial bonds
have the the same our slight variation. We can also ob-
serve the global geometry change in Fig. 2a. Entering in
details we see that the hole polaron generates a symme-
try distortion with two Pb-I bond lengths increase from
about 3.2 Å in the pristine system to 3.3 and 3.5 Å in the
polaron structure and the formation of I−2 between two
Pb elements, see Fig. 1d. The formation of I−2 molecule
is observed also in previous works with isolated cluster
approach46–48, but the I-I bond length was not reported
in these previous studies.

Löwdin charge decomposition for the neutral system
shows that Pb loses 0.6 electrons to iodine atoms in the
perfect geometry. The distorted geometry for electron
polaron, with an increase of several bond lengths al-
lows for the electron localization in the Pb vicinity. The
Löwdin analysis yields an increase of 0.5 electron on the
Pb site. The natural bond orbital wavefunctions for both
electron and hole are shown in Fig. 2a,b. The increase in
the Pb-Pb distance from 6.4 Å in the perfect crystal to
6.81 Å for the hole polaron is expected considering the
repulsive electrostatic interactions between Pb2+ and the
hole localized at iodine, or equivalently because the pos-
itive charge at iodine decreases the electrostatic attrac-
tion between Pb2+ and I−. In the perovskite structure,
each Pb2+ is coordinated by 6 I−. The hole polaron for-
mation is facilitated by removing one electron from one
I− that changes the valence electronic configuration from
4d105s25p6 to 4d105s25p5. To regain the necessary elec-
tron with respect the “octet rule”, this iodine atom forms
a covalent bond with another I− by sharing an electron,

FIG. 2: Natural bond orbital wavefunctions calculated using
HSE+SOC(vdW-TS) for (a) electron and (b) hole polaron
states, at their pSIC optimized geometries. The isovalue sur-
faces of the wavefunctions correspond to a square modulus
of the wavefunction equal to 0.01 e/Å3. Legend: yellow cor-
responds to the positive phase of wavefunction; cyan corre-
sponds to negative phase of wavefunction.

thus forming I−2 . This charge rearrangement is also con-
sistent with the structural changes resulting in a I-I bond
distance equal to 3.5 Å, see Fig. 1d.

The formation of polaron does not only generate a geo-
metrical distortion, but the polaron charge is localized on
specific orbitals, which is indicative of the polaron size.
One can determine on which orbitals the self-trapping
is localized from the analysis of the orbital character of
the polaron Kohn-Sham state within the gap, at the opti-
mized pSIC geometry. The additional electron is situated
on the 6p-orbital of Pb, see Fig. 2a. Similarly, in case of
hole there is a lattice distortion, mainly near the iodine
atoms that create I−2 diatomic moiety, and the hole is
trapped in antibonding σ-type orbital of this I−2 , com-
posed of 5p-orbitals, see Fig. 2b.

The localization of hole polaron on the halogen
species91 explains tolerance of charge-carrier mobility to
halogen substitutions with isovalent atoms. As known
from literature53,92,93, substituting I with Br improves
the solar efficiency of MAPbI3-based solar cells. Br has
a higher electronegativity (χ) than I (3.45 versus 3.2 ac-
cording to Tantardini-Oganov scale94), and therefore a
further destabilization of hole polaron is expected in the
presence of Br, which is beneficial for solar cells. To in-
vestigate this further, we have carried out full pSIC cal-
culations on doped surpercells where we substituted one
I with Br (χ = 3.45) or Cl (χ = 3.5). Our results show
that doped MABPI3 with either Br or Cl would desta-
bilize the hole polaron by 0.06 eV and 0.12 eV, respec-
tively. Thus, we have confirmed that the introduction of
highly electronegative halogen decreases the already low
probability of self-trapping in MAPbI3, which guarantees
high LD and non-Langevin behaviour that are required
to have a good solar cell absorber.

We look now for the effects of self-trapping on the elec-
tronic band structure. Fig. 3 shows band structure of
pristine MAPbI3. We can observe around the Γ point
a linear split-off, which is a consequence of the Rashba-
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FIG. 3: Band structure of pristine MAPbI3 with polaron lev-
els (in eV ) calculated using pSIC with HSE+SOC(vdw-TS)
functional. The numbers show band gap of the pristine mate-
rial (red), electron (brown), and hole (purple) polaron levels.

Dresselhaus splitting due to spin-orbit coupling95. The
band gap is 1.34 eV, in reasonable agreement with the 1.5
eV band gap of Yin et al.96 for the cubic geometry (while
ours is a relaxed tetragonal geometry). Electron po-
laron level calculated using pSIC with HSE+SOC(vdw-
TS) functional (and corrected for the supercell effects as
described in Ref. 55) is 0.50 eV below the CBM (rounded
from -0.497 eV in Tab. I). It is interesting that the hole
polaron’s level is shifted very close to CBM (0.02 eV be-
low CBM), see Fig. 3). This is due to the hole local-
ization at the high-energy σ antibonding orbital of the
I−2 moiety. Together with the predicted metastability of
the hole, this implies that at finite temperature the bar-
rier for I−2 formation and hole localization can be over-
come by at least a fraction of the holes, with the polaron
level being remarkably close to CBM. These results ex-
plain the experimentally observed small Stokes shifts (of
the order of meV ) between absorption onset and photo-
luminescence emission peaks40,45. It is noteworthy that
metastable hole polaron with level close to CBM can con-
tribute to the non-Langevin behaviour14,17,20,30. More-
over, the presence of a shallow minimum on the potential-
energy surface, corresponding to the metastable hole with
compensating electron in the conduction band, can ex-
plain the enhanced anharmonicity in MAPbI3

30,97,98.

V. CONCLUSION

In this work we have performed first-principles calcula-
tions of electron and hole polarons in tetragonal MAPbI3
phase using an advanced approach that combines hybrid

DFT calculations, SOC corrections, long range van der
Waals and electrostatic interactions, and pSIC to investi-
gate self-trapping of charge carriers in MAPbI3. We show
that our results explain recent experimental details owing
to the absence of SIE in our computational framework.
The application of this state-of-the-art approach allowed
us to resolve discrepancies between previous theoretical
and experimental studies. Our calculations showed that
the creation of a small electron polaron is always unsta-
ble in MAPbI3. On the other hand, a small hole polaron
state is metastable, but likely thermally accessible due to
the proximity of the small hole polaron energy to CBM.
Actually, hole polaron is localized on the high-energy σ
antibonding orbital of the I−2 moiety. This along with the
existence of large polarons explains the non-monotonic
behaviour of k2 at room-temperature. Furthermore, we
showed that doping with anion-substituting impurities
such as Br and Cl results in further destabilization of
small polarons, which explains why Br and Cl impurities
are non-detrimental to hole mobility. The underpinnings
of the benign effects of these substitutions on the polaron
stability is due to the higher electronegativity of Br and
Cl compared to I, which increases the localization energy
for the hole. Based on this work and previous studies,
we posit that the difference of one order of magnitude
between ionic displacements (i.e., ∼MHz) and molecu-
lar vibrations (i.e., ∼GHz) leads to a delocalized polaron
over several MAPbI3 units cells and inhibits the stability
of self-trapping.
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