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Grimme’s DFT-D dispersion contribution to interatomic forces constants, required for the computation
of the phonon band structures in density-functional perturbation theory, has been derived analytically. The
implementation has then been validated with respect to frozen phonons, and applied on materials where weak
cohesive forces play a major role, i.e., argon, graphite, benzene, etc. We show that these dispersive contributions
have to be considered to properly reproduce the experimental vibrational properties of these materials, although
the lattice parameter change, coming from the ground-state relaxation with the proper functional, induces the
most important change with respect to a treatment without dispersion corrections. In the current implementation,
the contribution of these dispersion corrections to the dynamical matrices (with a number of elements that is
proportional to the square of the number of atoms) has only a cubic scaling with the number of atoms. In practice,
the overload with respect to density-functional calculations is small, making this methodology promising to study
vibrational properties of large dispersive systems.
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I. INTRODUCTION

It is now commonly accepted that the most popular
exchange-correlation energy functionals—i.e., LDA, GGA,
mGGA, or hybrid functionals—fail to properly describe
nonlocal dispersion effects in density-functional theory (DFT)
[1]. These effects play a major role in layered materials and
molecular crystals, leading to the inaccurate description of
these materials by the above-mentioned functionals [2].

To overcome this difficulty, several methods have been
developed over the past years. On the one hand, one finds
density-dependent methods or even wave-function-dependent
methods, whose implementation cost might be significant.
In this category, several methods have found widespread
use, like the Tkatchenko-Scheffler van der Waals (TS-vdW)
corrections [3], which adds to the DFT result a term depending
both on the geometry of the system and on the electronic
density, or the vdW-DF methods [4–6], which add to the
exchange-correlation a nonlocal term to treat the dispersive
effects. The Silvestrelli approaches (vdW-WF) [7,8] use
maximally localized Wannier functions to estimate the vdW
correction to the Kohn-Sham (KS) energy. The random phase
approximation [9–11] has also shown encouraging results in
taking into account these interactions, although it still suffers
from a large computational time overhead [12].

On the other hand, there are simpler, density-independent
dispersion corrections that include Grimme’s DFT-D methods,
have been developed, with a quite significant impact as well
[13–15]. In this case, the correction only depends on the
nuclei positions and on the approximation for the exchange-
correlation functional in use.

In DFT-D2 [13], a simple pairwise term is added to the DFT
energy. It exhibits a long-range behavior C6,ij /R

6
ij where C6,ij

is the dispersion coefficient and Rij is the distance between
the atoms. Although yielding better agreement with the
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experiments than DFT for most noncovalently bound systems,
this method only considers one coefficient for each chemical
pair and thus may not be able to catch the fundamental trends
of these interactions. For example, the dispersion coefficient
can vary by a factor of two in the case of armchair carbon
nanotubes depending of their size [16].

In the more sophisticated DFT-D3 [14], the problem is
tackled with the use of environment-dependent dispersion
coefficients. These coefficients are interpolated on tabulated
supporting points, which have been computed beforehand in
TDDFT. A three-body term—also referred as the Axilrod-
Teller-Muto nonadditive term [17,18]—can also be taken into
account. Finally, DFT-D3 with Becke-Johnson damping—
DFT-D3(BJ) [15]—is a variant of the previously introduced
DFT-D3 method that uses another expression for the damping
that removes the undesired short-range divergent behavior of
the correction.

In all these cases, these corrections have to be taken
into account in the computation of atomic derivative-related
quantities like forces, stresses, interatomic force constants
(IFCs), dynamical matrices, or elastic tensors. At variance
with vdW-DF or TS-vdW methods, the DFT-D ones do
not lead to direct modifications of properties related to the
electric field derivatives, i.e., Born effective charges, dielectric
tensor or electron-phonon coupling matrix elements, as these
corrections are independent of the density, except for the
indirect dependence through modification of atomic positions.
This is both an advantage and a drawback of these methods,
as on the one hand the complexity of the equations and their
implementation remains quite low but on the other hand, some
effects could be lost by neglecting the density dependence of
the vdW corrections.

Although it is possible to compute all the previously intro-
duced global quantities in the case of DFT with finite difference
techniques, the computations can become quite demanding,
especially for dynamical matrices at small wave vectors, which
require the use of large supercells. A more elegant way to
calculate these quantities is achieved in density-functional
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perturbation theory (DFPT) [19–22], which benefits from
lower computation time and more easily achieved precision.
This formalism has also be extended to strain perturbations
[23,24] for the computation of relaxed elastic, piezoelectric,
and internal strain coupling parameters.

In this paper, we will show how the DFT-D pairwise
contribution to the Fourier transform of the IFCs at any wave
vector of the reciprocal space, required for the computation
of the phonons frequencies and eigendisplacements, can be
derived in a similar scheme. We will neglect the effect of
the three-body term, as discussed later. We are aware of the
existence of a DFPT phonon implementation with the vdW-DF
methodology [25], although it has not been released to our
knowledge. The DFT-D2 contributions to the IFCs have also
been reported in the GULP software [26,27]. Except for these
implementations and the related publications, the litterature
reports some frozen-phonon computations with dispersion
corrections in periodic systems [28–32]. Our method will be
afterwards applied to three materials incorrectly described by
DFT in GGA, i.e., argon, graphite, and benzene.

It has to be reminded that phonon modes are quite sensitive
to the geometry of the system. As these DFT-D corrections
play an important role for the ground-state geometry, two
effects on the phonons have to be distinguished when the vdW
corrections are taken into account: an indirect effect, related
to the change of geometry of the ground state, and a direct
effect, which is related to the contribution of these corrections
to the IFCs. It will be shown that although the largest effect
of DFT-D methods on the phonon frequencies originates from
geometrical modifications, the dispersion corrections to the
IFCs cannot be neglected.

In Sec. II, the theoretical background will be presented, with
some detailed derivations in the supplementary information.
The DFT-D contribution to the dynamical matrix can be
implemented with an O(N3

at) scaling. Taking into account
the prefactor of the calculation, and the normal cost and
scaling of usual DFPT calculations of a dynamical matrix, the
associated computational overhead is negligible, whatever
the size of the system. We will also discuss briefly in Sec. III
the implementation and show that an excellent agreement can
be obtained between our implementation and frozen-phonon
calculations. Finally, in Sec. IV, we will present the results
obtained with our implementation on specific materials.

II. THEORY

In all DFT-D methods, a density-independent pairwise
contribution E

(2)
disp is added to the DFT energy to treat the

dispersion. In the case of periodic systems, this contribution
to the energy of cell τ can be expressed as

E
(2)
disp(τ ) = −

Nat∑
i

∑
τ ′

Nat∑
j

Cττ ′
6,ij ({R})f (

Rττ ′
ij

)
, (1)

where τ ′ is a cell replica index, i and j are indices of atoms
in the primitive cell, Cττ ′

6,ij ({R}) is the dispersion coefficient
between i in cell τ and j in cell τ ′, function in DFT-D3 and
DFT-D3(BJ) of the whole set of atomic positions {R}, and
f is the analytical function used to describe the dispersion
which depends on the DFT-D method used, on the chemical

species of i and j , as well as of the distance between the two
considered atoms Rττ ′

ij . For example, in DFT-D3 it takes the
form

f D3(Rττ ′
ij

)
= 1

2

[
s6

fdmp,6
(
Rττ ′

ij

)
(
Rττ ′

ij

)6 + 3s8

√
Qi

√
Qj

fdmp,8
(
Rττ ′

ij

)
(
Rττ ′

ij

)8

]
, (2)

where sn are coefficients, which depend of the exchange-
correlation functional used, fdmp,n are the nth-order damping
functions used to remove the short-range divergent behavior
of the function, and Qi are tabulated values expressing the link
between lower and higher dispersion coefficients.

As discussed previously, in DFT-D3 and DFT-D3(BJ), the
dispersion coefficients depend on the chemical environment
around each atom. For sake of brevity, the dependence of
this function with respect to the atomic positions {R} will
be implied for the remaining of this paper. The dispersion
coefficients are interpolated between supporting points as
follows:

Cττ ′
6,ij = 1

L
tot,ττ ′
ij

ri,max∑
ri

rj,max∑
rj

Cref
6,ij,ri rj

Lττ ′
ij,ri rj

, (3)

with ri the reference for the chemical species of atom i, ri,max

the number of tabulated value available for the considered
chemical species (e.g., five in the case of carbon),

L
tot,ττ ′
ij =

rmax∑
ri

rmax∑
rj

Lττ ′
ij,ri rj

(4)

and

Lττ ′
ij,ri rj

= e
−k3[(CNτ

i −CN ref
i,ri

)2+(CNτ ′
j −CN ref

j,rj
)2]

. (5)

The CN ref
i,ri

and CN ref
j,rj

tensors contain the supporting points

for the interpolation, while Cref
6,ij,ri rj

contains the reference val-
ues for the dispersion coefficients, which have been computed
beforehand in TDDFT [14]. Finally, k3 = 4 and CN τ

i is the
coordination number of atom i in cell τ . In periodic systems,
the coordination number as proposed in the original Grimme’s
paper was a diverging quantity, as pointed out by Reckien [34].
The latter author refined the expression as follows:

CNτ
i =

Nat∑
j

∑
τ ′′

[
1 + e

−k1(k2
Rcov,i+Rcov,j

Rττ ′′
ij

−1)
]−1

fdmp,CN

(
Rττ ′′

ij

)
,

(6)

with Rcov,i being the covalence radius of species i, k1 = 16,
k2 = 4/3 and

fdmp,CN

(
Rττ ′′

ij

) = 1
2 erfc

[
Rττ ′′

ij − 15k2(Rcov,i + Rcov,j )
]
. (7)

We use the same expression for our implementation. Note
that by translational invariance, all the previous introduced
quantities are periodic and thus can be computed taking τ = 0.

In DFT-D3, a three-body correction E
(3)
disp(τ ) is also taken

into account for the dispersion; it is computed by summing the
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partial contribution of all the triplets of atoms

E
(3)
disp(τ ) = −

Nat∑
i

∑
τ ′

Nat∑
j

∑
τ ′′

Nat∑
k

s9

6
Cττ ′τ ′′

9,ijk

× 1 + 3 cos(α) cos(β) cos(γ )(
Rττ ′

ij Rτ ′τ ′′
jk Rτ ′′τ

ki

)3 fdmp,9
(
R̄ττ ′τ ′′

ijk

)
, (8)

where

Cττ ′τ ′′
9,ijk = −

√
Cττ ′

6,ijC
τ ′τ ′′
6,jk Cτ ′′τ

6,ki , (9)

α, β, γ are the angles of the triangle formed by the triplet
of atoms and fdmp,9 is the associated damping function with
R̄ττ ′τ ′′

ijk the geometrical mean distance between the three atoms
of the triplet.

In this work, we will neglect this three-body term (with one
exception described later). Indeed, despite arising naturally
from the theory of Van der Waals interaction, the use of this
three-body term in practical calculations is still debatable, as it
tends for example to worsen the cohesive energy for GGA-PBE
compared to pairwise corrections alone while improving it for
HSE06 [35]. In any case, it yields much smaller contributions
to the energy and its derivative than the pairwise term (about
5% of the total dispersion contribution to the binding energy
and negligible role on geometry optimization [35]). We
nevertheless performed finite differences on this three-body
term in order to estimate its contribution to the IFCs. The
results are presented in Sec. IV.

For the first-order perturbation (forces and stresses), it is
shown in Ref. [33] that the pairwise contribution to forces and
stresses scale as O(N2

at), while the one of the three-body term
scales as O(N3

at) [36].
The pairwise dispersion contribution to the IFCs is

given by

C
disp
κα,κ ′β(0,b) = ∂2Edisp

∂R0
κα∂Rb

κ ′β
, (10)

FIG. 1. Schematic representation of the DFT-D contribution to
the IFCs detailed in Eq. (11) and in Ref. [33]. There are nine distinct
terms labeled f1, f2, α1 to α5, c1x , and c2x ; i and j refer to the atom
considered in the pairwise term. k and l are the atoms that contribute
to the coordination number of atom i, while m and n contribute to the
coordination of atom j . A plain black line that connects two atoms
refers to the second derivative of i-j pair contribution to the dispersion
energy with respect to the displacements of these two atoms.

where α,β corresponds to the directions along which the atoms
are moved.

From Eq. (1), one can see that the dispersion contribution
to IFCs for the pairwise term will be linked to the second
derivative of f (Rττ ′

ij ), and in the case of DFT-D3 and

DFT-D3(BJ), to the second derivative of Cττ ′
6,ij and to the

cross derivatives of f (Rττ ′
ij ) and Cττ ′

6,ij with respect to two

atomic displacements. The derivatives of Cττ ′
6,ij are themselves

related to the derivatives of CNτ
i and CN τ ′

j . These dispersion
contributions to the IFCs include thus many terms: all of them,
as well as which atoms are involved, are shown schematically
in Fig. 1.

Mathematically, the full contribution is given by

C
disp
κα,κ ′β(0,b) = C

disp,f 1
κα,κ ′β (0,b) + C

disp,f 2
κα,κ ′β (0,b)︸ ︷︷ ︸

f derivatives

+C
disp,α1
κα,κ ′β (0,b) + C

disp,α2
κα,κ ′β (0,b) + C

disp,α3
κα,κ ′β (0,b)︸ ︷︷ ︸

CNi & CNj derivatives

+
︷ ︸︸ ︷
C

disp,α4
κα,κ ′β (0,b) + C

disp,α5
κα,κ ′β (0,b)

+C
disp,c1×
κα,κ ′β (0,b) + C

disp,c2×
κα,κ ′β (0,b)︸ ︷︷ ︸

f ×CNi & f ×CNj derivatives

. (11)

The discrete Fourier transform of this last expression for a
q vector of the reciprocal space,

∼
C

disp

κα,κ ′β(q) =
∑

b

C
disp
κα,κ ′β(0,b)eiq.Rb, (12)

can be added to the dynamical matrix calculated in DFPT for
the computation of the phonon frequencies and eigenmodes of
the crystal under study.

The full theoretical derivation of this last Fourier transform
can be found in Ref. [33]. It will be shown that, for the pairwise
term, the DFT-D contribution to the dynamical matrix scales
only as O(N3

at).
To validate these expressions, frozen-phonon computations

were realized and are presented in Sec. III. This theoretical
framework was then applied on specific materials to compute
their phonon frequencies with inclusion of DFT-D contribu-
tions; the results are presented and discussed in Sec. IV.

III. IMPLEMENTATION AND TESTS

DFT-D methods have been implemented within the ABINIT

software [22,37] for both ground-state and for atomic response
functions. As the previously introduced contributions to the
energy, forces, stresses, and interatomic force constants can not
be computed for an infinite number of cell replica, a tolerance is
used to define the number of cells to be considered in the DFT-
D correction. For the computation of the coordination number,
the cutoff radius was set to 106 Å, while for the pairwise term,
a tolerance on the energy of 10−12 Ha is used [38].

First, our implementation has been validated with respect
to Grimme’s code [39]. We tested graphite (AB stacking)
with the GGA-PBE functional and with the in-plane and
out-plane lattice parameters used as the relaxed DFT-D3 ones,
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TABLE I. Validation of our implementation by comparison of
dispersion contribution to IFCs (reduced coordinates) in DFT-D3
computed by frozen phonons and by DFPT. The q vector is given in
reduced coordinates.

Frozen phonons DFPT
DFT-D IFCs (mHa) DFT-D IFCs (mHa)

R[C̃disp
1313(�)] − 10.975002073 − 10.975002080

R[C̃disp
1313(A)] − 16.681563853 − 16.681563203

R[C̃disp
1313(0,0,1/3)] − 15.310251633 − 15.310251646

R[C̃disp
1323(0,0,1/3)] 13.009670591 13.009670637

I[C̃disp
1323(0,0,1/3)] 0.000000000 0.000000000

i.e., 2.46 and 6.96 Å. The computation with ABINIT of the
pairwise and three-body dispersion energies gave, respectively,
−13.40 and 1.286 mHa for DFT-D3. These values have
to be compared to −13.42 and 1.284 mHa obtained with
Grimme’s code. For DFT-D 2 and DFT-D3(BJ), we obtain
for the pairwise term −16.826 and −22.00 mHa in ABINIT,
respectively, while we get −16.824 and −22.03 mHa with
Grimme’s code. The remaining discrepancies for DFT-D3 and
DFT-D3(BJ) can be explained by the absence of a cutoff for
the coordination number in Grimme’s code, while present in
our implementation. These tests validate the implementation
of these DFT-D methods inside the ABINIT software.

Second, in order to validate the dispersion contribution to
the IFCs in reciprocal space, we computed this quantity with
DFPT and frozen phonons at specific q points using supercells.
We used relative atomic displacements of 10−7 and a first-order
finite difference technique on the forces to get these values.

The comparison for graphite of the DFT-D3 contribution to
the IFCs with our implementation and with finite difference is
illustrated in Table I, with the three-body term being neglected
in the two cases. As one can see, agreement up to six digits can
be easily achieved. This confirms the validity of the previously
introduced mathematical derivations.

Finally, we examined the influence on the IFCs of the
three-body term, if included, compared to the one of the
pairwise term thanks to the same finite difference technique.
The energy tolerance was set for this three-body term to 10−11

Ha and computations were performed at the DFT-D3 (pairwise
only) geometry of graphite. We obtained for the specific three-
body contribution C̃3-bt

1313(�) ≈ −1.6 mHa, around 15% of the
pairwise contribution to the IFCs (equal to −10.975 mHa in our
case). In consequence, neglecting this three-body contribution
to the IFCs is an approximation with an impact similar to
neglecting it at the total energy or geometry relaxation levels
(that we do anyway in this paper).

IV. APPLICATIONS

In this section, we present some results obtained with
our implementation. We took three well-known materials
that require dispersion corrections to be properly described
with an ab initio method: solid argon, graphite, and benzene.
All computations are performed in DFT/DFPT and with the
software ABINIT.

The GGA-PBE approximation [40] was adopted for the
exchange-correlation functional in addition of the DFT-D
methods. As already mentioned, we neglect the three-body
contribution for ground-state and vibrational properties. An
energy cutoff smearing [41] of 0.5 Ha is used and geometry
optimizations were carried on until the forces on each atom
were smaller than 10−8 Ha/Bohr. Phonon frequencies were
computed at relaxed lattice parameters. We use such strict
relaxation criterion due to the weak nature of the dispersive
forces. Concerning the convergence criteria with respect to the
plane-wave cutoff energy and to the density of the Monkhorst
grid [42], we required a precision better than 0.2% on the
lattice parameters and of 1 cm−1 on the low-frequency modes,
referred as “lattice” modes in this paper. Further computational
details, like convergence parameters for each material under
study, are given in the Ref. [33].

We use the following definition for the cohesive energy per
unit cell of the crystal:

Ecoh = Esolid

N
− Egas, (13)

where Esolid is the total energy computed at the relaxed
position, Egas is the total energy computed when the atoms,
layers, or molecules are at least 16 Å away from their closest
neighbor, and N is the number of molecules per primitive
cell in the crystal. It is finally important to mention that we
neglect the effect of the zero-point motion on the cohesive
energy, equilibrium lattice parameters, and phonon frequencies
in our computation, although anharmonic effects may play an
important role in molecular crystals.

A. Argon

The isotope 36 of argon crystallizes in the FCC spatial
arrangement at around 84 K under normal conditions. Due to
the dispersive nature of the long-range interactions between
the Ar atoms, DFT-PBE fails to describe properly this system:
it predicts a lattice constant of 5.95 Å, quite off compared
to the experimental value of 5.30017 Å [43] at 4.25 K.
DFT-D2, -D3, and -D3(BJ) give 5.37, 5.56, and 5.48 Å for
the lattice parameter, respectively, in better agreement with
the experiments. Our DFT-D3(BJ) implementation gives a
cohesive energy of −88 meV, consistent with the value of
−87 meV reported in the literature with the same method in
VASP [35].

The phonon band structures of Ar computed with the
different DFT-D methods are presented in Fig. 2. In each
case, the computations were performed at the corresponding
relaxed lattice parameters and imposing the mass of the argon
as 36 amu. Experimental measurements performed at 10 K by
Fujii and coworkers [44] are also shown.

At first sight, one can see that DFT-PBE, without vdW
corrections, lies quite far from the experimental data. Better
agreement is achieved with DFT-D contributions, especially
DFT-D2. The upper branch of the spectrum is particularly
well reproduced in this last method. It has to be noticed that
the dispersion is quite remarkably similar with all the methods;
the frequencies are just underestimated, for example, in DFT-
PBE by an almost constant factor. The better agreement with
the experimental data of the DFT-D2 results, compared with

144304-4



INTERATOMIC FORCE CONSTANTS INCLUDING THE . . . PHYSICAL REVIEW B 93, 144304 (2016)

Γ K X Γ L X W L
0

10

20

30

40

50

60

70

80

Frequency [cm−1]

FIG. 2. Phonon band structure of solid 36Ar computed with the
different DFT-D corrections at the corresponding relaxed lattice
parameter. Dotted purple: DFT-PBE without DFT-D correction.
Dashed green: DFT-D3. Solid blue: DFT-D3(BJ). Dash-dot red:
DFT-D2. In each case, the computations were performed at the
corresponding relaxed lattice parameters. Experimental data from
Ref. [44] are also shown (black dots).

DFT-D3 or DFT-D3(BJ), is primarily due to its better lattice
constant.

Finally, we computed the phonon band structure at the
experimental lattice constant 5.30017 Å [43] to get further
insights on the direct effect of the DFT-D methods on the
phonon frequencies. Indeed, these methods give a quite
different lattice parameter for argon. The results are shown
in Fig. 3.
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FIG. 3. Phonon band structure of solid 36Ar computed with the
different DFT-D corrections at the experimental lattice parameter.
Dotted purple: DFT-PBE without DFT-D correction. Dashed green:
DFT-D3. Solid blue: DFT-D3(BJ). Dash-dot red: DFT-D2. Experi-
mental data from Ref. [44] are also shown (black dots).

TABLE II. Lattice parameters and graphite cohesive energy per
carbon atom computed with the different DFT-D methods. Results
obtained by Hazrati, Sabatini, and their respective co-workers with
the family of vdW-DF methods [25,46], as well as experimental data
are also shown.

Correction a (Å) d (Å) Ecoh (meV/C)

DFT-PBE 2.46 4.4 −1.3
DFT-D2 2.45 3.21 −57.8
DFT-D3 2.46 3.48 −48.9
DFT-D3(BJ) 2.46 3.37 −53.9

optB88-vdWa 2.47 3.36 −69.5
vdW-DF2b 2.47 3.52
rVV10b 2.46 3.36

Exp. 2.4589c 3.3538c −52 ± 5d

aReference [46].
bReference [25], Table 6-1.
cReference [45].
dReference [47].

One can see that in all the cases, the phonon band structures
overestimate the experimental results. It seems once again that
DFT-D2 improves the agreement with the experiments while
DFT-D3 and DFT-D3(BJ) lies quite close to the DFT-PBE
phonon band structure. Further discussions on the importance
of the contribution to the IFCs of the DFT-D corrections can
be found in Ref. [33].

B. Graphite

In graphite, each layer is bound to the neighboring ones
by weak forces. Therefore this material requires proper
description of these interactions in DFT. We focus in this work
on AB-stacked graphite.

The interlayer distance predicted in PBE (4.4 Å) largely
overestimates the experimental value of 3.34 Å [45]. The
use of DFT-D2 gives an interlayer distance of 3.21 Å and
thus tends to overestimate the binding force between the
layers. DFT-D3 and DFT-D3(BJ) predict 3.48 and 3.37 Å
distances, respectively, within 4% and 1% of the experiments,
respectively. The values of the in-plane lattice parameter and
cohesive energy can be found in Table II.

The graphite lattice phonon bands along �-A, with the
different methods, are shown in Fig. 4. For an easier
comparison, the lattice phonon frequencies at � and A are
reported in Table III alongside with experimental data (at room
temperature) and results obtained with vdW-DF2 (and other
optimized functionals for the vdW).

As one can see, the lattice modes are underestimated
in DFT-PBE (largely) and in DFT-D3 with respect to
experiments. DFT-D2 describes much better the �LO but
overestimates by more than 20 cm−1 the �ZO mode. DFT-
D3(BJ) works better to describe the higher lattice branch—
although being as poor as the other methods for the �LO

one—and yields similar precision with the more sophisticated
vdW-DF2 methods (and other optimized functionals for the
vdW) to describe these lattice modes. These discrepancies
may be explained by the choice of the exchange-correlation
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FIG. 4. Phonon band structure of low-frequency modes of
graphite computed with DFT-PBE as well as adding to it differ-
ent DFT-D corrections. Dotted purple: computed without DFT-D
corrections. Dash-dot red: computed with DFT-D2. Dashed green:
computed with DFT-D3. Solid blue: computed with DFT-D3(BJ). In
each case, the computations were performed at the corresponding
relaxed lattice parameters. Experimental data from Ref. [48] (black
dots) and Ref. [49] (black triangles) are also shown.

approximation but perhaps as well by temperature effects
(experimental data are performed at room temperature).

In addition, we computed at experimental lattice constants
[45] the phonon branches along �-A with the different DFT-D
methods. The results are shown in Fig. 5.

DFT-PBE and DFT-D3 give quite similar results while
DFT-D3(BJ) lies closer to the experiments for the high-
frequency lattice branch. DFT-D2 is completely off, predicting
negative phonon frequencies, which typically indicates a phase
instability. These negative phonon modes have likely the same

TABLE III. Low phonon frequencies of graphite computed with
different methods to treat the dispersion and at special points of the
reciprocal space. Results obtained by Hazrati and co-workers with
optB88-vdW [46], by Sabatini [25] are also presented as well as
experimental data from Nicklow and co-workers [49].

Frequencies �LO �ZO ATA/TO ALA/LO

DFT-PBE 6.5 23 4.5 17
DFT-D2 51 148 36 104
DFT-D3 32 106 23 74
DFT-D3(BJ) 39 123 29 86

optB88-vdWa 40 139 28 95
rVV10b 41 140 29 98
vdW-DF2b 31 118 22 82

Exp.c 49 126 35 89
Exp.d 42 127

aReference [46].
bReference [25], Fig. 6-3.
cReference [48], Fig. 4.
dReference [48], p. 2.
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FIG. 5. Phonon band structure of low-frequency modes of
graphite computed for different methods on top of PBE at experimen-
tal lattice parameters [45]. Dotted purple: computed without DFT-D
corrections. Dash-dot red: computed with DFT-D2. Green: computed
with DFT-D3. Solid blue: computed with DFT-D3(BJ). Experimental
data from Ref. [48] (black dots) and Ref. [49] (black triangles) are
also shown.

origin with the underestimation in DFT-D2 of the out-of-plane
lattice constant compared to the experiments.

C. Benzene

Finally, we studied the benzene molecular crystal. This ma-
terial crystallizes at 5.5 ◦C; its primitive cell is orthorhombic
(Pbca space group) and contains four C6H6 molecules.

With DFT-PBE, we observed a large overestimation of the
experimental volume [50] by more than 30%. This can be
explained by the fact that the benzene molecules are bound by
vdW interactions in the crystal, which are not included—or
somehow spuriously—in PBE. So, it was not meaningful to
compute the phonon frequencies in this case. In contrast,
relaxations performed with the different DFT-D methods yield
a meaningful global energy minimum; the lattice parameters
obtained with each method are given in Table IV, as well
as their corresponding cohesive energy for the benzene
crystal. In this table, we report also the low-temperature
experimental data (77 K) a = 7.292 Å, b = 9.471 Å, and
c = 6.742 Å [50] and experimental measurements performed
by Jeffrey and co-workers at 10 K on deuterated benzene [51]
a = 7.360 Å, b = 9.375 Å, and c = 6.703 Å. Concerning the
cohesive energy, an estimate of the lattice energy at 0 K [52]
of −55.3 ± 2.2 kJ/mol is also shown.

As one can see, DFT-D3 and DFT-D3(BJ) improve
markedly the agreement with the experiments, with the later
method providing the better description of benzene molecular
crystal. Our DFT-D3(BJ) implementation predicts a cohesive
energy of −55.0 kJ/mol in agreement both with the theoretical
value of −55.0 kJ/mol reported with the same method [35]
and with the estimate of the lattice energy at 0 K. In the case
of DFT-D2, the results are more contrasted, with the b and c

lattice parameters being quite underestimated in this method.
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TABLE IV. Benzene lattice parameters and cohesive energy
computed with the different DFT-D methods. Available experimental
data for the lattice parameters and an estimated value of the lattice
energy at 0 K are also reported.

Correction a (Å) b (Å) c (Å) Ecoh (kJ/mol)

DFT-D2 7.13 9.07 6.44 − 56.3
DFT-D3 7.42 9.48 6.85 − 47.4
DFT-D3(BJ) 7.30 9.31 6.70 − 55.0

Exp.a 7.292 9.471 6.742
Exp.b 7.360 9.375 6.703
Est.c − 55.3 ± 2.2

aReference [50].
bReference [51].
cReference [52].

These discrepancies probably originate from the absence of
any dependence of the dispersion coefficient on the close
chemical environment around each atom in this method.

As there are three translational and rotational degrees of
freedom for each molecule, there are in total 24 lattice modes,
including the three acoustic modes. The computed lattice
frequencies of benzene at the zone center are reported in
Table V alongside with experimental Raman measurements
performed at 7 K [53].

As one can see, DFT-D3(BJ) is able to reproduce quite well
the experimental frequencies of the lattice modes. On average,
the difference is less than 5 cm−1 compared to the experiments
which is quite acceptable from this degree of theory. Only the
B1g mode with 107.3 cm−1 experimental frequency, which
corresponds to a rotation of the phenyl groups in opposite
phases, is relatively poorly described. The discrepancies may

TABLE V. Lattice phonon frequencies of benzene molecular
crystal computed at the zone-center wave vector with PBE-D2, PBE-
D3, and PBE-D3(BJ). Experimental data from Pinan and co-workers
[53] are also presented for Raman active modes, as well as mean
average error (MAE) and mean average percentage error (MAPE) for
each given method with respect to the experiments.

Frequencies Frequencies

Sym. -D2 -D3 -BJ Exp.a Sym. -D2 -D3 -BJ

Ag 78 54 60 63.3 B2u 75 52 59
B1g 81 60 69 67.0 Au 68 52 60
B3g 86 55 64 68.7 B1u 88 62 71
B2g 99 75 88 84.9 Au 89 62 72
Ag 99 74 83 85.0 B3u 89 67 76
B2g 118 82 93 89.4 B3u 110 80 91
B2g 132 94 109 97.3 Au 121 89 103
Ag 118 84 97 100.6 B1u 124 90 104
B3g 120 88 103 100.6 B2u 125 93 107
B1g 107 77 88 107.3
B1g 160 120 136 135.0
B3g 157 119 136 136.0

MAE (cm−1) 18.5 12.7 4.54
MAPE (%) 20.2 13.4 4.9

aReference [53].
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FIG. 6. Lattice phonon band structure of benzene molecular
crystal (Pbca space group) computed with PBE-D3(BJ).

arise from several sources: they may come from the choice
of the functional approximation (including the vdW method),
from the choice of pseudopotentials or from anharmonicity
effects. We also observed only weak LO-TO splitting for the
lattice modes; the most important effect in DFT-D3(BJ) is seen
for the B1u at 103 cm−1 that is shifted by 0.6 cm−1 upwards
for a nonanalyticity alongside c∗ axis.

In addition, we computed the phonon band structure and
phonon density of states of this material with DFT-D3(BJ).
The phonon band structure and the phonon DOS for the lattice
modes are presented in Figs. 6 and 7, respectively. As one can
see in Fig. 6, the 24 lattice modes merge into six modes along
U-R, R-T, and R-S branches. We observe that the phonon

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0 20 40 60 80 100 120 140
Frequency [cm−1]

Normalized DOS [10−3 cm]

FIG. 7. Comparison between the lattice phonon density of states
of benzene molecular crystal computed with DFT-D3(BJ) at the
experimental lattice parameters [51] (blue-filled dotted line) and at
the DFT-D3(BJ) relaxed ones (plain curve filled with red).

144304-7



BENOIT VAN TROEYE, MARC TORRENT, AND XAVIER GONZE PHYSICAL REVIEW B 93, 144304 (2016)

density of states computed at relaxed DFT-D3(BJ) has the
following peak maxima: 57, 78, 87, and 126 cm−1, which are in
reasonable agreement with the experimental peaks reported by
Pinan and coworkers in the double-resonance Raman spectrum
[53], i.e., at around 40, 80, 90, and 120 cm−1. It has to
be noticed, though, that the discrepancies may arise from
anharmonic effects, present in the experiments but that we
neglect in our computation. An additional graph presented
in Ref. [33], Fig. S2, compares the phonon density of states
computed at DFT-D3(BJ), with and without the DFT-D3(BJ)
correction.

Finally, the lattice phonon density of states computed at
experimental lattice parameters and internal positions [51]
with DFT-D3(BJ) is also shown in Fig. 7. As one can see,
working at experimental parameters does not improve globally
the agreement with the experiments, as only three peaks are
observed in that case, in contradiction with the experiments.

V. CONCLUSION

We have presented in this work the theoretical derivation
of the pairwise part of the DFT-D contribution to the IFCs and
dynamical matrices, as well as its implementation inside the
ABINIT software. We have validated the implementation with
respect to frozen-phonon computations, and also tested the
hypothesis that the contribution from three-body interactions
can be neglected. We have then applied this new implemen-
tation to the computation of the phonon band structures of
argon, graphite, and benzene materials, which are known to
require proper description of the long-range e−-e− correlation.
We have analyzed the specific role of the correctness of the
equilibrium parameters, and the one of the direct modification
of dynamical matrices by the DFT-D contribution.

For argon, all the DFT-D methods improve markedly over
the DFT-PBE results. An excellent agreement with experimen-
tal data is even obtained for the DFT-D2 method, taken at its
relaxed lattice parameter. The agreement for the DFT-D3 and
DFT-D3(BJ), again at their relaxed lattice parameter is less
satisfactory, but still within 10%–20% of the experiment. If
one works at the experimental equilibrium lattice parameter,
all DFT-D (or DFT-PBE) methods overestimate the phonon
frequencies, by a few percent, the best agreement being again
obtained with DFT-D2.

For graphite, at the corresponding relaxed lattice parame-
ters, all DFT-D methods also improve enormously with respect
to DFT-PBE for the description of the low-lying bands, the

DFT-D3(BJ) or the DFT-D2 being the best, depending on the
considered branch. The agreement is again still within 10%–
20% of the experiment for these low-lying bands, for all DFT-D
methods. When fixing the lattice parameter at the experimental
value, DFT-PBE, DFT-D3, and DFT-D3(BJ) methods give
very similar results, while DFT-D2 is considerably off, and
even predict instabilities of the lattice.

For benzene, for the 12 low-lying modes at � for which
experimental data (Raman) are available, spanning the range
between 63.3 and 163 cm−1, the DFT-D3(BJ) has a maximum
discrepancy of 19.2 cm−1, while ten modes are obtained within
5 cm−1 of the experimental values. The performance of the
DFT-D3 method is less satisfactory, but still reasonable.

Globally, these dispersive contributions to the IFCs can
not neglected and are important to properly reproduce exper-
imental results. Overall, the DFT-D3(BJ) is the most reliable
method from what we observed.

This work opens the way for the computation of more
advanced response properties of molecular crystals in DFPT,
like Raman spectra, the temperature dependence of electronic
properties within the Allen-Heine-Cardona formalism [54–
60], or thermodynamic properties within the quasiharmonic
approximation [61–65]. Further developments may include
the derivation of strain perturbation for the DFT-D methods,
as well as the developments of dispersive contributions beyond
pairwise-additive models [66], which should describe in
a more adequate way the many-body nature of the vdW
interactions.
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