Vitaly Moroz et Jean Van Schaftingen, Existence, stability and oscillation properties of slow decay positive solutions of supercritical elliptic equations with Hardy potential, Proc. Roy. Soc. Edinburgh Sect. A 58 (2015), n°1, 255–271.
doi:10.1017/S0013091513000588 DIAL:155964 arXiv:1108.4668
Jean Van Schaftingen, Interpolation inequalities between Sobolev and Morrey–Campanato spaces: A common gateway to concentration-compactness and Gagliardo–Nirenberg, Port. Math. 71 (2014), n°3–4, 159–175.
doi:10.4171/PM/1947 DIAL:152135 arXiv:1308.1794
Jean Van Schaftingen, Approximation in Sobolev spaces by piecewise affine interpolation, J. Math. Anal. Appl. 420 (2014), n°1, 40–47.
doi:10.1016/j.jmaa.2014.05.036 DIAL:152134 arXiv:1312.5986
Jean Van Schaftingen, A direct proof of the existence of eigenvalues and eigenvectors by Weierstrass’s theorem, Amer. Math. Monthly 120 (2013), n°8, 741–746.
doi:10.4169/amer.math.monthly.120.08.741 DIAL:131967 arXiv:1109.6821
Vincent Bouchez et Jean Van Schaftingen, Extremal functions in Poincaré–Sobolev inequalities for functions of bounded variation, in Denis Bonheure, Mabel Cuesta, Enrique J. and Peter Takáč Lami Dozo, Jean Van Schaftingen et Michel Willem (eds.), Nonlinear Elliptic Partial Differential Equations, Amer. Math. Soc., Contemporary Mathematics, No. 540, 2011, 47–58.
ISBN 978-0-8218-4907-1 DIAL:76122 arXiv:1001.4651
Tianling Jin, Vladimir Maz′ya et Jean Van Schaftingen, Pathological solutions to elliptic problems in divergence form with continuous coefficients, C. R. Math. Acad. Sci. Paris 347 (2009), n°13–14, 773–778.
doi:10.1016/j.crma.2009.05.008 DIAL:35463 arXiv:0904.1674
Augusto C. Ponce et Jean Van Schaftingen, The continuity of functions with \(N\)–th derivative measure, Houston J. Math. 33 (2007), n°3, 927–939.