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Abstract 
The impact of text length on the estimation of lexical diversity has captured the attention of 

the scientific community for more than a century. Numerous indices have been proposed, and 

many studies have been conducted to evaluate them, but the problem remains. This 

methodological review provides a critical analysis not only of the most commonly used 

indices in language learning studies, but also of the length problem itself, as well as of the 

methodology for evaluating the proposed solutions. The analysis of three datasets of English 

language-learners' texts revealed that indices that reduce all texts to the same length using a 

probabilistic or an algorithmic approach solve the length dependency problem; however, all 

these indices failed to address the second problem, which is their sensitivity to the parameter 

that determines the length to which the texts are reduced. The paper concludes with 

recommendations for optimizing lexical diversity analysis. 
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Measuring Lexical Diversity in Texts: The Twofold Length Problem 
 

 Lexical diversity (LD) is defined as “the range and variety of vocabulary deployed in 

a text” (McCarthy & Jarvis, 2007, p. 459). It is the subject of a significant amount of research 

in literature, political text analysis and, particularly, in studies of language learning and 

impairment (Jarvis, 2013; Malvern et al., 2004). At first glance, its evaluation appears to be 

quite easy, as counting the number of different words (or types) in a text appears to be 

sufficient. In reality, the task is far from being simple because the length of the text has an 

impact on the number of types it contains. The most obvious solution, which consists of 

dividing the number of types by the total number of words (or tokens), is not the solution due 

to the nonlinear relationship between the numbers of types and tokens (Tweedie & Baayen, 

1998). This long-standing observation has led to a proliferation of studies aimed at proposing 

indices that are supposedly insensitive to text length, evaluating them in various situations, 

and attempting to determine which text size can be analyzed using which index (e.g., 

Fergadiotis et al., 2013, 2015; Hess et al., 1989; Jarvis, 2002; Jarvis & Hashimoto, 2021; 

Koizumi & In’nami, 2012; Lu, 2012; Malvern et al., 2004; McCarthy & Jarvis, 2007, 2010; 

Nasseri & Thompson, 2021; Treffers-Daller, 2013; Zenker & Kyle, 2021). This work has led 

to contradictory conclusions. In particular, some indices that were once considered 

insensitive to length have been shown not to be so in new studies, while other indices have 

followed the opposite path. Similarly, the solution of reserving certain indices for texts of 

certain lengths have not proven to be more reliable. 

 The first justification for this contribution is that many of these works are plagued by 

methodological problems that make their conclusions incorrect, and that these problems can 

be remedied. Another major limitation of these works is that they have neglected a second 

problem encountered by the indices that attempt to control the text length dependency by 

measuring LD in text segments in which length is determined by a parameter. The impact of 

this parameter is rarely evaluated. Finally, the analysis of the logical-mathematical properties 

of the indices has been neglected, thus preventing an accurate view of their most important 

features and the relationships among them. For these three reasons, this methodological 

review proposes a classification of indices based on their logical-mathematical relationship, a 

critical discussion of the twofold length problem and of the methods for evaluating it, better 

statistical indicators of the existence of a problem, and an empirical analysis of three datasets. 

These datasets consist of written argumentative essays and monologues produced in a testing 

context, a context in which LD has often been used as a predictor of L2 proficiency. It 

concludes with recommendations for optimizing LD analyses, particularly in the domain of 

language learning. 

 Before addressing these points, it is essential to emphasize that the problem of the 

sensitivity of LD indices to text length is only one of the difficulties in measuring LD. First, 

the number of types that are present in a text is only the most obvious dimension of LD. 

Other features of a text's vocabulary, such as the greater or lesser semantic similarity of the 

words present, are also relevant (Kyle et al., 2021). These features were studied in great detail 

a decade ago (Jarvis, 2013), and work is currently being done in an attempt to resolve this 

issue (Jarvis, 2017; Kyle et al., 2021). In the meantime, the use of indices based on the 

number of types and tokens has persisted. Second, the definition of a type is not 

straightforward, as it can be operationalized in different ways, such as spelling forms, 

lemmas, or word families (Jarvis & Hashimoto, 2021; Treffers-Daller et al., 2018). 

Regardless of the most appropriate operationalization, length-insensitive LD indices are 

needed. 
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Classification of the Main LD Indices Used in Studies of Language Learning  
 The first step in any LD study in the domain of language learning is to select one or 

several indices. The two main criteria employed are insensitivity to text length and sensitivity 

to differences in language proficiency. As Jarvis (2013) pointed out, this second criterion 

allows for the selection of effective, yet invalid, indices because the reasons that these indices 

are effective are not related to LD, but to other factors. 

 A third criterion is worth considering, namely the logical-mathematical relationships 

among these indices (Tweedie & Baayen, 1998), which originated in the way in which they 

attempt to correct for the length effect. Using this criterion enables the use of indices from 

different categories to cover different points of view of LD or to select indices only from the 

category that appears to be the most relevant. This is the criterion used in this section. The 

symbols used are N for the number of tokens in a text, V for the number of types 

(vocabulary), s for the number of samples extracted from a text and n for the number of 

tokens in a sample, a segment, or a moving window. 

 The main indices used to analyze LD in the language-learning domain1 can be divided 

into two broad categories: indices that take a global versus those that adopt a local view of 

LD. Global indices estimate LD by analyzing repetitions in the entire text by treating it as “a 

bag of words”. Local indices also provide an LD score for the text, but on the basis of text 

segments; that is, contiguous word sequences. They are thus more respectful of the true 

nature of a text, which is sequential2 (Tweedie & Baayen, 1998). These indices also have the 

advantage of being able to be used to track the fluctuation of LD in a text, a characteristic of 

LD seldom studied in language learning. Compared to global indices, local indices only have 

partial knowledge of the lexical repetitions in a text because this knowledge is limited to the 

length of the segments. The consequence is that local indices do not treat the text as a whole 

(Jarvis, 2013; Malvern et al., 2004). If the conclusion of an essay repeats the introduction 

extensively, the local approach will miss this, while the global approach will not. 

 

Indices Taking a Global View of LD 
 This category includes indices that are based on the full set of types and tokens that a 

text contains. It can be divided into two subcategories. 

 

Type-token Ratio (TTR) and Nonlinear Transformations of the Number of Types and 
Tokens 
 The archetype in this category is TTR (! "⁄ ), the sensitivity to text length of which is 

well established. Accordingly, many transformations of the number of types and tokens have 

been proposed in an attempt to remove this length effect. The most frequently used in 

language-learning studies are Guiraud's R, (! √"⁄ ), Herdan's C, (log ! log"⁄ ), and Maas' a, 

(((log" − log!) (log" × log")⁄ ). 

 

Random Sampling and Theoretical Distribution 
 The indices in this category estimate the number of types the text would contain if it 

were reduced to a given length. These indices are based on the urn model (Baayen, 2001). In 

this model, the urn contains all the tokens in the text, and a reduced image of the text is 

obtained by randomly extracting a certain number of tokens. The more often this draw is 

repeated, the more faithful the image will be. This random draw can be done with or without 

replacement. Malvern et al. (2004) discussed the strengths and weaknesses of these two 

sampling procedures. Sampling with replacement is usually preferred in order to estimate an 

author’s vocabulary size. Sampling without replacement is recommended in order to estimate 

the LD of a given text, but both types are used in this context. 
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 Mean Type-token Ratio in Random Samples (MTTRRS). MTTRRS refers to the 

mean number of types observed in s random samples of n tokens extracted with replacement 

(Malvern et al., 2004). It is convenient to divide this mean by n to obtain a TTR. Lu (2012) 

and Nasseri and Thompson (2021) set s to 10 and n to 50. 
 The Probability Distribution Family: HD-D (and Vocd), Simpson's D and Yule's 
K. Instead of extracting random samples, it is possible to use an exact probability calculation 

to determine the number of types that would be observed on average if all possible samples 

of a given size were extracted from a text. Baayen (2001) called this approach 

“interpolation”. In the case of sampling without replacement, the hypergeometric distribution 

has to be used, and the LD index computed in this way is HD-D, as proposed by McCarthy 

and Jarvis (2007). The hypergeometric distribution allows for the computation of the 

probability that any type that is present with a given frequency in the entire text would be 

found at least once in a sample of size n. Adding these probabilities for all the types present 

in the original text produces the number of types that are expected in a sample of n tokens. 

Dividing this sum by n provides the expected TTR for a sample of n tokens; that is, HD-D. 
 McCarthy and Jarvis (2007) proposed this index in a paper that presented a theoretical 

and empirical analysis of the renowned index vocd described in detail in Malvern et al. 

(2004). They showed that vocd, which is based on the number of types observed in samples 

obtained via a random draw without replacement, approximated HD-D. Studies comparing 

these two indices have consistently reported extremely high correlations between them, 

which are usually well above 0.90 (McCarthy & Jarvis, 2007, 2010). McCarthy and Jarvis 

(2007) proposed setting the parameter n to 42, referring precisely to the way in which vocd is 

computed. 

 HD-D is also a generalization of the D-index proposed in ecology by Simpson (1949), 

but rarely employed in the study of LD (Jarvis, 2013). When applied to the lexical domain, 

Simpson's (1949) concentration index is equal to the probability of observing a single type 

when a sample of two tokens is extracted from a text without replacement. When this value is 

subtracted from 1, we obtain the Gini-Simpson index, which corresponds to the probability of 

observing two different types in a sample of two tokens; that is, HD-D with n set to 2. 

 If the binomial distribution is used, and thus sampling with replacement, the index 

obtained could be called Binomial Distribution Diversity (BD-D). Just as HD-D is a 

generalization of Simpson's D, BD-D is a generalization of Yule's k, since k approximates the 

probability of observing two different types in a sample of two tokens obtained with 

replacement (Simpson, 1949). 

 In summary, HD-D can be seen as the archetype in this category. The LD value it 

provides depends on a single parameter; that is, the arbitrary length to which each text is 

reduced. 

 

Indices Taking a Local View of LD 
 These indices are based on text segments; that is, sequences of contiguous tokens. 

Unlike the indices in the first category, except for MTTRRS, they are not defined by a 

mathematical formula, but by a computational algorithm. These indices are differentiated by 

the way they define the analyzed segments. The procedure can be characterized according to 

whether it is systematic, random, or data-dependent, whether the segments are independent 

(that is, a given token cannot be present in more than one segment), and whether it assigns 

the same weight to each token to calculate the score (see Appendix S2 for an explanation of 

how these weights are calculated). 
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Mean Type-token Ratio in Sequential Samples (MTTRSS) 
 This index is equal to the average number of types observed in s samples of n 

contiguous tokens selected from a first token that was chosen randomly (with replacement) in 

the text (Malvern et al. 2004). It is convenient to divide this average by n to obtain a TTR. 

MTTRRS and MTTRSS are often mentioned together in the literature, and the same 

parameter values are used (s = 10 and n = 50). The segments used by MTTRSS are defined 

by a random process; they are (usually) non-independent, and the tokens between position 1 

and position n-1 and those between position N-n+1 and position N receive a different weight, 

which is linearly related to the distance between their position and the closest extreme 

position (1 or N). 

 

Mean Segmental TTR (MSTTR) 
 This index is obtained by dividing a text into contiguous segments of n tokens and 

calculating the average TTR of each of these segments (Malvern et al., 2004). The parameter 

n is usually set to 50. This index is systematic; the segments are independent, and the index 

assigns a zero-one weight to the tokens except in the case that the division of N by n produces 

an integer. 

 

Moving-Average Type-Token Ratio (MATTR) 
 This index is obtained by moving a window of n tokens along the tokens of the text, 

starting with the first one and advancing by one token each time. The final score is the 

average of the TTRs calculated in each window (Covington & McFall, 2010). The value of 

the parameter n is usually set to 50 in research on language learning. The segments are 

defined in a systematic way; they are non-independent, and the tokens receive a variable 

weight exactly as is the case with MTTRSS. 

 

Measure of Textual LD (MTLD) 
 MTLD is equal to the mean length of sequential token strings in a text that maintains 

a TTR at a certain level, the parameter of the procedure, which is usually set at 0.72 

(McCarthy & Jarvis, 2010). MTLD is obtained by starting a first segment with the first 10 

tokens in the text and extending it by one token each time, unless the TTR computed in this 

segment is less than 0.72. When this occurs, a new segment of 10 tokens is started. The 

(likely) incomplete segment at the end of the text is used to estimate the number of words it 

would need to contain to reach a TTR of 0.72. This procedure is performed a second time, 

starting at the end of the text. The final MTLD value is the average length of all the segments 

thus formed. 

 Recently, Vidal and Jarvis (2020) proposed a new version of this index called MTLD-

W that reduces the variability problem caused by the final segment when calculating MTLD. 

Since MTLD and MTLD-W produce highly correlated LD scores (Vidal & Jarvis, 2020; 

Kyle et al., 2021), MTLD was preferred to MTLD-W in this study due to the limited number 

of studies using the latter. 

 The length of the segments for MTLD is defined by the data; they are independent. 

The question of weighting does not arise in the same way that it does for the other indices. 

One could consider that all the tokens have the same impact on the computation procedure; 

that is, they increase or decrease the TTR of the current segment. However, this is not 

entirely correct because the first ten tokens in a segment are treated as a single block, and 

because the tokens in the (likely) incomplete last segment are used to estimate the length of 

that segment and not to compute it. 
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The Twofold Length Problem and How to Evaluate It 
 In the language sciences, almost all research on the validity of LD indices has focused 

on the sensitivity of these indices to the length of texts, a problem that is complex to address 

because it requires the comparison of text excerpts of different lengths but with lexical 

content as similar as possible. The second problem discussed in this section, namely the 

sensitivity to the parameter that determines the size of the samples of texts used, has received 

much less attention. 

 

The First Problem: Evaluation of Text Length Sensitivity  
 The two main methods used in the literature to determine whether an LD index is 

sensitive to text length are the parallel sampling method and the random sampling method. 

Following a discussion of their advantages and limitations, two complementary methods are 

proposed. 

 

The Parallel Sampling Method 
 The parallel sampling method is undoubtedly the method that is used most frequently 

to evaluate the LD indices. First, all texts are truncated to the same length, such as 300 

tokens. The LD for this (truncated) text is then compared to the average LD of the segments 

obtained by dividing the text into two, three, or four; that is, the average of the two 150-word 

segments, the three 100-word segments, and the four 75-word segments. This method allows 

for the comparison of segments of different lengths, but which contain exactly the same 

tokens when all segments of a given length are added together. If all the values of an LD 

index are (almost) identical, this index is considered not to be affected by text length. 

 The parallel sampling method does not allow for the valid evaluation of either global 

or local indices. The problem is that, if all the tokens of a text are present in the sum of the 

segments of a given size, they do not co-occur with the same tokens. In the longest extracts, 

global indices such as HD-D take the repetitions of the same type at long distances into 

account. They cannot do so when these extracts are divided into smaller segments (Malvern 

et al., 2004). Consider the example presented previously: If the conclusion of an essay repeats 

the introduction extensively, the global approach will take the repetitions into account when 

analyzing the complete text, but will not be able to do so when analyzing the segments3. 

Even if this problem is less severe for local indices because they process only a subset of the 

tokens of a segment simultaneously, the parallel sampling method is also not suitable to 

evaluate them. For example, due to moving the window along the segment, MATTR does not 

have access to the same information in a segment of a given size and in two segments 

obtained by dividing it into two.  

 

The Random Sampling Method 
 A second method for evaluating the length sensitivity of the indices is to randomly 

permutate all the tokens in a text and to then calculate the LD of the first m tokens in this 

random sequence4 (Tweedie & Baayen, 1998). An insensitive index should always produce 

an extremely similar value regardless of the value of m. A large number of permutations is 

necessary to reduce the impact of the random variability. This method solves the problem of 

the parallel sampling method because all the tokens have the same likelihood of being present 

with any other token in a segment of a given size. 

 This random sampling method can only confirm the stability of the global indices 

based on random sampling without replacement for the simple reason that the random 

permutations approximate the hypergeometric distribution used by these indices. This method 

is applicable to indices based on the transformation of the number of types and tokens. The 

situation is more complex for local indices. On one hand, they can be evaluated using this 
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method if one considers that the order in which the tokens are extracted corresponds to the 

sequential order of the sample in question. On the other hand, this method denies “the non-

random way in which words are used in actual coherent prose” (Tweedie & Baayen, 1998, p. 

332). 

 

The Ordered Random Sampling Method 
 It is easy to make the random sampling method more compatible with local indices, as 

it is sufficient to reorder the randomly extracted sample of tokens according to the order of 

these tokens in the original text; this means that the indices are applied to a gap-fill text in 

which a number of random tokens have been deleted. This method is not necessary for the 

global indices because they are insensitive to the order of the tokens in the sample, but it 

allows for a better understanding of the impact of sequentiality on local indices. 

 

The Alternating Token Sampling Method 
 A limitation of the ordered random sampling method is that the extracted tokens in a 

given sample may not be distributed in a relatively homogeneous way across the entire text. 

This drawback can be overcome by adapting the split-half procedure proposed by McKee et 

al. (2000), which consists of comparing the LD of the entire text to the average of those 

obtained for even-numbered or odd-numbered tokens. It is easy to generalize this method to 

produce several sample sizes by taking one token out of three and one out of four. It is 

necessary to truncate the texts to the same length in order to guarantee that the samples in a 

given condition have precisely the same size in all texts. 

 A weakness of the above-mentioned method is that the decision to place tokens 1, 3, 

5, 7... in the same sample is arbitrary; it would be as justifiable to place tokens 1, 4, 5, 8... 

together. The impact of the chosen division can be reduced by randomly sampling a large 

number of these sequences. To obtain the 1-in-4 token samples for instance, the text is 

divided into segments of four consecutive tokens starting from the first one and a random 

procedure is used to independently distribute one token of the four in each sample. This 

version of the method, which is used in the following, also has the advantage of being able to 

select two tokens in the same sample that follow each other in the original text. 

 

The Second Problem: The Impact of the Index Parameter 
 The second potential problem with the LD indices concerns indices that use samples 

or segments to evaluate LD; that is, all the indices discussed except TTR and the 

transformations. These indices use a parameter that directly (or indirectly in the case of 

MTLD) determines the number of tokens that will be used to evaluate LD. This parameter is 

systematically set in an arbitrary way or on the basis of preliminary analyses. To my 

knowledge, its impact on the conclusions of the analyses is almost never considered in 

studies of language learning. 

 However, Covington and McFall (2010, p. 97) underlined the impact of this parameter 

in MATTR: “Obviously, the moving-average TTR of a text varies with the window size more 

or less the same way that the conventional TTR varies with the text length. ” The authors 

indicated that the window size should be determined according to the objectives of the study. 

They also pointed out that MATTR will be more sensitive to short- or long-term repetitions 

depending on the window size. If two texts differ in the proximity of repetitions, the choice 

of the window size will affect the results. 

 With regard to HD-D, work in ecology on Simpson's index, a special case of HD-D, 

has shown that it is only the most extreme case of a family of indices obtained by varying the 

size to which samples are reduced, thus the parameter. Hurlbert (1971, p. 581) emphasized 

the role of this parameter in these terms:  
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Species richness comparisons made at a single sample size (n) permit only limited 

conclusions. Since the manner in which sample species richness increases with sample 

size varies according to the number of species and their relative abundances in the 

collection, it is possible that at one sample size, collection A will have a greater sample 

species richness than collection B, while at a larger sample size, collection B will have 

the greater sample species richness. 

 Determining the impact of this parameter in the language learning field is the second 

objective of this study. 

 

Method 
Data Collections 
 Two datasets consisting of written essays that were previously employed in LD 

studies in Language Learning (Bestgen, 2017; Zenker & Kyle, 2021) were used to evaluate 

the sensitivity of the indices to text length. The texts in the two datasets differ in length; one 

contains texts of 400 words or less, while the other contains texts of 480 to 895 words, thus 

allowing for analyses to be conducted over a wide range of text lengths. Since these texts 

were rated for quality, they can be used to determine whether length effects are sufficient to 

significantly alter the findings of studies linking LD and text quality, which is probably the 

most frequently addressed question in this field. 

 A limitation of these datasets is that they only represent a single type of learner 

production data; that is, written essays. To make the results of this study more generalizable, 

a third dataset consisting of English learner monologues from the Corpus of English as a 

Foreign Language was analyzed. The conclusions reached in these analyses are identical to 

those reported below. Due to a lack of space, these analyses are presented in Appendix S6. 

 

International Corpus Network of Asian Learners of English (ICNALE) 
 The ICNALE Edited Essays (V2.1, 2018 July) is described in Ishikawa (2018). It is a 

subset of the ICNALE written corpus, and consists of 640 argumentative essays of between 

180 and 400 words in length that were written by 320 EFL and ESL learners from 10 Asian 

countries. Compared to the much larger parent corpus, it has the advantage of the texts 

having been evaluated by professional editors using the five rating rubrics in the ESL 

Composition Profile (Jacobs et al., 1981): content, organization, vocabulary, language use, 

and mechanics. The measure of quality used in the following is the weighted average of the 

scores obtained using the five rubrics. A limitation of these evaluations is that each essay was 

judged by only one rater, but a small-scale calibration study was performed in which the five 

raters were asked to grade the same set of eight essays. The average correlation for all the 

raters taken two by two was .84 and the minimum correlation was .74, which is an acceptable 

level of interrater reliability for this type of task (Artstein & Poesio, 2008). 

 

International Corpus of Learner English (ICLE) 
 This dataset is described in Thewissen (2013), and includes 223 argumentative essays 

of between 450 and 900 words in length that were written by French, German, and Spanish 

learners from the ICLEv1. Two professional raters were asked to rate each text according to 

five rubrics of the Common European Framework of Reference Writing Scale; that is, 

vocabulary accuracy, grammatical accuracy, orthographic control, vocabulary range and 

coherence/cohesion. They were then asked to allocate a holistic score. Each essay was rated 

as being B1, B2, C1, or C2. In addition, the raters were allowed to use + or - signs to further 

differentiate the sub-levels. These ratings were transformed into a numerical scale. Holistic 

ratings, which were highly correlated with the score for each rubric (r > .95), were used in the 
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following analyses. The Pearson correlation coefficient between the values given by the two 

raters was .69, which corresponds to a Spearman-Brown reliability of .82. 

 

Procedure 
Text Preprocessing 
 CLAWS7 (Rayson, 2003) was used to extract all the tokens; that is, words in the 

sense of orthographic forms. As in Baayen (2001), no lemmatization was applied, tokens 

such as be, is and were being treated as different types. In order to be able to truncate the 

texts to a sufficient length for the analyses, a minimum length of 240 tokens was imposed in 

ICNALE, thus reducing the number of texts in this dataset to 188. No texts were deleted in 

ICLE because they all contained more than 400 tokens. Table 1 presents descriptive 

statistitics for the two datasets. 

Table 1 
Descriptive Statistics for the ICNALE and ICLE Datasets 

Dataset n Text length (in tokens) 

  Mean Std Min Max 

ICNALE 188 272 26 240 400 

ICLE 223 681 95 485 890 

Evaluated Indices 
 The following ten indices were compared: the TTR, as a base level, and three 

transformations, Guiraud's R, Herdan's C, and Maas's a, two global indices, MTTRRS and 

HD-D, and four local indices, MATTR, MSTTR, MTTRSS and MTLD. 

 

The First Problem: Evaluation of Text Length Sensitivity  
 For these analyses, the parameter n was set to 50 and s to 10. For MTLD, the TTR 

factor was set to 0.72. All the texts in each dataset were reduced to the same length, namely 

240 tokens for ICNALE and 400 for ICLE. This is the usual way to proceed in the parallel 

sampling method because it guarantees that the segments obtained after the division have the 

same length in all the texts that are compared. It is also necessary for the alternating token 

sampling method, but is not necessary for the two random sampling methods. Nevertheless, it 

was considered preferable to also truncate the texts for these methods in order to place all the 

methods under the same conditions. 

 The parallel sampling method was applied to each truncated text by dividing it by 2, 3 

and 4, and the LD indices were calculated for the complete extract and for all the segments. 

The data for the statistical analyses were the index values for the complete extract and the 

average of the values for the segments of the same length. The same lengths as those 

produced by the parallel sampling method were used for the random sampling method; that 

is, 240, 120, 80, and 60 for ICNALE, and 400, 200, 133, and 100 for ICLE. A single score is 

obtained when the entire truncated text is analyzed. Ten thousand random permutations were 

performed in the other three conditions, and the final score for a condition was the average of 

the scores obtained for these permutations. The text samples that were analyzed using the 

ordered random sampling method were identical to those that were analyzed using the 

random sampling approach; the only difference was that the tokens were replaced in their 

original order before the indices were computed. Finally, for the alternating token sampling 

method, four lengths were produced by selecting all the tokens or one token out of two, three 

or four. Ten thousand random selections were made for these last three conditions, and the 

final score was the average of these scores. To facilitate the reproduction of the study, 

Appendix S9 provides python scripts that implement the least often used methods. 
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The Second Problem: Manipulation of the Index Parameter 
 The texts were not truncated for this analysis, since the objective was to mimic a 

standard LD study in which texts of different lengths are compared. This analysis could not 

be performed on the TTR and the three transformations because these indices do not use a 

parameter. In order to set the values of the parameters to be evaluated, I relied on the factor 

size analysis of MTLD presented by McCarthy and Jarvis (2010), who indicated that values 

ranging from 0.66 to 0.75 could be used; that is, ten different values when rounded to the 

second decimal place. Ten values were also used for the other indices in which the parameter 

determined the sample size. For ICNALE, the selected values ranged from 24 to 240 tokens 

in steps of 24 and from 40 to 400 in steps of 40 for ICLE. This way of setting the parameter 

value probably favored MTLD because the values proposed by McCarthy and Jarvis (2010) 

were not expected to affect this index. 

 

Statistical Analysis 
Critique of the Usual Statistical Technique 
 The evaluation methods all generated the same type of data to evaluate the impact of 

length, namely an LD score computed for each sample length that was extracted from each 

analyzed text. When the analyses are performed on a single text, the results are presented in 

the form of a graph showing the evolution of the scores according to the sample length. An 

index is considered to be unaffected by length if the LD score is constant for all lengths. 

 However, in the field of language learning, several tens or hundreds of texts are 

usually analyzed, thus making the use of graphics difficult. The effect of length is then almost 

always (but see Fergadiotis et al. (2013, 2015) for indirect approaches based on confirmatory 

factor analysis and structural equation modeling) assessed by means of an ANOVA with a 

repeated factor. The underlying assumption is that, if the sample length has no impact, the 

means of the LD scores for each length should be approximately the same, and the ANOVA 

should therefore be statistically non-significant. 

 This approach has two important flaws, the most obvious being that it distorts the 

correct use of null-hypothesis significance tests, which are designed to reject the null 

hypothesis (Norris, 2015). The absence of a statistically significant difference does not 

validate an index. The second flaw is that a comparison of means employed in this context is 

only aimed at detecting systematic biases between different sample lengths. However, an 

index can be problematic even though the mean values per length are not statistically 

significantly different. It is sufficient that the impact of the length is different for each text, 

thus producing a text ´ length error that overrides the overall effect of length (Bruton et al., 

2000). 

Table 2 
Means for the Four Lengths and ANOVA Results for the Parallel and Random Sampling 
Methods 
Sampling Sample length    

Method 60 80 120 240 F p Partial eta2 
Parallel .7740 .7744 .7750 .7753 0.44 .67 .007 

Random .7803 .7803 .7802 .7802 3.83 .03 .058 

 
Note: N = 188, Dfs = 3, 187. Appendix S3 provides additional information. 

 These flaws can be illustrated by the following example taken from the analyses 

presented in the Results section. The parallel sampling method and the random sampling 

method were applied to MATTR in the ICNALE corpus. Table 2 shows the means for the 

four sample lengths and the results of the repeated measures ANOVA. In these analyses, no 

violations of the underlying assumptions of normality and sphericity were observed. 
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Figure 1 
Profile Graphs for MATTR in ICNALE by the Parallel Sampling (Left) and Random 
Sampling (Right) Methods 

  
  

 The table shows that the means were relatively constant. The ones that evolved the 

most were obtained via the parallel sampling method, the p-value of which nevertheless 

pleads for non-significance, using an alpha of .05, in contrast to that of the random sampling 

method. Figure 1 (see below for detailed explanations regarding how these figures were 

drawn) explains these observations. According to the random sampling method, the MATTR 

scores for each text were almost constant; so constant that an extremely small decrease in the 

mean was detected by the F-test. The profiles were completely different when the parallel 

sampling method was used. Large variations in the LD score were observed for many texts, 

thus producing crossovers between lines. These crossovers imply that a text that is considered 

to be less diverse than another when it is divided into segments of 60 tokens is much more 

diverse when it is divided into segments of 120 tokens. These profiles suggest an impact of 

length on MATTR when the parallel sampling method is used, whereas the random sampling 

method shows almost no sensitivity, which is the opposite of the conclusions drawn from the 

ANOVA. These results also show that a significant ANOVA does not necessarily imply an 

important sensitivity of an index to the text length. 

 

A Better Approach: The Intraclass Correlation Coefficient 
 For an index to be considered to be completely unaffected by text length, it is 

necessary for any differences in the scores for samples of the same text of different lengths to 

only be due to errors that are related to the method used, such as the impact of the random 

permutations. The intraclass correlation coefficient (ICC) is the traditional procedure for 

evaluating this condition using interval data (Tinsley & Weiss, 1975). It corresponds to the 

proportion of the total variance in the scores due to variance in the rated object (in this case, 

the text), and is therefore a measure of the effect size. The closer it is to 1, the less the index 

is affected by the sample lengths. ICCs are based on two assumptions: the independence of 

the raters and the ratees, which must be guaranteed by the study design, and the normality of 

ratings. A major advantage of the ICC is that, even when the data are non-normal, the 

estimation of the appropriate components of variance and the reliability coefficients are still 

permitted (Gildera et al., 2007; Landis & Koch, 1977).  

 There are several ICCs depending on the design and objectives of the study (Shrout & 

Fleiss, 1979). In the current case, ICC(2,1) has to be used because the different lengths that 

were compared can be seen as a (relatively) random sample of the set of lengths that could be 

evaluated, and each of these lengths was applied to each of the texts that were analyzed. 

McGraw and Wong (1996) presented two versions of ICC(2,1) depending on whether the 
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objective was to measure absolute agreement, for which the scores for the different sample 

lengths of a text must be identical, or the consistency, for which it is sufficient for the scores 

to be proportional when expressed as deviations from their means; that is, correlated. 

Absolute agreement was the goal in the present case, except when the analyses concerned the 

impact of the index parameter, as it was expected that this parameter would modify the mean 

LD scores. However, it was hoped that this manipulation would not alter the relative 

positions of the texts with regard to their LD level. 

 The minimum acceptable level of an ICC depends on the goals of the study. As 

Nunnally (1978, as cited in Lance et al., 2006, p. 206) pointed out, “In those applied settings 

where important decisions are made with respect to specific test scores, a reliability of .90 is 

the minimum that should be tolerated, and a reliability of .95 should be considered the 

desirable standard. ” As the LD indices were intended to cancel out any differences related to 

the length of the texts, ICCs as close to 1 as possible were desirable. However, the fact that 

error variance may also be due to the method that was used in the evaluation should also be 

kept in mind. 

 

A Complementary Approach: Profile Graphs 
 Although the ICC has the advantage of being an objective measure of effect size, it 

does not allow for the visualization of the LD text profiles. Thus, it was complemented in the 

results by graphs of the same type as those used when the analysis concerned only one text. 

In order to make these graphs as informative as possible, the twelve profiles that had the most 

differences that were extremely large between conditions taken two by two, will be made 

more visible. The same criterion and the same procedure were applied to all the indices in 

order not to favor any of them. The procedure that was used is explained in Appendix S4. 

 

Software used 
 All of the statistical analyses were performed using SAS software, except the 

calculation of the ICC confidence intervals which was performed with the IRR package (R 

Core Team, 2021). The SAS code and the R function used can be found in Appendix S8. 

Appendix S7 explains how to obtain the main LD indices analyzed in this paper by means of 

two freely available tools, TAALED (Kyle et al., 2021) and the koRpus package for R 

(Michalke, 2020). 

 

Results and Discussion 
 

The First Problem: Evaluation of the Text Length Sensitivity  
 
ICC Analysis 
 Figure 2 shows the ICCs for the two datasets, the four evaluation methods, and the ten 

indices that were analyzed. The mean ICC is represented by a circle, while the bars represent 

the 95% confidence interval for the ICC population values (McGraw & Wong, 1996). The 

graphs clearly show that the most important differences were related to the indices, with the 

other two manipulated factors, namely the analyzed dataset and the evaluation method, 

having much less impact. 

 All the graphs show the same division of the indices into two groups: TTR and the 

transformations, as well as MTTRRS, performed extremely poorly. The other five indices 

were far superior in terms of controlling for the impact of length because they effectively 

reduced all the texts to the same length using a probabilistic or an algorithmic approach. The 

mean ICCs were almost always above .90, and the lower bound of the confidence interval  
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Figure 2 
ICCs for Text Length Sensitivity for ICNALE (Left) and ICLE (Right) 
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Figure 3 
Profile Graphs for ICNALE in the Alternating Token Sampling Method 

 
was consistently above .79. In six out of eight graphs, the ICC for HD-D was nearly equal to 

1, since the smallest of these values was .9993. The differences among the other four indices 

varied by condition, and the confidence intervals frequently overlapped. Nevertheless, it 

appears that MATTR was slightly more effective than the others, followed by MTLD.  
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 The differences among the four assessment methods deserve specific comments. As 

expected, the parallel sampling method penalized HD-D. A comparison of the two 

randomization-based methods showed that token reordering penalized MATTR, MSTTR, and 

MTTRSS more than it did MTLD, but that MTLD performed worse than the others with 

unordered randomization. The alternating token sampling method results were relatively 

similar to those obtained via the ordered random sampling method. It confirms the extremely 

high efficiency of HD-D for controlling the length effect. This conclusion contradicts that of 

several previous studies. An in-depth discussion of the most important studies is given in 

Appendix 10. 

 
Graphical Representation of the Profiles 
 Figure 3 shows the impact of length on the indices. These profiles were obtained 

using the alternating token sampling method for ICNALE. The figures for the other methods 

and for ICLE are provided in Appendix S1. The five indices that performed worst according 

to ICC clearly showed a length bias. The profiles for MATTR, MSTTR, MTTRSS, and 

MTLD did not show any bias, but there were important crossings, which explained why the 

ICC was sometimes quite far from 1. Only the profiles for HD-D were almost perfectly 

stable. 

 
Discussion 
 All four sampling methods have their advantages and disadvantages. The parallel 

sampling method is the only one that extracts samples composed of continuous sequences of 

tokens. Figure 2 shows that it can identify very length-sensitive indices. However, due to the 

problems mentioned above, it is not clear that it can make fine distinctions between indices 

that are more effective at controlling length. The alternating token sampling method is 

preferable because it ensures that samples of different sizes are truly comparable in content. It 

respects the order of the tokens in the text and their distribution within the text. This last 

point suggests that it is also preferable to the ordered random sampling method. One might 

think that the random sampling method is useless. This is far from obvious, as it has the 

advantage of breaking the order of the tokens in a text. This has an impact on local indices, 

such as MATTR and MTLD, which are sensitive to the fluctuation of LD in a text. By 

cancelling out any effect of token order, it allows these local indices to be compared 

independently of this factor. However, it also has the disadvantage of cancelling out the 

impact of differences in the weights assigned to tokens by certain indices, since all tokens 

have the same probability of being positioned at any point in the sequence and therefore of 

being underweighted, for example by MATTR, when they are at the ends. 

 The TTR, the three transformations, and MTTRRS were clearly unsatisfactory. If this 

conclusion was expected for the first four indices, it was less expected for MTTRRS, 

particularly since it does not apply to MTTRSS, although these two indices are often 

presented as variants of each other (Lu, 2012). MTTRRS differs not only from other indices 

based on random sampling, but also from indices based on text segments, in that the samples 

of 50 tokens are extracted with replacement6. The smaller the length of the sampled text, the 

more likely it is that the same token will be selected more than once, thus reducing the LD. 

 As the parallel sampling method is problematic, HD-D is clearly the index that is least 

affected by text length. If one wishes to favor a local index, MATTR appears to be slightly 

better than the others, particularly for the alternating token sampling method, but the 

differences are not very important. The major weakness of MTTRSS compared to MATTR is 

the number of segments it considers, which was set at 50 in this study based on standard 

practice, whereas MATTR employs N-n+1 segments; that is, 191 for a length of 240 tokens 
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in ICNALE. MTLD often performs almost as well as MATTR, but its significantly poorer 

performance in the random sampling method warrants further investigation. 

 
Figure 4 
ICCs for the Impact of the Index Parameter for ICNALE (Left) and ICLE (Right) 

  

The Second Problem: Impact of the Index Parameter 
ICC Analysis 
 Figure 4 shows the consistency (correlation) of the indices as a function of the 

parameter value measured by the ICC. The impact of the parameters was not negligible, since 

the best ICCs barely exceeded .90. HD-D was the least affected overall, followed by MATTR 

and MTLD. 

 
Graphical Representation of the Profiles 
 Figure 5 illustrates the impact of parameter manipulation on the LD scores for the 

texts in the two datasets. In this figure, the scores for each index for each value of the 

parameter are centered on 0 in order to eliminate bias and to match the data used for the ICC 

exactly when it measures consistency. For all the indices, the LD score of some texts 

increased with the increase of the parameter value, while this was the opposite for other texts, 

and produced profile crossings. These crossings are obviously problematic since they mean 

that some texts, which are more lexically diverse than others with a low value of the 

parameter, are less diverse than are those with a high value. 

 HD-D and MATTR presented relatively simple profiles in the sense that they could be 

approximated by a low-degree polynomial curve, while the profiles of MSTTR and MTTRSS 

were much more erratic. For MTLD, it appeared that the profiles that were most affected are 

the ones for which the segments are the longest. These are the most diverse texts, but also the 

ones for which the last factor has the most impact. This is because the final factor, almost 

always incomplete, is frequently misestimated (Vidal & Jarvis, 2020). This factor has a 

greater impact when texts are lexically more diverse because fewer segments are obtained.  

 
Impact on the Correlation between LD and Text Quality 
 An important question concerns the extent to which these differences due to the 

parameter can affect the conclusions of studies of language learning. It is difficult to provide 

a definitive answer to this question, but it is possible to assess whether this impact is 

sufficient to alter the conclusions of a traditional analysis, such as the correlation between LD 

scores and the text quality (Crossley et al., 2010; Lu, 2012). The correlation for each 

parameter value is presented in Tables 3 and 4; the largest value for each index is in bold, and 

the smallest is underlined. To check the underlying assumptions, the data distributions were 
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examined graphically, as recommended by Hu and Plonsky (2021). There was no indication 

of non-linear relationships, nor of extreme values. The only major deviations from normality 

were observed for MTLD in the ICNALE and ICLE datasets (but not in the COREFL 

dataset). It is worth remembering that MTLD is the only index in this study that does not 

output a sort of TTR, but the mean number of tokens that maintains a TTR at .72. The log e 
transformation proved effective in normalizing these distributions. The correlations obtained 

after this transformation were very close to those observed without it, and no conclusions 

were altered. The results obtained with untransformed values are reported, as this is how the 

MTLD score is systematically analyzed. 

 

Figure 5 
Profile Graphs for the Parameter Impact for ICNALE (Left) and ICLE (Right) 
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Table 3 
Correlations Between LD and Text Quality for ICNALE for Different Parameter Values 
Length HD-D MATTR MSTTR MTTRSS  Factor MTLD 

24 .285 .390 .385 .299  .66 .285 

48 .306 .367 .331 .371  .67 .289 

72 .319 .367 .365 .326  .68 .287 

96 .327 .370 .344 .355  .69 .252 

120 .333 .368 .336 .336  .70 .242 

144 .337 .365 .321 .373  .71 .296 

168 .339 .363 .324 .367  .72 .284 

192 .341 .360 .348 .363  .73 .308 

216 .342 .347 .340 .340  .74 .307 

240 .341 .341 .336 .343  .75 .320 

 
 These tables show an impact of the parameter on the correlation, but it was somewhat 

limited. It was also observed that it was not always the same parameter values that produced 

the highest or lowest correlations in the two datasets. Steiger's (1980) test for two non-

independent correlations was used to determine if there was a statistically significant 

difference between the largest and smallest correlation of each index with the text quality. 

Only two differences were statistically significant at an alpha of 0.05: MTLD in ICNALE 

(Difference = .078, t(185) = 3.18, p = .002, CI = [.029, .127]) and MTTRSS in ICLE 

(Difference = .177, t(220) = 3.35, p < .001, CI = [.072, .282]). The lower limit of the 

confidence interval for the difference, which was obtained using Zou’s (2007) procedure, was 

close to 0 for MTLD. It was higher for MTTRSS, but the analysis of the ICCs (Figure 4) 

suggested that this index could not be recommended. The full results of this analysis are 

provided in Appendix S5. 

 

Table 4 
Correlations Between LD and Text Quality for ICLE for Different Parameter Values 
Length HD-D MATTR MSTTR MTTRSS  Factor MTLD 

40 .480 .445 .417 .294  .66 .452 

80 .510 .474 .462 .414  .67 .461 
120 .515 .473 .480 .460  .68 .449 

160 .513 .468 .477 .458  .69 .449 

200 .513 .462 .473 .453  .70 .458 

240 .512 .460 .481 .448  .71 .440 

280 .511 .461 .496 .458  .72 .450 

320 .511 .462 .501 .465  .73 .446 

360 .511 .465 .497 .459  .74 .455 

400 .511 .471 .482 .471  .75 .436 
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Discussion 
 None of the five indices tested was insensitive to a change in parameter. This was also 

the case for HD-D, which was found to be virtually immune to the effects of length in the 

previous analyses. How can this sensitivity be explained? For MATTR, Covington and 

McFall (2010) pointed out that the parameter that sets the window size determines the weight 

of the repetitions in the short and long terms. A small window size, even of ten tokens, allows 

for the analysis of very short-term repetitions, which are typical of dysfluencies, whereas a 

large window size takes long-distance repetitions as well as closer ones into account. It 

follows that, when analyzing two texts that differ in the distance between repetitions, using 

different window lengths will produce different MATTR scores. This explanation obviously 

applies to MSTTR and MTTRSS, in which the parameter performs the same function. It also 

applies to MTLD, albeit in a less direct way, since the TTR factor determines the length of 

the window that is needed to achieve that TTR. Given the well-established observation that 

the longer an extract is, the more its TTR decreases, requiring a high TTR tends to produce 

small extracts, while a low TTR usually requires longer samples. 

 For HD-D, the explanation has been known in ecology since the 1970s. In this field, 

HD-D is part of the family of the generalized Simpson's measures proposed by Hurlbert 

(1971). It is a family of diversity indices precisely because of the parameter n. As Smith and 

Grassle (1977, p. 284) stated, “For large [n], the measure is sensitive to the rare species in the 

population while for small [n], the measure is dominated by the abundant species. ” 

 The reason that a high value of the parameter is necessary in order for rare words to 

have a significant impact on LD is presented graphically in Figure 6. It shows the probability 

that types with a frequency between one and 20 in a text of 300 tokens will be present in a 

sample with a size varying from ten to 300 tokens. When divided by the sample size, this 

probability is the participation of this type in HD-D. As can be seen, a type that is only 

present once has a probability that increases linearly with the length of the extract. The 

probability of a type being present 20 times increases much faster at the beginning to 

approach its maximum of 1, even for small sample sizes. As soon as the sample contains 

about 50 tokens, the probability that this type will be present in the sample barely increases. 

The more frequent a type is, the closer its behavior is to the one that is present 20 times; 

therefore, it increases the LD of small samples more than it increases the LD of large ones. 

The opposite is obviously true the rarer a type is. This explanation of the impact of the 

parameter n on HD-D allows us to understand the counter-intuitive observation by McCarthy 

and Jarvis (2007), namely that the addition of an extra exemplar of a type that appears only 

once in a text can lead to an increase in HD-D and thus in LD. This result is due to the 

increased likelihood that a very rare type will be present in a sample with a limited size. 

 
Conclusion 

 The impact of text length on LD estimation is a problem that has resisted the efforts of 

the scientific community for more than a century. The methodological and empirical analyses 

presented here, based on work in both quantitative linguistics and ecology, show that the 

problem is twofold. The solution to the first problem, which is the dependency on text length 

that has received almost exclusive attention in linguistics, has in fact been known and 

implemented in indices for many years. It consists of reducing all texts to the same length 

using a probabilistic approach or via an algorithmic procedure. When evaluated using 

appropriate methods, these indices are not affected or are barely affected by different text 

lengths. 
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Figure 6 
Probability of the Occurrences of Types with Various Frequencies in Samples of Increasing 
Sizes in a Text of 300 Tokens  

 

 
 However, these successful indices present a second problem, namely their sensitivity 

to the parameter that determines the length of the segments to which the texts are reduced. 

All of them are sensitive to this, and the explanations for this effect suggest that no index 

based on such an approach will be insensitive. This sensitivity means that some texts, which 

are more lexically diverse than others with a low value of the parameter, are less diverse than 

are those with a high value. Analyses linking LD and text quality, performed in three 

datasets, fortunately suggest that this problem may only have a limited impact on the 

conclusions of a study. Nevertheless, further studies are necessary. 

 Further studies would also be useful to complement the four sampling-based methods 

that have been used to evaluate text-length sensitivity. As the compared samples do not form 

a real text in any of these methods, it may be interesting to develop approaches in which real 

texts with content that is as similar as possible, but which have different lengths, can be 

compared. As suggested by a reviewer, this could be done by requiring learners to write 

complete essays of different lengths on the same topic. A potential weakness of this approach 

is that the production situation could be seen as unnatural due to the length requirement, 

which might imply extensive post-editing of the text by the author. However, this situation is 

not particularly different from that of the author of a manuscript who is required to write an 

abstract of 150 words and an accessible summary of 600 words. 

 This methodological review leads to several recommendations to make the study of 

LD more valid. First, all the LD indices evaluated here, which do not reduce texts to the same 

length by some type of subsampling, are to be avoided because they lead to the confusion of 

two factors, LD and text length, particularly when this length is potentially related to the 

phenomenon being investigated, as is frequently the case when studying language acquisition 

or impairment. This is especially true of the Guiraud index, which is still frequently used in 

studies in language learning. 



MEASURING LEXICAL DIVERSITY IN TEXTS   

 Of the global indices, HD-D is recommended. The question of the parameter value 

then arises. A first option, which is more pragmatic than conceptually justified, is to calculate 

HD-D using several parameter values and to ensure that the conclusions of the study are not 

profoundly modified by any of them. Other recommendations are hopefully possible. If one 

assumes that rare words are at least as relevant as frequent words for estimating LD, thus 

assuming that the author uses them correctly and that there is no spelling error, the parameter 

should be set to the largest possible value (see Figure 6); that is, the length of the shortest text 

to be analyzed. The weakness of this proposal is that it encourages researchers to use 

different parameter values for each study, making inter-study comparisons difficult. 

However, it is rare to compare the raw LD scores obtained in a study with those from other 

studies because many other factors influence these raw scores such as the writing prompts 

used (Zenker & Kyle, 2021). Similarly, in a meta-analysis, this parameter will be only one of 

many differences among the studies that are being compared. If this issue of comparability is 

considered to be the most important, setting the HD-D parameter to 42 should be preferred. 

This value is sufficiently low to be applied to the minimum text lengths that are usually 

studied (Koizumi & In’nami, 2012). Moreover, it has been used previously, and is compatible 

with vocd (McCarthy & Jarvis, 2007); therefore, it is also compatible with the numerous 

studies that have used this index. 

 If local estimation of LD is desired, MATTR and MTLD can be recommended. 

MATTR is less sensitive to length than is MTTRSS and MSTTR. With regard to the value of 

the parameter on which MATTR is based, the situation is different from that of HD-D. In the 

case of MATTR, this parameter regulates the knowledge span of the procedure and therefore 

its sensitivity to short-, medium-, and long-term repetitions. This parameter must therefore 

depend on the objectives of the study (Covington and McFall, 2010). If further studies show 

that it only affects the conclusions of the analyses very moderately, setting it at 50, as is 

frequently the case, would maximize comparability with previous studies.  

 MTLD appeared to be slightly more sensitive to length than MATTR, particularly in 

the random sampling method, but the differences were insufficient to declare one superior to 

the other. Nevertheless, the presence of some extreme profiles (see Figure 3) suggested that 

further analyses of MTLD would be quite useful, particularly since new versions of this index 

have recently been proposed (Vidal & Jarvis, 2021). These analyses would also be helpful for 

proposing guidelines for the parameter.  

 In summary, this study has resulted in mixed conclusions. On one hand, it shows that 

the problem of length that has attracted significant attention in linguistics was solved a long 

time ago, provided that an adequate methodology was used to evaluate it. On the other hand, 

a length problem remains. Fortunately, its origin can be explained, and it is therefore possible 

to take it into account in the analyses by fixing the parameter according to the objectives of 

the study. Setting the value of a parameter for an analysis is a normal and frequent practice in 

quantitative research. For example, it occurs in linguistics when a threshold must be set to 

differentiate the analyzed cases from others. In the present case,  some guidelines are 

proposed above, but further research is necessary as this second length problem remains 

almost unconsidered in studies of language learning. 

 

Notes 
1 These indices are used in many of the works mentioned in the references; they are not 

systematically recalled in the following sections. 

2 The term “local” is preferred to “sequential” as the name for this category not only because 

it insists on the limited memory of these indices, but also because the indices in this category 

are usually presented in connection with the Mean Segmental TTR (Covington & McFall, 
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2010; McCarthy & Jarvis, 2010), while the order of the tokens within the segments on which 

it is based have no impact. 

3 Taking long-range repetitions in the longer extracts of the parallel sampling method into 

account does not imply that HD-D will always be lower the longer the extract is. In fact, as 

shown by McCarthy and Jarvis (2007) and as explained in the discussion of Figure 6, the 

presence of two tokens of the same type can increase LD. 

4 The symbol m is used here to distinguish the length of a sample in this evaluation method 

from the length of a segment or a sample used to calculate an index (n, the parameter). 

6 MTTRSS also uses replacement sampling, as the first token in a sample can be selected 

multiple times, but a given token cannot be selected twice in a sample. 
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Figure S1.1 
Profile Graphs for ICNALE in the Parallel Sampling Method 
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Figure S1.2 
Profile Graphs for ICNALE in the Random Sampling Method 
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Figure S1.3 
Profile Graphs for ICNALE in the Ordered Random Sampling Method 
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Figure S1.4 
Profile Graphs for ICLE in the Parallel Sampling Method 
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Figure S1.5 
Profile Graphs for ICLE in the Random Sampling Method 
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Figure S1.6 
Profile Graphs for ICLE in the Ordered Random Sampling Method 
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Figure S1.7 
Profile Graphs for ICLE in the Alternating Token Sampling Method 
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Appendix S2: Weight of Each Token in an LD Index 

 

 The weight represents the impact that a given token has on an LD score. For example, 

in the TTR, each token is counted once and only once in the calculation. All tokens have thus 

the same weight, which is equal to 1/N, in which N is the number of tokens. 

 For MSTTR, we have the same result only if N is a multiple of n, the length of a 

segment. If it is not the case, a certain number of tokens are not taken into account. If we 

represent by mod(x,y) the modulo operation, which returns the remainder of a division of x by 

y, the number of tokens not taken into account, is equal to Mod(N,n)*n. These remaining 

tokens received a weight of 0 while the others received a weight of 1/(N-Mod(N,n)*n). When 

N and n are unknown, we can only say that the remainder can go from 0 to n-1 and that all 

these cases are equiprobable. The expectation of this number is (n-1)/2. Thus, for a segment 

length of n tokens, we can estimate that on average (n-1)/2 tokens will have a weight of zero. 
Whether these tokens are frequent, rare or the only occurrence of a type in the whole text, 
they do not affect any calculated TTR. There is therefore an impact of the weight of a token 
on the lexical diversity score. 
 For MTTRSS, all tokens between positions 1 and N-n+1 have the same probability of 

starting a segment while tokens occupying positions N-n+2 to N cannot start a segment 

because it would be incomplete. A token at position i only intervenes in a given segment if 

the initial token of this segment is at one of the positions from i-n+1 to i inclusive. 

It follows that: 

- The first token will only be used when this first token is selected as the starting point. This 

will occur with a probability of 1/(N-n+1). The last token will be used only when the 

token in position N-n+1 is selected as starting point. 

- The second token will be used only when the first token or the second one is selected as 

starting point. This will happen with a probability of 2/(N-n+1). This probability also 

applies to the penultimate token. 

- The same reasoning applies to the tokens that occupy positions 3 to n-1 and N-n+2 to N-2. 

For example, the probability that the token in position n-1 occurs in a segment is (n-1)/(N-
n+1). It is also the probability that the token in position N-n+2 occurs in a segment. 

- All the tokens occupying the positions going from n to N-n+1 have a probability to occur 

in a segment of n/(N-n+1). 
The weight of the tokens in the MTTRSS calculation is proportional to this probability. 

 In the case of MATTR, it is not correct to talk about the probability of intervening in a 

segment because the procedure is deterministic. On the other hand, it possible to quantify the 

frequency with which a token will be used according to its position in the sequence, the 

weight being proportional to this frequency. The first token occurs only in one sequence, the 

one that begins with it. The second token occurs only in two sequences, those which begin 

with it and with the first. This reasoning applies to the tokens occupying the positions 3 to n-
1. From the position n until the position N-n+1, the tokens occur in n sequences. From 

position N-n+2 to N, the number of sequences in which a token occurs decreases linearly 

exactly as it increases linearly for the n first tokens of the text. For example, the last token 

occurs in only one sequence, the one starting at position N-n+1. This reasoning is illustrated 

in Table S2.1 which gives for N=10 and n=4 the number of segments in which a token in 

position i can occur in the calculation of MATTR.  

 The impact of the weight of a token on the MATTR score, which is proportional to 
the number of windows in which this token is present, can be illustrated by the following 
example that uses the approach proposed by Covington and McFall (2010) to discuss the 
properties of MATTR.  Let us consider a sequence of ten tokens composed of a hapax and a 
single other word that is present nine times. The length of the window is set to four. 
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Depending on the position of the hapax, the MATTR score varies from .286 to .393, as 
shown in Table S2.2. The only possible explanation for the differences in the scores is that 
the hapax does not always receive the same weight in the MATTR score. 
Table S2.1 
Number of segments in which a given token occurs in the calculation of MATTR for N=10 
and n=4 
 

Position 1 2 3 4 5 6 7 8 9 10 

Presence in a segment x x x x       

  x x x x      

   x x x x     

    x x x x    

     x x x x   

      x x x x  

       x x x x 

Number of segments 

in which the token occurs 1 2 3 4 4 4 4 3 2 1 

 

Table S2.2: Computation of the MATTR scores for the ten sequences 

Line Sequence MATTR score 
1 ABBBBBBBBB ((2/4)*1+(1/4)*6)/7 = .286 
2 BABBBBBBBB ((2/4)*2+(1/4)*5)/7 = .321 
3 BBABBBBBBB ((2/4)*3+(1/4)*4)/7 = .357 
4 BBBABBBBBB ((2/4)*4+(1/4)*3)/7 = .393 
5 BBBBABBBBB ((2/4)*4+(1/4)*3)/7 = .393 
6 BBBBBABBBB ((2/4)*4+(1/4)*3)/7 = .393 
7 BBBBBBABBB ((2/4)*4+(1/4)*3)/7 = .393 
8 BBBBBBBABB ((2/4)*3+(1/4)*4)/7 = .357 
9 BBBBBBBBAB ((2/4)*2+(1/4)*5)/7 = .321 

10 BBBBBBBBBA ((2/4)*1+(1/4)*6)/7 = .286 
 
 It is important to note that this example does not simply show that MATTR is 
sequence sensitive, which it is, because moving the hapax in the middle part of the sequence 
(lines 4 to 7) has no impact. It is only when the hapax is at the beginning or at the end of the 
sequence that an impact is observed; that is, when it receives a different weight. It is 
technically possible to build a MATTR index that allocates the same weight to all the tokens. 
To accomplish this, it is sufficient to use the wrap-around procedure of MTLD-W (Vidal & 
Jarvis, 2021) and thus to complete the incomplete windows at the end of the text using the 
tokens that are at the beginning of it. However, whether joining the end of a text to the 
beginning is more respectful of the sequential nature of a text than the global approach is 
questionable. 
 Since, to my knowledge, the problem encountered by MATTR is not highlighted in 
the existing literature, it is useful to formulate it also as follows. As the name suggests, 
MATTR is based on a moving average procedure. It is well known that this procedure does 
not allow to obtain a score for all points of a sequence. There are several formulations of this 
limitation depending on which point in the moving window the average value is assigned to: 
the last one as proposed by Covington and McFall (2010) or the middle one as it is frequently 
the case in time series. If the score is assigned to the last token, Covington and McFall (2010, 
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p. 96) observes that "MATTR yields a value for every point in the text except for those less 
than one window length from the beginning." When the average of the obtained scores is 
computed, the first tokens of the text are not taken into account in the same way as the 
following ones. These tokens have therefore a different weight in the final score. If the score 
is assigned to the middle token, MATTR lacks information at the beginning and at the end of 
the sequence: "Moving averages do not allow estimates of f(t) near the ends of the time series 
(in the first k and last k periods)" (Hyndman, 2011, p. 867). The closer to the beginning (or to 
the end) of the sequence, the more information is missing. It is this lack of information that is 
quantified by the token weight. 
 
Hyndman, R. J. (2011). Moving Averages. In: M. Lovric (Ed.), International Encyclopedia of 

Statistical Science (pp. 866-869). Springer. https://doi.org/10.1007/978-3-642-04898-
2_380 
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Appendix S3: Additional Information for Table 2 

 
Table S3.1 
Means, Standard Deviations and Confidence Limits for the Four Lengths for the Parallel and 
Random Sampling Methods 
 

 Parallel Sampling  Random Sampling 

Sample length M SD CI  M SD CI 

 60 .7740 .037 [.7687, .7794]  .7803 .035 [.7752, .7854] 

 80 .7744 .037 [.7691, .7798]  .7803 .035 [.7752, .7854] 

 120 .7750 .036 [.7698, .7800]  .7802 .035 [.7751, .7853] 

 240 .7753 .036 [.7701, .7804]  .7802 .035 [.7751, .7853] 

 

 

The 95% confidence intervals for the ANOVA effect size, partial eta2, are as follows: 

 Parallel Sampling: partial eta2 = .007, [.000, .031] 

 Random Sampling: partial eta2 = .058, [.003, .121] 
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Appendix S4: Procedure for Selecting 12 Profiles in the Graphs 

 

1. Calculate the differences in the scores between the conditions taken two by two for each 

text. 

2. For each text, count the number of times a difference is among the four largest differences 

or among the four smallest differences.   

3. Select  

- the four texts that have most of the largest differences, 

- of those that remain, select the four texts that have most of the small differences, and 

- of those that remain, the select four texts that have the most extreme differences (large and 

small). 
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Appendix S5: Results of Steiger's (1980) Test 

 

Table S5.1 shows the full results of Steiger's (1980) test for two non-independent correlations 

that was used to determine whether there was a statistically significant difference between the 

largest and smallest correlation of each index with the text quality. The limits of the 95% 

confidence interval for the difference were obtained using Zou’s (2007) procedure. 

 
Table S5.1 
Comparison of the Largest and Smallest Correlations between an Index and the Text Quality 
for ICNALE and ICLE 
 

ICNALE  
Index Largest r Smallest r t(185) p Lower CI Upper CI 
HDD .342 .285 1.45 .1474 -.019 .132 
MATTR .391 .341 0.87 .3863 -.061 .159 
MSTTR .385 .321 1.01 .3119 -.059 .188 
MTTRSS .373 .299 1.18 .2383 -.048 .196 
MTLD .320 .242 3.18 .0017 .029 .127 

ICLE N = 223 Df = 120 
Index Largest r Smallest r t(220) p Lower CI Upper CI 
HDD .515 .480 1.43 .1537 -.013 .082 
MATTR .474 .445 1.55 .1234 -.008 .066 
MSTTR .501 .417 1.97 .0506 -.000 .168 
MTTRSS .471 .294 3.35 .0009 .072 .283 
MTLD .461 .436 1.25 .2113 -.014 .064 
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Appendix S6: Analysis of English Learners' Monologues 

 

The main objective of the study was to determine the extent to which LD indices are sensitive 

to the length of the texts to which they are applied. Empirical evaluations were performed on 

two datasets that were relatively different in terms of text length and the participants' L1s. 

Both datasets consistently led to the same conclusions. This result was expected because the 

study focused on the logical-mathematical properties of indices and evaluation procedures. 

Nevertheless, the selected datasets both contained written essays. To further support the 

generality of the findings, this appendix presents the full analysis of a third dataset that 

consisted of oral productions. The conclusions reached via the analyses were identical to 

those reported in the main text. 

 

Dataset 
The spoken data used for these analyses were taken from the Corpus of English as a Foreign 

Language (COREFL: corefl.learnercorpora.com, version 1.0 - September 2021), which is 

freely available under a Creative Commons license (CC BY-NC-ND 3.0 ES). Compiled since 

2012 at the University of Granada, it includes written and spoken texts from Spanish and 

German learners of English and from native English speakers (Lozano, Díaz-Negrillo, & 

Callies, 2021). The analyzed sub-corpus consists of monologues that were recorded while the 

English learners were asked to retell a short clip from Charles Chaplin's film The Kid 

(available at https://www.youtube.com/watch?v=eO1HvF2G2Sw). The audio files were 

transcribed orthographically and were tokenized by the team that collected them. The pre-

processing consisted of removing the filled pauses, such as "uh" or "um", and false starts, 

such as " in= inside". All the texts containing at least 240 tokens were analyzed. The average 

length was 417 tokens (SD = 104, min = 261, max = 729). All the learners included in this 

dataset answered the Oxford Quick Placement Test to evaluate their levels of English 

proficiency.  

 

Analyses and results 
The analyses were identical to those described in the main text.  

 

First Problem: Evaluation of the Text Length Sensitivity 
ICC Analysis and Graphical Representation of the Profiles 
Figure S6.1 shows the ICCs for the four evaluation methods and the ten indices. The mean 

ICC is represented by a circle, while the bars represent the 95% confidence interval for the 

ICC population values. As explained in the main text, the parallel sampling method is 

problematic and its conclusions are not reliable. Figures S6.2 to S6.5 show the impact of 

length on the indices using the LD text profiles.  

 TTR, Guiraud, Herdan, Maas, and MTTRSS clearly showed a length bias. The 

profiles for MATTR, MSTTR, MTTRSS, and MTLD did not show any bias, but there were 

important crossings, which explained why the ICC was sometimes quite far from 1. Only the 

profiles for HD-D were almost perfectly stable. 

 

Second Problem: Impact of the Index Parameter 
Figure S6.6 shows the consistency of the indices as a function of the parameter value 

measured by the ICC. MTLD and HDD were less affected, followed by MATTR. Figure S6.7 

illustrates the impact of parameter manipulation on the LD scores. In this figure, the scores 

for each index for each value of the parameter were centered on 0 in order to eliminate bias 

and to match the data used for the ICC precisely when it measures consistency. For all the 
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indices, the LD score of some texts increased with the increase in the parameter value, while 

this was the opposite for other texts and produced profile crossings.  

 
Figure S6.1 
ICCs for Text Length Sensitivity for COREFL 
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Figure S6.2 
Profile Graphs for COREFL in the Parallel Sampling Method 
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Figure S6.3 
Profile Graphs for COREFL in the Random Sampling Method 
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Figure S6.4 
Profile Graphs for COREFL in the Ordered Random Sampling Method 
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Figure S6.5 
Profile Graphs for COREFL in the Alternating Token Sampling Method 
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Figure S6.6 
ICCs for the Impact of the Index Parameter for COREFL 

 
Figure S6.7 
Profile Graphs for the Parameter Impact for COREFL 

 
 

Impact on the Correlation between LD and English Proficiency level 
Table S6.1 shows the correlation between the LD score and the learner's level of English 

proficiency for each parameter value. The largest value for each index is in bold, and the 

smallest is underlined. As shown in Table S6.2, none of the differences between the largest 

and smallest correlations were statistically significant according to Steiger's (1980) test. 
 
Table S6.1 
Correlations between the LD and the Text Quality for COREFL for Different Parameter 
Values 
Length HD-D MATTR MSTTR MTTRSS  Factor MTLD 

24 .358 .374 .313 .306  .66 .300 

48 .394 .375 .279 .316  .67 .306 

72 .408 .370 .343 .370  .68 .330 

96 .412 .382 .311 .374  .69 .299 

120 .413 .385 .312 .380  .70 .311 

144 .411 .383 .304 .402  .71 .313 

168 .410 .377 .346 .365  .72 .331 

192 .408 .371 .314 .352  .73 .321 

216 .406 .358 .330 .354  .74 .314 

240 .404 .335 .336 .309  .75 .332 
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Table S6.2 
Comparison of the Largest and Smallest Correlations between an Index and the Text Quality 
for COREFL 
 

CORELF 
Index Largest r Smallest r t(127) p Lower CI Upper CI 
HDD .413 .358 1.58 .117 -.013 .123 
MATTR .385 .335 1.85 .066 -.003 .103 
MSTTR .346 .279 1.25 .213 -.038 .172 
MTTRSS .402 .306 1.43 .154 -.035 .228 
MTLD .331 .299 1.16 .249 -.022 .086 

 

Conclusion 

The analysis of this third dataset confirmed the conclusions for the two written datasets 

presented in the main text.  
 

Lozano, C., Díaz-Negrillo, A., & Callies, M. (2020). Designing and compiling a learner 

corpus of written and spoken narratives: COREFL. In C. Bongartz & J. Torregrossa 

(Eds.), What’s in a Narrative? Variation in Story-Telling at the Interface between 
Language and Literacy (pp. 21-46). Peter Lang. https://doi.org/10.3726/978-3-653-

05182-7  
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Appendix S7: Obtaining the Main LD Indices by Means of Two Freely Available Tools 

 

This appendix explains how to obtain the main LD indices that were analyzed in this paper 

by means of two freely available tools, TAALED and the koRpus package. It also shows that 

the indices calculated by these tools were identical to those calculated by the SAS program 

used in this paper. This SAS program is included at the end.  

 

TAALED (Kyle et al., 2021) is standalone software that is designed to calculate LD indices. 

It is controlled through an easy-to-use window interface. 

 

The koRpus package (Michalke, 2020) works with R software. A text can be analyzed using 

the following commands. 

----- 

install.packages("koRpus") 
install.koRpus.lang(c("en")) 
library("koRpus") 
library(koRpus.lang.en) 
setwd("/Users/c/Desktop/Example") 
tagged.text.obj <- 
tokenize("./AliceNoun2.txt",lang="en",detect=c(parag=TRUE, hline=TRUE)) 
TTR<-TTR(tagged.text.obj) 
TTR@TTR 
R<-R.ld(tagged.text.obj) 
R@R.ld 
C<-C.ld(tagged.text.obj) 
C@C.ld 
maas<-maas(tagged.text.obj) 
maas@Maas 
HDD<-HDD(tagged.text.obj) 
HDD@HDD 
MATTR<-MATTR(tagged.text.obj,window=50) 
MATTR@MATTR 
MSTTR<-MSTTR(tagged.text.obj,segment=50) 
MSTTR@MSTTR 
MTLD<-MTLD(tagged.text.obj,MA=FALSE) 
MTLD@MTLD 
----- 

 

As an example, I used the beginning of Lewis Caroll's Alice in Wonderland, which is the text 

that was used as the main example by Baayen (2001), and stopped the excerpt after the first 

100 types, or 165 tokens. The tokenized extract is presented below. 

alice was beginning to get very tired of sitting by her sister on the bank and of having 
nothing to do once or twice she had peeped into the book her sister was reading but it had 
no pictures or conversations in it and what is the use of a book thought alice without 
pictures or conversations so she was considering in her own mind as well as she could for 
the hot day made her feel very sleepy and stupid whether the pleasure of making a daisy-
chain would be worth the trouble of getting up and picking the daisies when suddenly a 
white rabbit with pink eyes ran close by her there was nothing so very remarkable in that 
nor did alice think it so very much out of the way to hear the rabbit say to itself oh dear oh 
dear i shall be late when she thought it over afterwards it occurred to her that she ought to 
have wondered at this 

 

The main difficulty when comparing several types of text analysis software is that they 

frequently perform a re-tokenization of the text, which includes the modification of some 

tokens and even the deletion of others. As was the case for this extract, each type was 
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replaced by a noun that was treated in the same way by the evaluated tools. For example, 

Alice was recoded as art and the as two. The recoded extract is presented below. 

art team case state friend teacher side lot president city hand power member two business 
back lot group life state fact minute moment student point girl name home two change 
hand power team party child house girl law number moment country history house back 
war hour two system lot air change service art word number moment country program 
point team company history hand mother kid body time body point day force two head end 
issue hand father teacher problem back question way two others lot job air education year 
car world two story lot game study back night two door water reason air week parent 
woman office family part community city hand right team life program teacher people 
history research level face art room house program teacher kind month lot two thing state 
guy two parent person state idea man eye man eye health place car information water 
point service house morning area house line state hand research point money state 
government work book school 

 

Table S7.1 provides the main indices that were computed using this extract by the three 

approaches. These indices are identical except for that of Maas. The reason is that TAALED 

calculates a2 while koRpus and the SAS program calculate a. The base 10 is used for the 

logarithm, as in Maas (1972). 

 

Table S7.1 
LD Indices Produced by Three Types of Software 

 Token Type TTR Guiraud Herdan Maas HD-D MATTR MSTTR MTLD 

TAALED 165 100 .6061 7.7850 .9019 .0442 .8278 .7993 .8133 77.8337 

koRpus 165 100 .6061 7.7850 .9019 .1386 .8278 .7993 .8133 77.8337 

SAS 165 100 .6061 7.7850 .9019 .1386 .8278 .7993 .8133 77.8337 

Note: HD-D is called ATTR in koRpus. 

 

The SAS program for this example is available through the following OSF repository: 

https://osf.io/5xpcw/ (Cr01LexDivAnaExample.sas). 
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Appendix S8: SAS Code and R Function Used 

 

The SAS code and the R function used in this study are available through the following OSF 

repository: https://osf.io/5xpcw/ ( SASCodeAndR.zip). The following programs are included. 

 

For the example: 

 Cr01LexDivAnaExample.sas 

 

For the experiments:  

The programs take an SAS dataset containing one observation per token with a variable that 

identifies the text and another that indicates the order of the tokens in the text as input.  

As an example, Cr11ICNALERead.sas reads all the tokenized ICNALE files in a folder and 

puts them in this format 

  

*Calculate the indices for the four methods 

 Cr21LexDivGenFileAllMethods.sas 

  Output for Parallel Sampling: zIceMeth_pasa 

  Output for Random Sampling and Ordered Random Sampling: zIceMeth_rnd2 

  Output for Alternating Token Sampling: zIceMeth_splitr 

 

*Calculate the indices for the parameter analysis 

 Cr22LexDivGenFileParameters.sas 

  Output for HDD: zIceParam_hdd 

  Output for MATTR: zIceParam_mattr 

  Output for MSTTR: zIceParam_msttr 

  Output for MTTRSS: zIceParam_mttrss 

  Output for MTLD: zIceParam_mtld 

   

*Output files to calculate ICCs in R for the methods 

 Cr31LexDivMethodsOutForICC.sas 

  Output: a txt file for each method and each index named zicemeth_pasa_ttr.txt (for 

example) 

   

*Output files to calculate ICCs in R for the parameters 

 Cr32LexDivParametersOutForICC.sas 

  Output: a txt file for each index named zIceParam_hdd.txt (for example) 

 

*Calculate ICCs in R for the methods 

 MyICCMeth.R   

  Output: ICCResMeth.txt 

   

*Calculate ICCs in R for the parameters 

 MyICCParam.R 

  Output: ICCResParam.txt 

   

*ICC graphs for the methods 

 Cr41LexDivMethodsGraphICC.sas 

 

*Profile graphs for the methods 

 Cr42LexDivMethodsGraphIdx.sas 
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*ICC graphs for the parameters 

 Cr43LexDivParametersGraphICC.sas 

 

*Profile graphs and correlations for the parameters 

 Cr44LexDivParametersGraphIdx.sas 

 

*Program for Figure 6 

 Cr51SimulHdd.sas 
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Appendix S9: Implementing the Sampling Methods in Python 

 

In order to facilitate the replication of the analyses, but also the application of the proposed 

sampling methods to other datasets (L1, longer or shorter texts...), this appendix provides two 

Python scripts, available through the following OSF repository: https://osf.io/5xpcw/ 

(PythonScripts.zip), that implement the random sampling method, the ordered random 

sampling method and the alternating token sampling method.  

 

Rand_OrdRand.py implements the random sampling method and the ordered random 

sampling method so that the same samples of tokens are analyzed by both methods. The only 

difference is that the tokens are replaced in their original order before the indices are 

computed for the ordered random sampling method but not for the random sampling method. 

To do so, it is not the tokens in the text that are permuted, but an index vector containing 

integers ranging from 0 to the number of tokens in the text minus 1 (in Python, indexing 

starts at 0). To obtain a sample of m tokens using the random sampling method, the tokens in 

the text at the first m positions of the permuted index vector are extracted. For the ordered 

random sampling method, the same tokens are extracted, but they are reordered according to 

the indexes. 

 

Alternating.py implements the alternating token sampling method which generalize the split-

half procedure proposed by McKee et al. (2000). This method constructs samples containing 

half, a third or a quarter of the tokens in the text by randomly selecting one token out of two, 

three or four successive tokens. To do so, the tokens are permuted independently within each 

successive snippet of two, three or four tokens (the Pnsplit parameter) and the samples are 

obtained by taking one token out of Pnsplit tokens, starting with the first, then the second, up 

to the Pnsplit-th.  

 

These scripts read as input a .txt file containing a tokenized text (see TaaledSample.txt in the 

archive). They provide two types of output. 

 

The samples produced by each method.  
Two parameters (SHOW_INSTANCE and N_SHOW_INSTANCE) allow to obtain the 

samples produced by each method. To highlight the characteristics of these samples, the 

scripts can be applied to a pseudo-text composed of numbers from 1 to 303 (Numbers.txt in 

the zip file). By way of example, here are the first samples produced by the random sampling 

method and by the ordered random sampling method on the basis of this pseudo-text: 

 
Random | Sample length = 151 | Niter = 1 
['253', '72', '169', '301', '98', '95', '263', '81', '182', '275', '87', '86', 
'297', '32', '281', '54', '163', '97', '108', '104', '298', '139', '93', '101', 
'91', '45', '217', '242', '183', '194', '248', '254', '129', '114', '172', '110', 
'197', '218', '200', '160', '211', '162', '208', '187', '165', '255', '273', '43', 
'238', '245', '264', '125', '35', '29', '173', '221', '219', '156', '33', '198', 
'249', '294', '116', '234', '90', '170', '246', '30', '7', '83', '178', '224', 
'303', '220', '189', '196', '209', '205', '120', '150', '34', '71', '250', '47', 
'4', '192', '282', '181', '144', '158', '277', '203', '113', '299', '107', '126', 
'268', '223', '239', '215', '10', '293', '259', '8', '236', '240', '302', '79', 
'283', '118', '143', '272', '204', '167', '166', '53', '100', '52', '140', '199', 
'74', '12', '122', '149', '300', '175', '258', '288', '103', '124', '176', '60', 
'216', '66', '155', '260', '41', '186', '89', '94', '230', '243', '127', '214', 
'292', '287', '290', '57', '152', '190', '70'] 
Ordered Random | Sample length = 151 | Niter = 1 
['4', '7', '8', '10', '12', '29', '30', '32', '33', '34', '35', '41', '43', '45', 
'47', '52', '53', '54', '57', '60', '66', '70', '71', '72', '74', '79', '81', '83', 
'86', '87', '89', '90', '91', '93', '94', '95', '97', '98', '100', '101', '103', 
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'104', '107', '108', '110', '113', '114', '116', '118', '120', '122', '124', '125', 
'126', '127', '129', '139', '140', '143', '144', '149', '150', '152', '155', '156', 
'158', '160', '162', '163', '165', '166', '167', '169', '170', '172', '173', '175', 
'176', '178', '181', '182', '183', '186', '187', '189', '190', '192', '194', '196', 
'197', '198', '199', '200', '203', '204', '205', '208', '209', '211', '214', '215', 
'216', '217', '218', '219', '220', '221', '223', '224', '230', '234', '236', '238', 
'239', '240', '242', '243', '245', '246', '248', '249', '250', '253', '254', '255', 
'258', '259', '260', '263', '264', '268', '272', '273', '275', '277', '281', '282', 
'283', '287', '288', '290', '292', '293', '294', '297', '298', '299', '300', '301', 
'302', '303'] 
 
Random | Sample length = 101 | Niter = 1 
['164', '258', '264', '261', '59', '118', '36', '222', '28', '185', '275', '260', 
'287', '210', '8', '148', '217', '121', '52', '292', '282', '192', '29', '207', 
'214', '45', '170', '31', '20', '278', '297', '158', '268', '169', '87', '291', 
'21', '74', '76', '198', '95', '128', '152', '177', '237', '104', '155', '188', 
'167', '295', '72', '129', '181', '213', '99', '252', '141', '30', '271', '3', 
'56', '108', '130', '256', '126', '232', '142', '303', '143', '151', '246', '221', 
'115', '228', '145', '204', '14', '176', '93', '39', '111', '84', '242', '86', 
'231', '116', '83', '249', '112', '201', '103', '157', '247', '60', '131', '233', 
'19', '27', '286', '190', '183'] 
Ordered Random | Sample length = 101 | Niter = 1 
['3', '8', '14', '19', '20', '21', '27', '28', '29', '30', '31', '36', '39', '45', 
'52', '56', '59', '60', '72', '74', '76', '83', '84', '86', '87', '93', '95', '99', 
'103', '104', '108', '111', '112', '115', '116', '118', '121', '126', '128', '129', 
'130', '131', '141', '142', '143', '145', '148', '151', '152', '155', '157', '158', 
'164', '167', '169', '170', '176', '177', '181', '183', '185', '188', '190', '192', 
'198', '201', '204', '207', '210', '213', '214', '217', '221', '222', '228', '231', 
'232', '233', '237', '242', '246', '247', '249', '252', '256', '258', '260', '261', 
'264', '268', '271', '275', '278', '282', '286', '287', '291', '292', '295', '297', 
'303'] 
 
Random | Sample length = 75 | Niter = 1 
['243', '32', '111', '156', '204', '301', '188', '14', '138', '13', '298', '151', 
'129', '237', '164', '63', '97', '96', '287', '288', '108', '110', '15', '302', 
'190', '8', '192', '274', '28', '168', '162', '73', '86', '67', '43', '139', '100', 
'10', '145', '277', '35', '161', '84', '238', '265', '144', '50', '77', '226', 
'90', '52', '80', '112', '158', '27', '94', '276', '117', '39', '270', '53', '184', 
'150', '133', '72', '91', '38', '22', '25', '42', '292', '29', '223', '101', '259'] 
Ordered Random | Sample length = 75 | Niter = 1 
['8', '10', '13', '14', '15', '22', '25', '27', '28', '29', '32', '35', '38', '39', 
'42', '43', '50', '52', '53', '63', '67', '72', '73', '77', '80', '84', '86', '90', 
'91', '94', '96', '97', '100', '101', '108', '110', '111', '112', '117', '129', 
'133', '138', '139', '144', '145', '150', '151', '156', '158', '161', '162', '164', 
'168', '184', '188', '190', '192', '204', '223', '226', '237', '238', '243', '259', 
'265', '270', '274', '276', '277', '287', '288', '292', '298', '301', '302'] 
 

The HD-D and MATTR indices 
To show how HD-D and MATTR can be calculated on the basis of the samples produced by 

each method, the scripts includes several Python functions (with slight modifications) from 

the underlying code for TAALED (Kyle et al., 2021), more precisely from ld_32.py, authored 

by Kristopher Kyle and available at https://github.com/LCR-ADS-

Lab/TAALED/blob/main/dev/ld_32.py. By adjusting a parameter, the methods can be 

applied to an example text of TAALED (TaaledSample.txt). Here are the results obtained for 

each method by performing 5,000 randomizations: 

 
Random  | Sample length =  140 | HDD =  0.871083 | MATTR = 0.850942 
Ordered | Sample length =  140 | HDD =  0.871083 | MATTR = 0.840838 
Random  | Sample length =   93 | HDD =  0.871010 | MATTR = 0.851485 
Ordered | Sample length =   93 | HDD =  0.871010 | MATTR = 0.850711 
Random  | Sample length =   70 | HDD =  0.871239 | MATTR = 0.851522 
Ordered | Sample length =   70 | HDD =  0.871239 | MATTR = 0.850743 

 
Alternating | Segment length =  140 | HDD =  0.870906 | MATTR = 0.839625 
Alternating | Segment length =   93 | HDD =  0.870912 | MATTR = 0.850383 
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Alternating | Segment length =   70 | HDD =  0.871491 | MATTR = 0.850603 
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Appendix S10: In-Depth Discussion of the Most Important Studies  

Claiming That HD-D is Sensitive to Text Length 

 
The present study highlights the extremely high efficiency of HD-D for controlling the length 

effect. This conclusion contradicts that of several previous studies. What follows is an in-

depth discussion of these most important studies. 

 

 

McCarthy, P. M., & Jarvis, S. (2007). vocd: A theoretical and empirical evaluation. Language 

Testing, 24, 459-488. https://doi.org/10.1177/0265532207080767 

 

McCarthy and Jarvis (2007) argued that HD-D is sensitive to text length on the basis of three 

arguments. First, an empirical analysis (pp. 475-476) described as follows (ATTR-42 is the 

name used by McCarthy and Jarvis to refer to HD-D):  

To confirm that this method of measurement truly does exhibit text-length effects in our 

own database, we calculated ATTR-42 for the first 50 through the first 200 tokens of 

each of the 141 texts in our database that are longer than 200 words in length. (We used 

ATTR instead of SOP because the ATTR scale, which ranges from 0 to 1.00, is easier to 

interpret, and we used ATTR instead of D because ATTR is more precise and 

consistent.) Given that it is not feasible to illustrate the ATTR-42 growth curves for all 

141 texts, we have chosen instead to show a single curve representing the central 

tendency of these texts. This is shown in Figure 5. This figure shows that after a slight 

dip in ATTR-42 from about the 50th to the 100th token, the central tendency is for the 

ATTR-42 of texts to move gradually and steadily upward.  

 

Figure S10.1: Evolution of the Mean HD-D Computed on the 188 Texts of ICNALE. 

 
This demonstration is problematic because it relies on samples that obviously do not have the 

same lexical content, since the next token is added to the sample each time. If there is an 

evolution of lexical diversity in these texts, a length-insensitive index will detect it. To 

support this explanation, I performed McCarthy and Jarvis’ analysis on the ICNALE dataset 

used in the manuscript. Figure S10.1 shows the evolution of the mean HD-D computed on the 

188 texts. As in McCarthy and Jarvis’ work, a small decrease is observed at the beginning of 

the curve, followed by an increase. Figure S10.2 shows the 12 profiles selected by the 

systematic procedure used in the manuscript; it shows that some profiles increased, but also 

that others decreased. This observation is incompatible with the assertion that HD-D 

increases with text length. However, it is perfectly compatible with an evolution of lexical 
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diversity in texts, which is one phenomenon that motivated Covington and McFall (2010) to 

develop MATTR. 

 

Figure S10.2: Twelve Individual HD-D Profiles from ICNALE. 

 
 

In the next part of McCarthy and Jarvis’ (2007) work, which is one of the most important 

articles for the present study, the authors used the parallel sampling method (p. 479). As 

explained in the main text, these analyses cannot be used to claim that HD-D is sensitive to 

text length. 

 

Finally, McCarthy and Jarvis (2007) proposed a mathematical argument by analyzing the 

impact of adding an occurrence of a type already present in a 100-word text on HD-D by 

varying the frequency of that type. The authors showed that the reduction of HD-D was 

increasingly lower the less frequent the type was, up to the point at which the addition of a 

second occurrence of a type that was only present once in the text produced an increase of 

HD-D and thus of lexical diversity.  This observation, which the authors rightly called 

"surprising and profound" (p. 475) has noting to do with any sensibility to text length as 

explained at the end of the discussion of Figure 6 of the main text. 

 

 

Fergadiotis, G., Wright, H. H., & Green, S. B. (2015). Psychometric evaluation of lexical 

diversity indices: Assessing length effects. Journal of Speech, Language, and Hearing 

Research, 58, 840-852. https://doi.org/10.1044/2015_JSLHR-L-14-0280 

Fergadiotis, G., Wright, H. H., & West, T. M. (2013). Measuring lexical diversity in narrative 

discourse of people with aphasia. American Journal of Speech-Language Pathology, 

22, S397-S408. https://doi.org/10.1044/1058-0360(2013/12-0083) 

 

Fergadiotis and colleagues (2013, 2015) also concluded that HD-D is somewhat sensitive to 

text length. Their work is based on a different approach from the one that is almost always 

used in the field. Instead of trying to determine directly whether LD indices are sensitive to 

text length, the authors used an indirect approach based on multidimensional analysis 

techniques (factor analysis and structural equation modeling). These techniques are mainly 

aimed at determining whether different indices are manifestations of the same latent variable; 

that is, LD. It is well established that the results of such analyses are affected by the variables 

that are selected for the analysis:  
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One of the characteristics of factor analysis that bothers many users is the fact that what 

you find depends on what you decide to analyze. If one dimension is overrepresented by 

tests, while another is underrepresented by tests, the former dimension will be the most 

dominant dimension in the analysis, which may or may not have anything to do with its 

potency in real life settings. Many users are familiar with this property, which might be 

called the ‘what you get out of it depends on what you put into it’ phenomenon (Dorans 

& Lawrence, 1999, p. 6). 

For example, in one of their studies, Fergadiotis et al. (2015) analyzed two local indices, 

MATTR and MTLD, and one global index, vocd, as well as Maas' index, which is another 

global index that is well known to be length sensitive (McCarthy & Jarvis, 2013; Tweedie & 

Baayen, 1998). Further studies are needed to assess the impact of this choice on the results 

but, in general, Fergadiotis and colleagues’ (2013, 2015) arguments are indirect, unlike those 

presented in the manuscript. 
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