[38] A. Lacabanne, D. Tubbenhauer, P. Vaz,
Big data approach to Kazhdan-Lusztig polynomials
(2024) arXiv
[37] M. Mackaay, J. Macpherson, P. Vaz,
Evaluation 2-functors for Kac-Moody 2-categories of type A2
(2024) arXiv
[36] A. Lacabanne, D. Tubbenhauer, P. Vaz,
On Hecke and asymptotic categories for complex reflection groups
(2024) arXiv
[35] A. Lacabanne, D. Tubbenhauer, P. Vaz,
Asymptotics in infinite monoidal categories
(2024) arXiv
[34] L. Schelstraete and P. Vaz,
Odd Khovanov homology and higher representation theory
(2023) arXiv
[33] A. Lacabanne, D. Tubbenhauer and P. Vaz,
Verma Howe duality and LKB representations
(2022)
arXiv
[32] P. Vaz
KLR algebras and the branching rule II: The
categorical Gelfand-Tsetlin bases for the
classical Lie algebras
(2014) arXiv
[31] P. Vaz
KLR algebras and the branching rule I: The
categorical Gelfand-Tsetlin basis in type An
(2013) arXiv
[30] M. Mackaay, P. Vaz
The reduced HOMFLY-PT homology for the Conway
and the Kinoshita-Terasaka knots (to be
rewritten)
(2008) arXiv
[29] A. Lacabanne, P. Vaz, A. Wilbert,
Two-row Delta Springer varieties
Algebr. Comb. (2025) (to appear)
paper
arXiv
[28] E. Rizzo and P. Vaz,
Enhanced nilHecke algebras and baby Verma modules
Tunisian Journal of Mathematics (2025), 91--130
paper
arXiv
[27] A.
Lacabanne, D. Tubbenhauer and P. Vaz,
A formula to evaluate type A webs and link
polynomials
Ark. Math. 62 (2024) 83-101
paper
arXiv
[26]
M. Khovanov, K. Putyra and P. Vaz,
Odd two-variable Soergel bimodules and
Rouquier complexes
Contemp.
Math. 791 (2024)
paper
arXiv
[25]
M. Mackaay, V. Miemietz and P. Vaz,
Evaluation
birepresentations of affine Type A Soergel
bimodules
Advances
in Math. 436 (2024) paper arXiv
[24] R. Maksimau and P.
Vaz,
DG-enhanced Hecke and KLR algebras
SIGMA 19 (2023), 095, 24 pages
paper
arXiv
[23] A. Lacabanne, D.
Tubbenhauer and P. Vaz,
Asymptotics
in finite monoidal categories
Proc.
Amer. Math. Soc. Ser. B 10 (2023),
399-412 paper arXiv
[22] A.
Lacabanne, D. Tubbenhauer and P. Vaz,
Annular
webs and Levi subalgebras
J.
Comb. Algebra 7 (2023), no. 3/4, pp.
283-326 paper arXiv
[21] D.
Tubbenhauer and P. Vaz,
Handlebody diagram algebras
Rev. Math.
Iberoam. 39, no. 3, 845–896 (2023).
paper
arXiv
[20] G. Naisse and P. Vaz,
2-Verma modules
J. Reine
Angew. Math. 782 (2021), 43-108.
paper
arXiv
(2017)
[19] A. Lacabanne and P. Vaz,
Schur-Weyl duality, Verma modules, and row
quotients of Ariki-Koike algebras
Pac. J. Math.
311-1 (2021), 113-133.
paper
arXiv
(2020)
[18] A. Lacabanne, G. Naisse and P. Vaz,
Tensor product categorifications, Verma modules
and the blob 2-category
Q. Topol. 12
(2021), no. 4, 705-812.
paper
arXiv
(2020)
[17] G. Naisse and P. Vaz,
2-Verma modules and the Khovanov-Rozansky link
homologies
Math. Z.
(2021) 299: 139-162
paper
arXiv
[16] P. Vaz,
Not even Khovanov homology
Pac. J. Math.
308-1 (2020), 223-256.
paper
arXiv
[15] P. Vaz,
A survey on categorification of Verma modules (survey
based on a 4.5h lecture course given at the HIM
in Bonn in Nov 2017)
J.
Interdiscip Math. (2019) 22:3,
265-315. paper
[14] G. Naisse and P. Vaz,
An approach to categorification of Verma modules
Proc. Lond.
Math. Soc. (3) 117 (2018), no.6,
1181-1241 paper
arXiv
[13] G. Naisse and P. Vaz,
On 2-Verma modules for quantum sl(2)
Sel. Math.
New Ser. (2018) 24: 3763-3821.
paper
arXiv
[12] G. Naisse and P. Vaz,
Odd Khovanov's arc algebra
Fundamenta
Mathematicae 241 (2018) , 143-178.
paper
arXiv
[11] D. Tubbenhauer, P. Vaz, P. Wedrich
Super q-Howe duality and web categories
Algebr. Geom.
Topol. 17 (2017) 3703-3749. paper
[10] P. Vaz, E. Wagner
A remark on BMW algebra, q-Schur algebras and
categorification
Canad. J.
Math. 66 (2014) no. 2, 453-480.
paper arXiv
[9] M.
Mackaay, M. Stosic, P. Vaz
A diagrammatic categorification
of the q-Schur algebra
Quantum
Topology 4 (2013), 1-75 paper
[8] P. Vaz
On Jaeger's HOMFLY-PT expansions,
branching rules and link homology: a
progress report
Boletim
Soc. Port. Matem., n. especial (2012),
91-94. paper
arXiv
[7] M. Mackaay, P. Vaz
The diagrammatic Soergel category and
sl(N)-foams for N ≥ 4
International
Journal of Mathematics and Mathematical
Sciences (2010) paper
[6] P. Vaz
The diagrammatic Soergel category and sl(2) and
sl(3) foams
International
Journal of Mathematics and Mathematical
Sciences (2010) paper
[5] M. Mackaay, M. Stosic, P. Vaz
The 1,2-coloured HOMFLY-PT link homology
Trans. Amer.
Math. Soc. 363 (2011) 2091-2124 paper
[4] M. Mackaay, M. Stosic, P. Vaz
sl(N)-link homology (N ≥ 4) using foams and the
Kapustin-Li formula
Geometry &
Topology (2009) 13, 1075-1128 paper
[3] M. Mackaay, P. Vaz
The foam and the matrix factorization sl3 link
homologies are equivalent
Algebr. Geom.
Topol. (2008) 8, 309-342 paper
[2] M. Mackaay, P. Vaz
The universal sl3-link homology
Algebr. Geom.
Topol. (2007) 7, 1135-1169 paper
[1] M. Mackaay, P. Turner, P. Vaz
A remark on Rasmussen’s invariant of knots
J. Knot Theory
Ramifications (2007) 16(3): 333-344 paper
[6] P. Vaz
Three lectures on categorification of Verma
modules
(2017. Notes for a 4.5 hour lecture course at
the HIM-Bonn) PDF
[5]
P. Vaz
The Kapustin-Li formula and the evaluation of
closed foams
(2010. Notes not intended for publication) PDF
[4]
P. Vaz
A categorification of the quantum sl(N)-link
polynomials using foams
PhD Thesis (2008) - Universidade do Algarve -
Portugal arXiv version
[3] P. Vaz
Induced representations and the geometric
quantization of the coadjoint orbits of SU(2)
and SL(2,C)
(2004. In Portuguese. Undergrad. Thesis. Not
intended for publication) PDF
[2] P. Vaz
Geometric Quantization
(2003. In Portuguese. Notes not intended for
publication) PDF
[1] P. Vaz
Symplectic Geometry
(2003. In Portuguese. Notes not intended for
publication) PDF
[2] P. Vaz
Topologie
(2016. Notes de cours (22h) Université
catholique de Louvain) PDF
[1] P. Vaz
Théorie des nœuds
(2013. Notes de cours (45h) Université
catholique de Louvain) PDF