Preprints

 

[19] G. Naisse and P. Vaz,
2-Verma modules
(2017) 
arXiv

[18] G. Naisse and P. Vaz,
2-Verma modules and the Khovanov-Rozansky link homologies
(2017) 
arXiv

[17] P. Vaz
KLR algebras and the branching rule II: The categorical Gelfand-Tsetlin bases for the classical Lie algebras
(2014) 
arXiv

[16] P. Vaz
KLR algebras and the branching rule I: The categorical Gelfand-Tsetlin basis in type An
(2013) 
arXiv

[15] M. Mackaay, P. Vaz
The reduced HOMFLY-PT homology for the Conway and the Kinoshita-Terasaka knots   (to be rewritten)
(2008) 
arXiv


Publications



[14] G. Naisse and P. Vaz,
An approach to categorification of Verma modules
Proc. Lond. Math. Soc. (Published online 22/06/2018) 
paper  arXiv

[13] G. Naisse and P. Vaz,
On 2-Verma modules for quantum sl(2)
Sel. Math. New Ser. (2018) 
paper  arXiv

[12] G. Naisse and P. Vaz,
Odd Khovanov's arc algebra
Fundamenta Mathematicae 241 (2018) , 143-178.  
paper  arXiv

[11] D. Tubbenhauer, P. Vaz, P. Wedrich
Super q-Howe duality and web categories
Algebr. Geom. Topol. 17 (2017) 3703-3749.    paper

[10] P. Vaz    
On Jaeger's HOMFLY-PT expansions, branching rules and link homology: a progress report
Boletim Soc. Port. Matem., n. especial (2012), 91-94.   arXiv

[9] P. Vaz, E. Wagner
A remark on BMW algebra, q-Schur algebras and categorification
Canad. J. Math. 66 (2014) no. 2, 453-480.  paper arXiv

[8] M. Mackaay, M. Stosic, P. Vaz
A diagrammatic categorification of the q-Schur algebra
Quantum Topology 4 (2013), 1-75 paper

[7] M. Mackaay, P. Vaz
The diagrammatic Soergel category and sl(N)-foams for N ≥ 4
International Journal of Mathematics and Mathematical Sciences (2010)   paper

[6] P. Vaz
The diagrammatic Soergel category and sl(2) and sl(3) foams
International Journal of Mathematics and Mathematical Sciences (2010)   paper

[5] M. Mackaay, M. Stosic, P. Vaz
The 1,2-coloured HOMFLY-PT link homology
Trans. Amer. Math. Soc. 363 (2011) 2091-2124   paper

[4] M. Mackaay, M. Stosic, P. Vaz
sl(N)-link homology (N ≥ 4) using foams and the Kapustin-Li formula
Geometry & Topology (2009) 13, 1075-1128   paper

[3] M. Mackaay, P. Vaz
The foam and the matrix factorization sl3 link homologies are equivalent
Algebr. Geom. Topol. (2008) 8, 309-342   paper

[2] M. Mackaay, P. Vaz
The universal sl3-link homology
Algebr. Geom. Topol. (2007) 7, 1135-1169   paper

[1] M. Mackaay, P. Turner, P. Vaz
A remark on Rasmussen’s invariant of knots
J. Knot Theory Ramifications (2007) 16(3): 333-344   paper



 

Thesis, notes and essays

 

[6] P. Vaz
Three lectures on categorification of Verma modules
(2017. Notes for a 4.5 hour lecture curse at the HIM-Bonn)  PDF  

[5] P. Vaz
The Kapustin-Li formula and the evaluation of closed foams
(2010. Notes not intended for publication) PDF  

[4] P. Vaz
A categorification of the quantum sl(N)-link polynomials using foams
PhD Thesis (2008) - Universidade do Algarve - Portugal   arXiv version

[3] P. Vaz
Induced representations and the geometric quantization of the coadjoint orbits of SU(2) and SL(2,C)
(2004. In Portuguese. Undergrad. Thesis. Not intended for publication) PDF  

[2] P. Vaz
Geometric Quantization
(2003. In Portuguese. Notes not intended for publication) PDF  

[1] P. Vaz
Symplectic Geometry
(2003. In Portuguese. Notes not intended for publication) PDF   

 
 

Course notes (in french)

 

[2] P. Vaz
Topologie
(2016. Notes de cours (22h) Université catholique de Louvain)  PDF  

[1] P. Vaz
Théorie des nœuds
(2013. Notes de cours (45h) Université catholique de Louvain)  PDF