[39] M. Mackaay, V. Miemietz, P. Vaz,
Induction for extended affine type A Soergel bimodules from a maximal parabolic
(2025) arXiv
[38] M. Mackaay, J. Macpherson, P. Vaz,
Evaluation 2-functors for Kac-Moody 2-categories of type A2
(2024) arXiv
[37] A. Lacabanne, D. Tubbenhauer, P. Vaz,
On Hecke and asymptotic categories for complex reflection groups
(2024) arXiv
[36] L. Schelstraete and P. Vaz,
Odd Khovanov homology and higher representation theory
(2023) arXiv
[35] A. Lacabanne, D. Tubbenhauer and P. Vaz,
Verma Howe duality and LKB representations
(2022)
arXiv
[34] P. Vaz
KLR algebras and the branching rule II: The
categorical Gelfand-Tsetlin bases for the
classical Lie algebras
(2014) arXiv
[33] P. Vaz
KLR algebras and the branching rule I: The
categorical Gelfand-Tsetlin basis in type An
(2013) arXiv
[32] M. Mackaay, P. Vaz
The reduced HOMFLY-PT homology for the Conway
and the Kinoshita-Terasaka knots (to be
rewritten)
(2008) arXiv
[31] A. Lacabanne, D. Tubbenhauer, P. Vaz,
Asymptotics in infinite monoidal categories
(2024) (to appear) arXiv
[30] A. Lacabanne, D. Tubbenhauer, P. Vaz,
Big data approach to Kazhdan-Lusztig polynomials
J. Exp. Math. (2025) (to appear) arXiv
[29] A. Lacabanne, P. Vaz, A. Wilbert,
[28] E. Rizzo and P. Vaz, [27] A.
Lacabanne, D. Tubbenhauer and P. Vaz, [26]
M. Khovanov, K. Putyra and P. Vaz, [25]
M. Mackaay, V. Miemietz and P. Vaz, [24] R. Maksimau and P.
Vaz,
[23] A. Lacabanne, D.
Tubbenhauer and P. Vaz,
[22] A.
Lacabanne, D. Tubbenhauer and P. Vaz,
[21] D.
Tubbenhauer and P. Vaz,
[20] G. Naisse and P. Vaz,
[19] A. Lacabanne and P. Vaz,
[18] A. Lacabanne, G. Naisse and P. Vaz,
[17] G. Naisse and P. Vaz,
[16] P. Vaz,
[15] P. Vaz,
[14] G. Naisse and P. Vaz,
[13] G. Naisse and P. Vaz,
[12] G. Naisse and P. Vaz,
[11] D. Tubbenhauer, P. Vaz, P. Wedrich
[10] P. Vaz, E. Wagner
[9] M.
Mackaay, M. Stosic, P. Vaz
[8] P. Vaz
[7] M. Mackaay, P. Vaz
[6] P. Vaz
[5]
P. Vaz
[4]
P. Vaz
[2] P. Vaz
[1] P. Vaz
Two-row Delta Springer varieties
Algebr. Comb. (2025) (to appear)
paper
arXiv
Enhanced nilHecke algebras and baby Verma modules
Tunisian Journal of Mathematics (2025), 91--130
paper
arXiv
A formula to evaluate type A webs and link
polynomials
Ark. Math. 62 (2024) 83-101
paper
arXiv
Odd two-variable Soergel bimodules and
Rouquier complexes
Contemp.
Math. 791 (2024)
paper
arXiv
Evaluation
birepresentations of affine Type A Soergel
bimodules
Advances
in Math. 436 (2024) paper arXiv
DG-enhanced Hecke and KLR algebras
SIGMA 19 (2023), 095, 24 pages
paper
arXiv
Asymptotics
in finite monoidal categories
Proc.
Amer. Math. Soc. Ser. B 10 (2023),
399-412 paper arXiv
Annular
webs and Levi subalgebras
J.
Comb. Algebra 7 (2023), no. 3/4, pp.
283-326 paper arXiv
Handlebody diagram algebras
Rev. Math.
Iberoam. 39, no. 3, 845–896 (2023).
paper
arXiv
2-Verma modules
J. Reine
Angew. Math. 782 (2021), 43-108.
paper
arXiv
(2017)
Schur-Weyl duality, Verma modules, and row
quotients of Ariki-Koike algebras
Pac. J. Math.
311-1 (2021), 113-133.
paper
arXiv
(2020)
Tensor product categorifications, Verma modules
and the blob 2-category
Q. Topol. 12
(2021), no. 4, 705-812.
paper
arXiv
(2020)
2-Verma modules and the Khovanov-Rozansky link
homologies
Math. Z.
(2021) 299: 139-162
paper
arXiv
Not even Khovanov homology
Pac. J. Math.
308-1 (2020), 223-256.
paper
arXiv
A survey on categorification of Verma modules (survey
based on a 4.5h lecture course given at the HIM
in Bonn in Nov 2017)
J.
Interdiscip Math. (2019) 22:3,
265-315. paper
An approach to categorification of Verma modules
Proc. Lond.
Math. Soc. (3) 117 (2018), no.6,
1181-1241 paper
arXiv
On 2-Verma modules for quantum sl(2)
Sel. Math.
New Ser. (2018) 24: 3763-3821.
paper
arXiv
Odd Khovanov's arc algebra
Fundamenta
Mathematicae 241 (2018) , 143-178.
paper
arXiv
Super q-Howe duality and web categories
Algebr. Geom.
Topol. 17 (2017) 3703-3749. paper
A remark on BMW algebra, q-Schur algebras and
categorification
Canad. J.
Math. 66 (2014) no. 2, 453-480.
paper arXiv
A diagrammatic categorification
of the q-Schur algebra
Quantum
Topology 4 (2013), 1-75 paper
On Jaeger's HOMFLY-PT expansions,
branching rules and link homology: a
progress report
Boletim
Soc. Port. Matem., n. especial (2012),
91-94. paper
arXiv
The diagrammatic Soergel category and
sl(N)-foams for N ≥ 4
International
Journal of Mathematics and Mathematical
Sciences (2010) paper
[6] P. Vaz
The diagrammatic Soergel category and sl(2) and
sl(3) foams
International
Journal of Mathematics and Mathematical
Sciences (2010) paper
[5] M. Mackaay, M. Stosic, P. Vaz
The 1,2-coloured HOMFLY-PT link homology
Trans. Amer.
Math. Soc. 363 (2011) 2091-2124 paper
[4] M. Mackaay, M. Stosic, P. Vaz
sl(N)-link homology (N ≥ 4) using foams and the
Kapustin-Li formula
Geometry &
Topology (2009) 13, 1075-1128 paper
[3] M. Mackaay, P. Vaz
The foam and the matrix factorization sl3 link
homologies are equivalent
Algebr. Geom.
Topol. (2008) 8, 309-342 paper
[2] M. Mackaay, P. Vaz
The universal sl3-link homology
Algebr. Geom.
Topol. (2007) 7, 1135-1169 paper
[1] M. Mackaay, P. Turner, P. Vaz
A remark on Rasmussen’s invariant of knots
J. Knot Theory
Ramifications (2007) 16(3): 333-344 paper
Thesis, notes and essays
Three lectures on categorification of Verma
modules
(2017. Notes for a 4.5 hour lecture course at
the HIM-Bonn) PDF
The Kapustin-Li formula and the evaluation of
closed foams
(2010. Notes not intended for publication) PDF
A categorification of the quantum sl(N)-link
polynomials using foams
PhD Thesis (2008) - Universidade do Algarve -
Portugal arXiv version
[3] P. Vaz
Induced representations and the geometric
quantization of the coadjoint orbits of SU(2)
and SL(2,C)
(2004. In Portuguese. Undergrad. Thesis. Not
intended for publication) PDF
[2] P. Vaz
Geometric Quantization
(2003. In Portuguese. Notes not intended for
publication) PDF
[1] P. Vaz
Symplectic Geometry
(2003. In Portuguese. Notes not intended for
publication) PDF
Course notes (in french)
Topologie
(2016. Notes de cours (22h) Université
catholique de Louvain) PDF
Théorie des nœuds
(2013. Notes de cours (45h) Université
catholique de Louvain) PDF