Publications
Submitted papers
[1] Franz Gmeineder, Peter Lewintan and Jean Van Schaftingen, Limiting Korn-Maxwell-Sobolev inequalities for general incompatibilities.
[2] Jean Van Schaftingen, The extension of traces for Sobolev mappings between manifolds.
[3] Bohdan Bulanyi, Jean Van Schaftingen and Benoît Van Vaerenbergh, Limiting behavior of minimizing \(p\)–harmonic maps in 3d as \(p\) goes to \(2\) with finite fundamental group.
[4] Jean Van Schaftingen, Injective ellipticity, cancelling operators, and endpoint Gagliardo-Nirenberg-Sobolev inequalities for vector fields.
Accepted papers
[5] Jean Van Schaftingen, Lifting of fractional Sobolev mappings to noncompact covering spaces, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire
doi:10.4171/AIHPC/98 arXiv:2301.07663
Published papers
[6] Bohdan Bulanyi and Jean Van Schaftingen, Singular extension of critical Sobolev mappings under an exponential weak-type estimate, J. Funct. Anal. 288 (2025), no. 1, 110681.
doi:10.1016/j.jfa.2024.110681 arXiv:2309.12874
[7] Haïm Brezis, Andreas Seeger, Jean Van Schaftingen and Po-Lam Yung, Families of functionals representing Sobolev norms, Anal. PDE 17 (2024), no. 3, 943–979.
doi:10.2140/apde.2024.17.943 DIAL:287078 arXiv:2109.02930
[8] Jean Van Schaftingen, Endpoint Sobolev inequalities for vector fields and cancelling operators, in Duván Cardona, Joel Restrepo and Michael Ruzhansky (eds.), Extended Abstracts 2021/2022. Methusalem Lectures, Birkhäuser, Cham, Trends in Mathematics, No. 3, 2024, 47–56.
doi:doi.org/10.1007/978-3-031-48579-4_5 ISBN 978-3-031-48579-4 DIAL:285695 arXiv:2305.00840
[9] Franz Gmeineder, Bogdan Raiță and Jean Van Schaftingen, Boundary ellipticity and limiting \(L^1\)-estimates on halfspaces, Adv. Math. 439 (2024), 109490 (25 pages).
doi:10.1016/j.aim.2024.109490 DIAL:284275 arXiv:2211.08167
[10] Jean Van Schaftingen and Benoît Van Vaerenbergh, Asymptotic behavior of minimizing \(p\)-harmonic maps when \(p \nearrow 2\) in dimension \(2\), Calc. Var. Partial Differential Equations 62 (2023), 229 (45 pages).
doi:10.1007/s00526-023-02568-6 SharedIt DIAL:278074 arXiv:2301.06955
[11] Jean Van Schaftingen, Fractional Gagliardo-Nirenberg interpolation inequality and bounded mean oscillation, C. R. Math. Acad. Sci. Paris 361 (2023), 1041–1049.
doi:10.5802/crmath.463 DIAL:277986 arXiv:2208.14691
[12] Jean Van Schaftingen, Limiting Sobolev estimates for vector fields and cancelling differential operators, in Jaroslav Lukeš, Zdeněk Mihula, Luboš Pick and Hana Turčinová (eds.), Function spaces and applications XII (Pazeky nad Jizerou, 2023), MatfyzPress, Charles University, Prague, 2023, 135–152.
[13] Katarzyna Mazowiecka and Jean Van Schaftingen, Quantitative characterization of traces of Sobolev maps, Commun. Contemp. Math. 25 (2023), no. 02, 2250003 (31 pages).
doi:10.1142/S0219199722500031 DIAL:259271 arXiv:2101.10934
[14] Óscar Domínguez, Andreas Seeger, Brian Street, Jean Van Schaftingen and Po-Lam Yung, Spaces of Besov–Sobolev type and a problem on nonlinear approximation, J. Funct. Anal. 284 (2023), no. 4, 109775.
doi:10.1016/j.jfa.2022.109775 DIAL:267826 arXiv:2112.05539
[15] Haïm Brezis, Andreas Seeger, Jean Van Schaftingen and Po-Lam Yung, Sobolev spaces revisited, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 33 (2022), no. 2, 413–437.
doi:10.4171/RLM/976 DIAL:265665 arXiv:2202.01410
[16] Jean Van Schaftingen and Po-Lam Yung, Limiting Sobolev and Hardy inequalities on stratified homogeneous groups, Annal. Acad. Sc. Fennic. 47 (2022), no. 2, 1065–1098.
doi:10.54330/afm.120959 DIAL:264492 arXiv:2007.14532
[17] Antonin Monteil, Rémy Rodiac and Jean Van Schaftingen, Renormalised energies and renormalisable singular harmonic maps into a compact manifold on planar domains, Math. Annal. 383 (2022), 1061–1125.
doi:10.1007/s00208-021-02204-8 SharedIt DIAL:251090 arXiv:2006.14823
[18] Jean Van Schaftingen, Reverse superposition estimates in Sobolev spaces, Pure Appl. Funct. Anal. 7 (2022), no. 2, 805–811.
[19] Franz Gmeineder, Bogdan Raiță and Jean Van Schaftingen, On limiting trace inequalities for vectorial differential operators, Indiana Univ. Math. J. 70 (2021), no. 5, 2133–2176.
doi:10.1512/iumj.2021.70.8682 DIAL:254158 arXiv:1903.08633
[20] Antonin Monteil, Rémy Rodiac and Jean Van Schaftingen, Ginzburg-Landau relaxation for harmonic maps on planar domains into a general compact vacuum manifold, Arch. Rat. Mech. Anal. 242 (2021), no. 2, 875–935.
doi:10.1007/s00205-021-01695-8 SharedIt DIAL:252249 arXiv:2008.13512
[21] Petru Mironescu and Jean Van Schaftingen, Lifting in compact covering spaces for fractional Sobolev mappings, Anal. PDE 14 (2021), no. 6, 1851–1871.
doi:10.2140/apde.2021.14.1851 DIAL:250778 arXiv:1907.01373
[22] Petru Mironescu and Jean Van Schaftingen, Trace theory for Sobolev mappings into a manifold, Ann. Fac. Sci. Toulouse Math. (6) 30 (2021), no. 2, 281–299.
doi:10.5802/afst.1675 DIAL:249396 arXiv:2001.02226
[23] Haïm Brezis, Jean Van Schaftingen and Po-Lam Yung, Going to Lorentz when fractional Sobolev, Gagliardo and Nirenberg estimates fail, Calc. Var. Partial Differential Equations 60 (2021), no. 129
doi:10.1007/s00526-021-02001-w SharedIt DIAL:248934 arXiv:2104.09867
[24] Haïm Brezis, Jean Van Schaftingen and Po-Lam Yung, A surprising formula for Sobolev norms, Proc. Natl. Acad. Sci. USA 118 (2021), no. 8, e2025254118.
doi:10.1073/pnas.2025254118 DIAL:243750 arXiv:2003.05216
[25] Rémy Rodiac and Jean Van Schaftingen, Metric characterization of the sum of fractional Sobolev spaces, Stud. Math. 258 (2021), 27–51.
doi:10.4064/sm190408-21-4 DIAL:243396 arXiv:1904.03946
[26] Sagun Chanillo and Jean Van Schaftingen, Estimates of the amplitude of holonomies by the curvature of a connection on a bundle, Pure Appl. Funct. Anal. 5 (2020), no. 4, 891–897.
weblink DIAL:240754 arXiv:1905.01869
[27] Hoai-Minh Nguyen and Jean Van Schaftingen, Characterization of the traces on the boundary of functions in magnetic Sobolev spaces, Adv. Math. 371 (2020), 107246.
doi:10.1016/j.aim.2020.107246 DIAL:230176 arXiv:1905.01188
[28] Daniele Cassani, Jean Van Schaftingen and Jianjun Zhang, Groundstates for Choquard type equations with Hardy–Littlewood–Sobolev lower critical exponent, Proc. Roy. Soc. Edinb. A 150 (2020), no. 3, 1377–1400.
doi:10.1017/prm.2018.135 DIAL:224578 arXiv:1709.09448
[29] Justin Dekeyser and Jean Van Schaftingen, Range convergence monotonicity for vector measures and range monotonicity of the mass, Ric. Mat. 69 (2020), no. 1, 293-326.
doi:10.1007/s11587-019-00463-x SharedIt DIAL:224576 arXiv:1904.05684
[30] Armin Schikorra and Jean Van Schaftingen, An estimate of the Hopf degree of fractional Sobolev mappings, Proc. Amer. Math. Soc. 148 (2020), no. 7, 2877–2891.
doi:10.1090/proc/15026 DIAL:230076 arXiv:1904.12549
[31] Justin Dekeyser and Jean Van Schaftingen, Vortex motion for the lake equations, Comm. Math. Phys. 375 (2020), no. 2, 1459–1501.
doi:10.1007/s00220-020-03742-z SharedIt DIAL:229397 arXiv:1901.01717
[32] Jean Van Schaftingen, Estimates by gap potentials of free homotopy decompositions of critical Sobolev maps, Adv. Nonlinear Anal. 9 (2019), no. 1, 1214–1250.
doi:10.1515/anona-2020-0047 DIAL:223840 arXiv:1811.01706
[33] Daniel Spector and Jean Van Schaftingen, Optimal embeddings into Lorentz spaces for some vector differential operators via Gagliardo’s lemma, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 30 (2019), no. 3, 413–436.
doi:10.4171/RLM/854 DIAL:223345 arXiv:1811.02691
[34] Chemin Alexandre, François Henrotte, Remacle Jean-François and Jean Van Schaftingen, Representing three-dimensional cross fields using fourth order tensors, in Roca X. and Loseille A. (eds.), 27th International Meshing Roundtable. IMR 2018, Springer, Cham, Lecture Notes in Computational Science and Engineering, No. 127, 2019, 89–108.
doi:10.1007/978-3-030-13992-6_6 DIAL:219939 arXiv:1808.03999
[35] Alexandra Convent and Jean Van Schaftingen, Higher order intrinsic weak differentiability and Sobolev spaces between manifolds, Adv. Calc. Var. 12 (2019), no. 3, 303–332.
doi:10.1515/acv-2017-0008 DIAL:197260 arXiv:1702.07171
[36] Denis Bonheure, Manon Nys and Jean Van Schaftingen, Properties of groundstates of nonlinear Schrödinger equations under a weak constant magnetic field, J. Math. Pures Appl. (9) 124 (2019), 123–168.
doi:10.1016/j.matpur.2018.05.007 DIAL:215071 arXiv:1607.00170
[37] Antonin Monteil and Jean Van Schaftingen, Uniform boundedness principles for Sobolev maps into manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 36 (2019), no. 2, 417–449.
doi:10.1016/j.anihpc.2018.06.002 DIAL:214140 CVGMT:3593 arXiv:1709.08565
[38] Jacopo Bellazzini, Marco Ghimenti, Carlo Mercuri, Vitaly Moroz and Jean Van Schaftingen, Sharp Gagliardo-Nirenberg inequalities in fractional Coulomb–Sobolev spaces, Trans. Amer. Math. Soc. 370 (2018), no. 11, 8285–8310.
doi:10.1090/tran/7426 DIAL:202975 arXiv:1612.00243
[39] Luca Battaglia and Jean Van Schaftingen, Groundstates of the Choquard equations with a sign-changing self-interaction potential, Z. Angew. Math. Phys. 69 (2018), no. 3, 69:86.
doi:10.1007/s00033-018-0975-0 DIAL:202974 arXiv:1710.04406
[40] Jean Van Schaftingen and Jiankang Xia, Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent, J. Math. Anal. Appl. 464 (2018), no. 2, 1184–1202.
doi:10.1016/j.jmaa.2018.04.047 DIAL:202971 arXiv:1710.03973
[41] Pierre Bousquet, Augusto C. Ponce and Jean Van Schaftingen, Weak approximation by bounded Sobolev maps with values into complete manifolds, C. R. Math. Acad. Sci. Paris 356 (2018), no. 3, 264–271.
doi:10.1016/j.crma.2018.01.017 DIAL:196135 arXiv:1701.07627
[42] Jean Van Schaftingen, Sobolev mappings: from liquid crystals to irrigation via degree theory, Lecture notes of the Godeaux Lecture delivered at the 9th Brussels Summer School of Mathematics (2018)
[43] David Ruiz and Jean Van Schaftingen, Odd symmetry of least energy nodal solutions for the Choquard equation, J. Differential Equations 264 (2018), no. 2, 1231–1262.
doi:10.1016/j.jde.2017.09.034 DIAL:191995 arXiv:1606.05668
[44] Augusto C. Ponce and Jean Van Schaftingen, Gauge-measurable functions, Rend. Istit. Mat. Univ. Trieste 49 (2017), 113–135.
doi:10.13137/2464-8728/16208 DIAL:200921 arXiv:1702.01911
[45] Søren Fournais, Loïc Le Treust, Nicolas Raymond and Jean Van Schaftingen, Semiclassical Sobolev constants for the electro-magnetic Robin Laplacian, J. Math. Soc. Japan 69 (2017), no. 4, 1667–1714.
doi:10.2969/jmsj/06941667 DIAL:191994 hal-01285311 arXiv:1603.02810
[46] Pierre Bousquet, Augusto C. Ponce and Jean Van Schaftingen, Density of bounded maps in Sobolev spaces into complete manifolds, Ann. Mat. Pura Appl. (4) 196 (2017), no. 6, 2261–2301.
doi:10.1007/s10231-017-0664-1 SharedIt DIAL:185227 arXiv:1501.07136
[47] Justin Dekeyser and Jean Van Schaftingen, Approximation of symmetrizations by Markov processes, Indiana Univ. Math. J. 66 (2017), no. 4, 1145–1172.
doi:10.1512/iumj.2017.66.6118 DIAL:191989 arXiv:1508.00464
[48] Jean Van Schaftingen and Jiankang Xia, Standing waves with a critical frequency for nonlinear Choquard equations, Nonlinear Anal. 161 (2017), 87–107.
doi:10.1016/j.na.2017.05.014 DIAL:190306 arXiv:1611.08952
[49] Denis Bonheure, Silvia Cingolani and Jean Van Schaftingen, The logarithmic Choquard equation: sharp asymptotics and nondegeneracy of the groundstate, J. Funct. Anal. 272 (2017), no. 12, 5255–5281.
doi:10.1016/j.jfa.2017.02.026 DIAL:186089 arXiv:1612.02194
[50] Sagun Chanillo, Jean Van Schaftingen and Po-Lam Yung, Bourgain–Brezis estimates on symmetric spaces of non-compact type, J. Funct. Anal. 273 (2017), no. 4, 1504-1547.
doi:10.1016/j.jfa.2017.05.005 DIAL:186090 arXiv:1610.00503
[51] Luca Battaglia and Jean Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations in the plane, Adv. Nonlinear Stud. 17 (2017), no. 3, 581–594.
doi:10.1515/ans-2016-0038 DIAL:192017 arXiv:1604.03294
[52] Sagun Chanillo, Po-Lam Yung and Jean Van Schaftingen, The incompressible Navier Stokes flow in two dimensions with prescribed vorticity, in Sagun Chanillo, Bruno Franchi, Guozhen Lu, Carlos Perez and Eric T. Sawyer (eds.), Harmonic Analysis, Partial Differential Equations and Applications, Birkhäuser, Applied and Numerical Harmonic Analysis, 2017, 19–25.
doi:10.1007/978-3-319-52742-0_2 DIAL:184673
[53] Mircea Petrache and Jean Van Schaftingen, Controlled singular extension of critical trace Sobolev maps from spheres to compact manifolds, Int. Math. Res. Not. IMRN 2017 (2017), no. 12, 3467–3683.
doi:10.1093/imrn/rnw109 DIAL:186080 CVGMT:2784 arXiv:1508.07813
[54] Vitaly Moroz and Jean Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl. 19 (2017), no. 1, 773–813.
doi:10.1007/s11784-016-0373-1 SharedIt DIAL:184670 arXiv:1606.02158
[55] Armin Schikorra, Daniel Spector and Jean Van Schaftingen, An \(L^1\)–type estimate for Riesz potentials, Rev. Mat. Iberoam. 33 (2017), no. 1, 291–304.
doi:10.4171/rmi/937 DIAL:183697 CVGMT:2566 arXiv:1411.2318
[56] Sagun Chanillo, Jean Van Schaftingen and Po-Lam Yung, Variations on a proof of a borderline Bourgain–Brezis Sobolev embedding theorem, Chinese Ann. Math. Ser. B 38 (2017), no. 1, 235–252.
doi:10.1007/s11401-016-1069-y SharedIt DIAL:183696 arXiv:1612.02888
[57] Jean Van Schaftingen and Jiankang Xia, Choquard equations under confining external potentials, NoDEA Nonlinear Differential Equations Appl. 24 (2017), no. 1, 1–24.
doi:10.1007/s00030-016-0424-8 SharedIt DIAL:179262 arXiv:1607.00151
[58] Marco Ghimenti, Vitaly Moroz and Jean Van Schaftingen, Least action nodal solutions for the quadratic Choquard equation, Proc. Amer. Math. Soc. 145 (2017), no. 2, 737–747.
doi:10.1090/proc/13247 DIAL:179188 arXiv:1511.04779
[59] Carlo Mercuri, Vitaly Moroz and Jean Van Schaftingen, Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency, Calc. Var. Partial Differential Equations 55 (2016), no. 146, 58.
doi:10.1007/s00526-016-1079-3 SharedIt DIAL:179187 arXiv:1507.02837
[60] Marco Ghimenti and Jean Van Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal. 271 (2016), no. 1, 107–135.
doi:10.1016/j.jfa.2016.04.019 DIAL:173887 arXiv:1503.06031
[61] Alexandra Convent and Jean Van Schaftingen, Intrinsic colocal weak derivatives and Sobolev spaces between manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 1, 97–128.
doi:10.2422/2036-2145.201312_005 DIAL:173889 arXiv:1312.5858
[62] Sagun Chanillo, Jean Van Schaftingen and Po-Lam Yung, Applications of Bourgain–Brezis inequalities to fluid mechanics and magnetism, C. R. Math. Acad. Sci. Paris 354 (2016), no. 1, 51–55.
doi:10.1016/j.crma.2015.10.005 DIAL:169283 arXiv:1509.01472
[63] Alexandra Convent and Jean Van Schaftingen, Geometric partial differentiability on manifolds: the tangential derivative and the chain rule, J. Math. Anal. Appl. 435 (2016), no. 2, 1672–1681.
doi:10.1016/j.jmaa.2015.11.036 DIAL:167763 arXiv:1501.01223
[64] Vitaly Moroz and Jean Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent, Commun. Contemp. Math. 17 (2015), no. 5, 1550005 (12 pages).
doi:10.1142/S0219199715500054 DIAL:165641 arXiv:1403.7414
[65] Vitaly Moroz and Jean Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6557–6579.
doi:10.1090/S0002-9947-2014-06289-2 DIAL:163152 arXiv:1212.2027
[66] Jonathan Di Cosmo and Jean Van Schaftingen, Semiclassical stationary states for nonlinear Schrödinger equations under a strong external magnetic field, J. Differential Equations 259 (2015), no. 2, 596–627.
doi:10.1016/j.jde.2015.02.016 DIAL:158580 arXiv:1312.5467
[67] Pierre Bousquet, Augusto C. Ponce and Jean Van Schaftingen, Strong density for higher order Sobolev spaces into compact manifolds, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 4, 763–817.
doi:10.4171/JEMS/518 DIAL:158312 arXiv:1203.3721
[68] Vitaly Moroz and Jean Van Schaftingen, Semi-classical states for the Choquard equations, Calc. Var. Partial Differential Equations 52 (2015), no. 1, 199–235.
doi:10.1007/s00526-014-0709-x SharedIt DIAL:155963 arXiv:1308.1571
[69] Vitaly Moroz and Jean Van Schaftingen, Existence, stability and oscillation properties of slow decay positive solutions of supercritical elliptic equations with Hardy potential, Proc. Roy. Soc. Edinburgh Sect. A 58 (2015), no. 1, 255–271.
doi:10.1017/S0013091513000588 DIAL:155964 arXiv:1108.4668
[70] Jean Van Schaftingen, Limiting Bourgain–Brezis estimates for systems of linear differential equations: Theme and variations, J. Fixed Point Theory Appl. 15 (2014), no. 2, 273–297.
doi:10.1007/s11784-014-0177-0 SharedIt DIAL:155931 arXiv:1311.6624
[71] Pierre Bousquet, Augusto C. Ponce and Jean Van Schaftingen, Strong approximation of fractional Sobolev maps, J. Fixed Point Theory Appl. 15 (2014), no. 1, 133–153.
doi:10.1007/s11784-014-0172-5 SharedIt DIAL:153456 arXiv:1310.6017
[72] Pierre Bousquet and Jean Van Schaftingen, Hardy–Sobolev inequalities for vector fields and canceling linear differential operators, Indiana Univ. Math. J. 63 (2014), no. 5, 1419–1445.
doi:10.1512/iumj.2014.63.5395 DIAL:152137 arXiv:1305.4262
[73] Jean Van Schaftingen, Equivalence between Pólya–Szegő and relative capacity inequalities under rearrangement, Arch. Math. (Basel) 103 (2014), no. 4, 367–379.
doi:10.1007/s00013-014-0695-4 SharedIt DIAL:152136 arXiv:1401.2780
[74] Jean Van Schaftingen, Interpolation inequalities between Sobolev and Morrey–Campanato spaces: A common gateway to concentration-compactness and Gagliardo–Nirenberg, Port. Math. 71 (2014), no. 3–4, 159–175.
doi:10.4171/PM/1947 DIAL:152135 arXiv:1308.1794
[75] Jean Van Schaftingen, Approximation in Sobolev spaces by piecewise affine interpolation, J. Math. Anal. Appl. 420 (2014), no. 1, 40–47.
doi:10.1016/j.jmaa.2014.05.036 DIAL:152134 arXiv:1312.5986
[76] Pierre Bousquet, Augusto C. Ponce and Jean Van Schaftingen, Density of smooth maps for fractional Sobolev spaces \(W^{s, p}\) into \(\ell\)–simply connected manifolds when \(s \ge 1\), Confluentes Math. 5 (2013), no. 2, 3–22.
doi:10.5802/cml.5 DIAL:135962 arXiv:1210.2525
[77] Sébastien de Valeriola and Jean Van Schaftingen, Desingularization of vortex rings and shallow water vortices by a semilinear elliptic problem, Arch. Rat. Mech. Anal. 210 (2013), no. 2, 409–450.
doi:10.1007/s00205-013-0647-3 SharedIt DIAL:136141 arXiv:1209.3988
[78] Jean Van Schaftingen, A direct proof of the existence of eigenvalues and eigenvectors by Weierstrass’s theorem, Amer. Math. Monthly 120 (2013), no. 8, 741–746.
doi:10.4169/amer.math.monthly.120.08.741 DIAL:131967 arXiv:1109.6821
[79] Vitaly Moroz and Jean Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265 (2013), no. 2, 153–184.
doi:10.1016/j.jfa.2013.04.007 DIAL:131969 arXiv:1205.6286
[80] Jonathan Di Cosmo and Jean Van Schaftingen, Stationary solutions of the nonlinear Schrödinger equation with fast-decay potentials concentrating around local maxima, Calc. Var. Partial Differential Equations 47 (2013), no. 1–2, 243–271.
doi:10.1007/s00526-012-0518-z SharedIt DIAL:131965 arXiv:1109.6773
[81] Jean Van Schaftingen, Limiting Sobolev inequalities for vector fields and canceling linear differential operators, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 3, 877–921.
doi:10.4171/JEMS/380 DIAL:131968 arXiv:1104.0192
[82] Vitaly Moroz and Jean Van Schaftingen, Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains, J. Differential Equations 254 (2013), no. 8, 3089–3145.
doi:10.1016/j.jde.2012.12.019 DIAL:128740 arXiv:1203.3154
[83] Vitaly Moroz and Jean Van Schaftingen, Nonlocal Hardy type inequalities with optimal constants and remainder terms, Ann. Univ. Buchar. Math. Ser. 3 (LXI) (2012), no. 2, 187–200.
weblink pdf DIAL:126555 arXiv:1208.6447
[84] Marco Squassina and Jean Van Schaftingen, Finding critical points whose polarization is also a critical point, Topol. Methods Nonlinear Anal. 40 (2012), no. 2, 371–379.
[85] Denis Bonheure, Jonathan Di Cosmo and Jean Van Schaftingen, Nonlinear Schrödinger equation with unbounded or vanishing potentials: solutions concentrating on lower dimensional spheres, J. Differential Equations 252 (2012), no. 1, 941–968.
doi:10.1016/j.jde.2011.10.004 DIAL:92294 arXiv:1009.2600
[86] Vincent Bouchez and Jean Van Schaftingen, Extremal functions in Poincaré–Sobolev inequalities for functions of bounded variation, in Denis Bonheure, Mabel Cuesta, Enrique J. and Peter Takáč Lami Dozo, Jean Van Schaftingen and Michel Willem (eds.), Nonlinear Elliptic Partial Differential Equations, Amer. Math. Soc., Contemporary Mathematics, No. 540, 2011, 47–58.
ISBN 978-0-8218-4907-1 DIAL:76122 arXiv:1001.4651
[87] Didier Smets and Jean Van Schaftingen, Desingularization of vortices for the Euler equation, Arch. Rat. Mech. Anal. 198 (2010), no. 3, 869–925.
doi:10.1007/s00205-010-0293-y SharedIt DIAL:34997 arXiv:0909.1166
[88] Denis Bonheure and Jean Van Schaftingen, Groundstates for the nonlinear Schrödinger equation with potential vanishing at infinity, Ann. Mat. Pura Appl. (4) 189 (2010), 273–301.
doi:10.1007/s10231-009-0109-6 SharedIt DIAL:34078 preprint
[89] Vitaly Moroz and Jean Van Schaftingen, Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials, Calc. Var. Partial Differential Equations 37 (2010), no. 1, 1—27.
doi:10.1007/s00526-009-0249-y SharedIt DIAL:35138 arXiv:0902.0722
[90] Jean Van Schaftingen, Limiting fractional and Lorentz spaces estimates of differential forms, Proc. Amer. Math. Soc. 138 (2010), no. 1, 235–240.
doi:10.1090/S0002-9939-09-10005-9 pdf DIAL:34246 arXiv:0903.2182
[91] Augusto C. Ponce and Jean Van Schaftingen, Closure of Smooth Maps in \(W^{1,p}(B^3;S^2)\), Differential Integral Equations 22 (2009), no. 9–10, 881–900.
euclid.die/1356019513 DIAL:58605 arXiv:0901.4491
[92] Jean Van Schaftingen, Explicit approximation of the symmetric rearrangement by polarizations, Arch. Math. (Basel) 93 (2009), no. 2, 181–190.
doi:10.1007/s00013-009-0018-3 SharedIt DIAL:35391 arXiv:0902.0637
[93] Vitaly Moroz and Jean Van Schaftingen, Existence and concentration for nonlinear Schrödinger equations with fast decaying potentials, C. R. Math. Acad. Sci. Paris 347 (2009), no. 15–16, 921–926.
doi:10.1016/j.crma.2009.05.009 DIAL:35386 preprint
[94] Tianling Jin, Vladimir Maz′ya and Jean Van Schaftingen, Pathological solutions to elliptic problems in divergence form with continuous coefficients, C. R. Math. Acad. Sci. Paris 347 (2009), no. 13–14, 773–778.
doi:10.1016/j.crma.2009.05.008 DIAL:35463 arXiv:0904.1674
[95] Sagun Chanillo and Jean Van Schaftingen, Subelliptic Bourgain–Brezis estimates on groups, Math. Res. Lett. 16 (2009), no. 3, 487–501.
doi:10.4310/MRL.2009.v16.n3.a9 DIAL:35494 arXiv:0712.3730
[96] Haïm Brezis and Jean Van Schaftingen, Circulation integrals and critical Sobolev spaces: problems of optimal constants, in Dorina Mitrea and Marius Mitrea (eds.), Perspectives in Partial Differential Equations, Harmonic Analysis and Applications, Amer. Math. Soc., Proc. Sympos. Pure Math., No. 79, 2008, 33–47.
[97] Alain Damlamian, Nicolas Meunier and Jean Van Schaftingen, Periodic homogenization for convex functionals using Mosco convergence, Ricerche Mat. 57 (2008), no. 2, 209–249.
doi:10.1007/s11587-008-0038-5 SharedIt DIAL:69506
[98] Jean Van Schaftingen, Estimates for \(\mathrm{L}^1\) vector fields under higher-order differential conditions, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 4, 867–882.
doi:10.4171/JEMS/133 MR:2443922 DIAL:36302 preprint
[99] Denis Bonheure, Vincent Bouchez, Christopher Grumiau and Jean Van Schaftingen, Asymptotics and symmetries of least energy nodal solutions of Lane–Emden problems with slow growth, Commun. Contemp. Math. 10 (2008), no. 4, 609–631.
doi:10.1142/S0219199708002910 MR:2444849 DIAL:36399
[100] Pierre Bousquet, Augusto C. Ponce and Jean Van Schaftingen, A case of density in \(W^{2,p}(M;N)\), C. R. Math. Acad. Sci. Paris 346 (2008), no. 13–14, 735–740.
doi:10.1016/j.crma.2008.05.006 MR:2427072 DIAL:36411
[101] Denis Bonheure and Jean Van Schaftingen, Bound state solutions for a class of nonlinear Schrödinger equations, Rev. Mat. Iberoam. 24 (2008), no. 1, 297–351.
doi:10.4171/RMI/537 euclid.rmi/1216247103 MR:2435974 DIAL:36445 preprint
[102] Jean Van Schaftingen and Michel Willem, Symmetry of solutions of semilinear elliptic problems, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 2, 439–456.
doi:10.4171/JEMS/117 MR:2390331 DIAL:36550 preprint
[103] Alain Damlamian, Nicolas Meunier and Jean Van Schaftingen, Periodic homogenization of monotone multivalued operators, Nonlinear Anal. 67 (2007), no. 12, 3217–3239.
doi:10.1016/j.na.2006.10.007 DIAL:37277 preprint
[104] Haïm Brezis and Jean Van Schaftingen, Boundary estimates for elliptic systems with \(L^1\)–data, Calc. Var. Partial Differential Equations 30 (2007), no. 3, 369–388.
doi:10.1007/s00526-007-0094-9 SharedIt DIAL:37398 preprint
[105] Augusto C. Ponce and Jean Van Schaftingen, The continuity of functions with \(N\)–th derivative measure, Houston J. Math. 33 (2007), no. 3, 927–939.
weblink MR:2335744 DIAL:36944 preprint
[106] Jean Van Schaftingen, Approximation of symmetrizations and symmetry of critical points, Topol. Methods Nonlinear Anal. 28 (2006), no. 1, 61–85.
MR:2262256 DIAL:38258 preprint
[107] Jean Van Schaftingen, Anisotropic symmetrization, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), no. 4, 539–565.
doi:10.1016/j.anihpc.2005.06.001 MR:2245755 DIAL:38319 preprint
[108] Jean Van Schaftingen, Function spaces between BMO and critical Sobolev spaces, J. Funct. Anal. 236 (2006), no. 2, 490–516.
doi:10.1016/j.jfa.2006.03.011 MR:2240172 DIAL:38381 preprint
[109] Denis Bonheure and Jean Van Schaftingen, Nonlinear Schrödinger equations with potentials vanishing at infinity, C. R. Math. Acad. Sci. Paris 342 (2006), no. 12, 903–908.
doi:10.1016/j.crma.2006.04.011 MR:2235608 DIAL:38398 preprint
[110] Jean van Schaftingen, Universal approximation of symmetrizations by polarizations, Proc. Amer. Math. Soc. 134 (2006), no. 1, 177–186.
doi:10.1090/S0002-9939-05-08325-5 MR:2170557 DIAL:39089 preprint
[111] Nicolas Meunier and Jean Van Schaftingen, Periodic reiterated homogenization for elliptic functions, J. Math. Pures Appl. (9) 84 (2005), no. 12, 1716–1743.
doi:10.1016/j.matpur.2005.08.003 MR:2180388 DIAL:38986
[112] Jean Van Schaftingen, Symmetrization and minimax principles, Commun. Contemp. Math. 7 (2005), no. 4, 463–481.
doi:10.1142/S0219199705001817 MR:2166661 DIAL:39111 preprint
[113] Nicolas Meunier and Jean Van Schaftingen, Reiterated homogenization for elliptic operators, C. R. Math. Acad. Sci. Paris 340 (2005), no. 3, 209–214.
doi:10.1016/j.crma.2004.10.026 MR:2123030 DIAL:39532 preprint
[114] Jean Van Schaftingen, Estimates for \(L^1\) vector fields with a second order condition, Acad. Roy. Belg. Bull. Cl. Sci. (6) 15 (2004), no. 1–6, 103–112.
MR:2146098 DIAL:69507 preprint
[115] Jean Van Schaftingen and Michel Willem, Set transformations, symmetrizations and isoperimetric inequalities, in V. Benci and A. Masiello (eds.), Nonlinear analysis and applications to physical sciences, Springer Italia, Milan, 2004, 135–152.
[116] Jean Van Schaftingen, Estimates for \(L^1\)–vector fields, C. R. Math. Acad. Sci. Paris 339 (2004), no. 3, 181–186.
doi:10.1016/j.crma.2004.05.013 MR:20708071 Zbl 1049.35069 DIAL:40031 preprint
[117] Jean Van Schaftingen, A simple proof of an inequality of Bourgain, Brezis and Mironescu, C. R. Math. Acad. Sci. Paris 338 (2004), no. 1, 23–26.
doi:10.1016/j.crma.2003.10.036 MR:2038078 DIAL:40341 preprint
Theses
[118] Jean Van Schaftingen, Symmetrizations, Symmetry of Critical Points and \(L^1\) Estimates, Thèse de doctorat, Université catholique de Louvain, Faculté des Sciences, 2005.
[119] Jean Van Schaftingen, Symétrisations: mesure, géométrie et approximation, Travail de diplôme d’études approfondies, Université catholique de Louvain, Faculté des Sciences, 2003.
[120] Jean Van Schaftingen, Symétrisation et problèmes elliptiques non linéaires, Travail de fin d’études, Université catholique de Louvain, Faculté des Sciences appliquées, 2002.