hits counter
Jean Van Schaftingen

Publications

Submitted papers

[1] , and , Limiting Korn-Maxwell-Sobolev inequalities for general incompatibilities.

arXiv:2405.10349

[2] , The extension of traces for Sobolev mappings between manifolds.

arXiv:2403.18738

[3] , and , Limiting behavior of minimizing \(p\)–harmonic maps in 3d as \(p\) goes to \(2\) with finite fundamental group.

arXiv:2401.03583

[4] , Injective ellipticity, cancelling operators, and endpoint Gagliardo-Nirenberg-Sobolev inequalities for vector fields.

arXiv:2302.01201

Accepted papers

[5] , Lifting of fractional Sobolev mappings to noncompact covering spaces, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire

doi:10.4171/AIHPC/98 arXiv:2301.07663

Published papers

[6] and , Singular extension of critical Sobolev mappings under an exponential weak-type estimate, J. Funct. Anal. 288 (2025), no. 1, 110681.

doi:10.1016/j.jfa.2024.110681 arXiv:2309.12874

[7] , , and , Families of functionals representing Sobolev norms, Anal. PDE 17 (2024), no. 3, 943–979.

doi:10.2140/apde.2024.17.943 DIAL:287078 arXiv:2109.02930

[8] , Endpoint Sobolev inequalities for vector fields and cancelling operators, in Duván Cardona, Joel Restrepo and Michael Ruzhansky (eds.), Extended Abstracts 2021/2022. Methusalem Lectures, Birkhäuser, Cham, Trends in Mathematics, No. 3, 2024, 47–56.

doi:doi.org/10.1007/978-3-031-48579-4_5 ISBN 978-3-031-48579-4 DIAL:285695 arXiv:2305.00840

[9] , and , Boundary ellipticity and limiting \(L^1\)-estimates on halfspaces, Adv. Math. 439 (2024), 109490 (25 pages).

doi:10.1016/j.aim.2024.109490 DIAL:284275 arXiv:2211.08167

[10] and , Asymptotic behavior of minimizing \(p\)-harmonic maps when \(p \nearrow 2\) in dimension \(2\), Calc. Var. Partial Differential Equations 62 (2023), 229 (45 pages).

doi:10.1007/s00526-023-02568-6 SharedIt DIAL:278074 arXiv:2301.06955

[11] , Fractional Gagliardo-Nirenberg interpolation inequality and bounded mean oscillation, C. R. Math. Acad. Sci. Paris 361 (2023), 1041–1049.

doi:10.5802/crmath.463 DIAL:277986 arXiv:2208.14691

[12] , Limiting Sobolev estimates for vector fields and cancelling differential operators, in Jaroslav Lukeš, Zdeněk Mihula, Luboš Pick and Hana Turčinová (eds.), Function spaces and applications XII (Pazeky nad Jizerou, 2023), MatfyzPress, Charles University, Prague, 2023, 135–152.

DIAL:275490 arXiv:2304.14112

[13] and , Quantitative characterization of traces of Sobolev maps, Commun. Contemp. Math. 25 (2023), no. 02, 2250003 (31 pages).

doi:10.1142/S0219199722500031 DIAL:259271 arXiv:2101.10934

[14] , , , and , Spaces of Besov–Sobolev type and a problem on nonlinear approximation, J. Funct. Anal. 284 (2023), no. 4, 109775.

doi:10.1016/j.jfa.2022.109775 DIAL:267826 arXiv:2112.05539

[15] , , and , Sobolev spaces revisited, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 33 (2022), no. 2, 413–437.

doi:10.4171/RLM/976 DIAL:265665 arXiv:2202.01410

[16] and , Limiting Sobolev and Hardy inequalities on stratified homogeneous groups, Annal. Acad. Sc. Fennic. 47 (2022), no. 2, 1065–1098.

doi:10.54330/afm.120959 DIAL:264492 arXiv:2007.14532

[17] , and , Renormalised energies and renormalisable singular harmonic maps into a compact manifold on planar domains, Math. Annal. 383 (2022), 1061–1125.

doi:10.1007/s00208-021-02204-8 SharedIt DIAL:251090 arXiv:2006.14823

[18] , Reverse superposition estimates in Sobolev spaces, Pure Appl. Funct. Anal. 7 (2022), no. 2, 805–811.

DIAL:264284 arXiv:2007.01742

[19] , and , On limiting trace inequalities for vectorial differential operators, Indiana Univ. Math. J. 70 (2021), no. 5, 2133–2176.

doi:10.1512/iumj.2021.70.8682 DIAL:254158 arXiv:1903.08633

[20] , and , Ginzburg-Landau relaxation for harmonic maps on planar domains into a general compact vacuum manifold, Arch. Rat. Mech. Anal. 242 (2021), no. 2, 875–935.

doi:10.1007/s00205-021-01695-8 SharedIt DIAL:252249 arXiv:2008.13512

[21] and , Lifting in compact covering spaces for fractional Sobolev mappings, Anal. PDE 14 (2021), no. 6, 1851–1871.

doi:10.2140/apde.2021.14.1851 DIAL:250778 arXiv:1907.01373

[22] and , Trace theory for Sobolev mappings into a manifold, Ann. Fac. Sci. Toulouse Math. (6) 30 (2021), no. 2, 281–299.

doi:10.5802/afst.1675 DIAL:249396 arXiv:2001.02226

[23] , and , Going to Lorentz when fractional Sobolev, Gagliardo and Nirenberg estimates fail, Calc. Var. Partial Differential Equations 60 (2021), no. 129

doi:10.1007/s00526-021-02001-w SharedIt DIAL:248934 arXiv:2104.09867

[24] , and , A surprising formula for Sobolev norms, Proc. Natl. Acad. Sci. USA 118 (2021), no. 8, e2025254118.

doi:10.1073/pnas.2025254118 DIAL:243750 arXiv:2003.05216

[25] and , Metric characterization of the sum of fractional Sobolev spaces, Stud. Math. 258 (2021), 27–51.

doi:10.4064/sm190408-21-4 DIAL:243396 arXiv:1904.03946

[26] and , Estimates of the amplitude of holonomies by the curvature of a connection on a bundle, Pure Appl. Funct. Anal. 5 (2020), no. 4, 891–897.

weblink DIAL:240754 arXiv:1905.01869

[27] and , Characterization of the traces on the boundary of functions in magnetic Sobolev spaces, Adv. Math. 371 (2020), 107246.

doi:10.1016/j.aim.2020.107246 DIAL:230176 arXiv:1905.01188

[28] , and , Groundstates for Choquard type equations with Hardy–Littlewood–Sobolev lower critical exponent, Proc. Roy. Soc. Edinb. A 150 (2020), no. 3, 1377–1400.

doi:10.1017/prm.2018.135 DIAL:224578 arXiv:1709.09448

[29] and , Range convergence monotonicity for vector measures and range monotonicity of the mass, Ric. Mat. 69 (2020), no. 1, 293-326.

doi:10.1007/s11587-019-00463-x SharedIt DIAL:224576 arXiv:1904.05684

[30] and , An estimate of the Hopf degree of fractional Sobolev mappings, Proc. Amer. Math. Soc. 148 (2020), no. 7, 2877–2891.

doi:10.1090/proc/15026 DIAL:230076 arXiv:1904.12549

[31] and , Vortex motion for the lake equations, Comm. Math. Phys. 375 (2020), no. 2, 1459–1501.

doi:10.1007/s00220-020-03742-z SharedIt DIAL:229397 arXiv:1901.01717

[32] , Estimates by gap potentials of free homotopy decompositions of critical Sobolev maps, Adv. Nonlinear Anal. 9 (2019), no. 1, 1214–1250.

doi:10.1515/anona-2020-0047 DIAL:223840 arXiv:1811.01706

[33] and , Optimal embeddings into Lorentz spaces for some vector differential operators via Gagliardo’s lemma, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 30 (2019), no. 3, 413–436.

doi:10.4171/RLM/854 DIAL:223345 arXiv:1811.02691

[34] , , and , Representing three-dimensional cross fields using fourth order tensors, in Roca X. and Loseille A. (eds.), 27th International Meshing Roundtable. IMR 2018, Springer, Cham, Lecture Notes in Computational Science and Engineering, No. 127, 2019, 89–108.

doi:10.1007/978-3-030-13992-6_6 DIAL:219939 arXiv:1808.03999

[35] and , Higher order intrinsic weak differentiability and Sobolev spaces between manifolds, Adv. Calc. Var. 12 (2019), no. 3, 303–332.

doi:10.1515/acv-2017-0008 DIAL:197260 arXiv:1702.07171

[36] , and , Properties of groundstates of nonlinear Schrödinger equations under a weak constant magnetic field, J. Math. Pures Appl. (9) 124 (2019), 123–168.

doi:10.1016/j.matpur.2018.05.007 DIAL:215071 arXiv:1607.00170

[37] and , Uniform boundedness principles for Sobolev maps into manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 36 (2019), no. 2, 417–449.

doi:10.1016/j.anihpc.2018.06.002 DIAL:214140 CVGMT:3593 arXiv:1709.08565

[38] , , , and , Sharp Gagliardo-Nirenberg inequalities in fractional Coulomb–Sobolev spaces, Trans. Amer. Math. Soc. 370 (2018), no. 11, 8285–8310.

doi:10.1090/tran/7426 DIAL:202975 arXiv:1612.00243

[39] and , Groundstates of the Choquard equations with a sign-changing self-interaction potential, Z. Angew. Math. Phys. 69 (2018), no. 3, 69:86.

doi:10.1007/s00033-018-0975-0 DIAL:202974 arXiv:1710.04406

[40] and , Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent, J. Math. Anal. Appl. 464 (2018), no. 2, 1184–1202.

doi:10.1016/j.jmaa.2018.04.047 DIAL:202971 arXiv:1710.03973

[41] , and , Weak approximation by bounded Sobolev maps with values into complete manifolds, C. R. Math. Acad. Sci. Paris 356 (2018), no. 3, 264–271.

doi:10.1016/j.crma.2018.01.017 DIAL:196135 arXiv:1701.07627

[42] , Sobolev mappings: from liquid crystals to irrigation via degree theory, Lecture notes of the Godeaux Lecture delivered at the 9th Brussels Summer School of Mathematics (2018)

arXiv:1702.00970

[43] and , Odd symmetry of least energy nodal solutions for the Choquard equation, J. Differential Equations 264 (2018), no. 2, 1231–1262.

doi:10.1016/j.jde.2017.09.034 DIAL:191995 arXiv:1606.05668

[44] and , Gauge-measurable functions, Rend. Istit. Mat. Univ. Trieste 49 (2017), 113–135.

doi:10.13137/2464-8728/16208 DIAL:200921 arXiv:1702.01911

[45] , , and , Semiclassical Sobolev constants for the electro-magnetic Robin Laplacian, J. Math. Soc. Japan 69 (2017), no. 4, 1667–1714.

doi:10.2969/jmsj/06941667 DIAL:191994 hal-01285311 arXiv:1603.02810

[46] , and , Density of bounded maps in Sobolev spaces into complete manifolds, Ann. Mat. Pura Appl. (4) 196 (2017), no. 6, 2261–2301.

doi:10.1007/s10231-017-0664-1 SharedIt DIAL:185227 arXiv:1501.07136

[47] and , Approximation of symmetrizations by Markov processes, Indiana Univ. Math. J. 66 (2017), no. 4, 1145–1172.

doi:10.1512/iumj.2017.66.6118 DIAL:191989 arXiv:1508.00464

[48] and , Standing waves with a critical frequency for nonlinear Choquard equations, Nonlinear Anal. 161 (2017), 87–107.

doi:10.1016/j.na.2017.05.014 DIAL:190306 arXiv:1611.08952

[49] , and , The logarithmic Choquard equation: sharp asymptotics and nondegeneracy of the groundstate, J. Funct. Anal. 272 (2017), no. 12, 5255–5281.

doi:10.1016/j.jfa.2017.02.026 DIAL:186089 arXiv:1612.02194

[50] , and , Bourgain–Brezis estimates on symmetric spaces of non-compact type, J. Funct. Anal. 273 (2017), no. 4, 1504-1547.

doi:10.1016/j.jfa.2017.05.005 DIAL:186090 arXiv:1610.00503

[51] and , Existence of groundstates for a class of nonlinear Choquard equations in the plane, Adv. Nonlinear Stud. 17 (2017), no. 3, 581–594.

doi:10.1515/ans-2016-0038 DIAL:192017 arXiv:1604.03294

[52] , and , The incompressible Navier Stokes flow in two dimensions with prescribed vorticity, in Sagun Chanillo, Bruno Franchi, Guozhen Lu, Carlos Perez and Eric T. Sawyer (eds.), Harmonic Analysis, Partial Differential Equations and Applications, Birkhäuser, Applied and Numerical Harmonic Analysis, 2017, 19–25.

doi:10.1007/978-3-319-52742-0_2 DIAL:184673

[53] and , Controlled singular extension of critical trace Sobolev maps from spheres to compact manifolds, Int. Math. Res. Not. IMRN 2017 (2017), no. 12, 3467–3683.

doi:10.1093/imrn/rnw109 DIAL:186080 CVGMT:2784 arXiv:1508.07813

[54] and , A guide to the Choquard equation, J. Fixed Point Theory Appl. 19 (2017), no. 1, 773–813.

doi:10.1007/s11784-016-0373-1 SharedIt DIAL:184670 arXiv:1606.02158

[55] , and , An \(L^1\)–type estimate for Riesz potentials, Rev. Mat. Iberoam. 33 (2017), no. 1, 291–304.

doi:10.4171/rmi/937 DIAL:183697 CVGMT:2566 arXiv:1411.2318

[56] , and , Variations on a proof of a borderline Bourgain–Brezis Sobolev embedding theorem, Chinese Ann. Math. Ser. B 38 (2017), no. 1, 235–252.

doi:10.1007/s11401-016-1069-y SharedIt DIAL:183696 arXiv:1612.02888

[57] and , Choquard equations under confining external potentials, NoDEA Nonlinear Differential Equations Appl. 24 (2017), no. 1, 1–24.

doi:10.1007/s00030-016-0424-8 SharedIt DIAL:179262 arXiv:1607.00151

[58] , and , Least action nodal solutions for the quadratic Choquard equation, Proc. Amer. Math. Soc. 145 (2017), no. 2, 737–747.

doi:10.1090/proc/13247 DIAL:179188 arXiv:1511.04779

[59] , and , Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency, Calc. Var. Partial Differential Equations 55 (2016), no. 146, 58.

doi:10.1007/s00526-016-1079-3 SharedIt DIAL:179187 arXiv:1507.02837

[60] and , Nodal solutions for the Choquard equation, J. Funct. Anal. 271 (2016), no. 1, 107–135.

doi:10.1016/j.jfa.2016.04.019 DIAL:173887 arXiv:1503.06031

[61] and , Intrinsic colocal weak derivatives and Sobolev spaces between manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 1, 97–128.

doi:10.2422/2036-2145.201312_005 DIAL:173889 arXiv:1312.5858

[62] , and , Applications of Bourgain–Brezis inequalities to fluid mechanics and magnetism, C. R. Math. Acad. Sci. Paris 354 (2016), no. 1, 51–55.

doi:10.1016/j.crma.2015.10.005 DIAL:169283 arXiv:1509.01472

[63] and , Geometric partial differentiability on manifolds: the tangential derivative and the chain rule, J. Math. Anal. Appl. 435 (2016), no. 2, 1672–1681.

doi:10.1016/j.jmaa.2015.11.036 DIAL:167763 arXiv:1501.01223

[64] and , Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent, Commun. Contemp. Math. 17 (2015), no. 5, 1550005 (12 pages).

doi:10.1142/S0219199715500054 DIAL:165641 arXiv:1403.7414

[65] and , Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6557–6579.

doi:10.1090/S0002-9947-2014-06289-2 DIAL:163152 arXiv:1212.2027

[66] and , Semiclassical stationary states for nonlinear Schrödinger equations under a strong external magnetic field, J. Differential Equations 259 (2015), no. 2, 596–627.

doi:10.1016/j.jde.2015.02.016 DIAL:158580 arXiv:1312.5467

[67] , and , Strong density for higher order Sobolev spaces into compact manifolds, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 4, 763–817.

doi:10.4171/JEMS/518 DIAL:158312 arXiv:1203.3721

[68] and , Semi-classical states for the Choquard equations, Calc. Var. Partial Differential Equations 52 (2015), no. 1, 199–235.

doi:10.1007/s00526-014-0709-x SharedIt DIAL:155963 arXiv:1308.1571

[69] and , Existence, stability and oscillation properties of slow decay positive solutions of supercritical elliptic equations with Hardy potential, Proc. Roy. Soc. Edinburgh Sect. A 58 (2015), no. 1, 255–271.

doi:10.1017/S0013091513000588 DIAL:155964 arXiv:1108.4668

[70] , Limiting Bourgain–Brezis estimates for systems of linear differential equations: Theme and variations, J. Fixed Point Theory Appl. 15 (2014), no. 2, 273–297.

doi:10.1007/s11784-014-0177-0 SharedIt DIAL:155931 arXiv:1311.6624

[71] , and , Strong approximation of fractional Sobolev maps, J. Fixed Point Theory Appl. 15 (2014), no. 1, 133–153.

doi:10.1007/s11784-014-0172-5 SharedIt DIAL:153456 arXiv:1310.6017

[72] and , Hardy–Sobolev inequalities for vector fields and canceling linear differential operators, Indiana Univ. Math. J. 63 (2014), no. 5, 1419–1445.

doi:10.1512/iumj.2014.63.5395 DIAL:152137 arXiv:1305.4262

[73] , Equivalence between Pólya–Szegő and relative capacity inequalities under rearrangement, Arch. Math. (Basel) 103 (2014), no. 4, 367–379.

doi:10.1007/s00013-014-0695-4 SharedIt DIAL:152136 arXiv:1401.2780

[74] , Interpolation inequalities between Sobolev and Morrey–Campanato spaces: A common gateway to concentration-compactness and Gagliardo–Nirenberg, Port. Math. 71 (2014), no. 3–4, 159–175.

doi:10.4171/PM/1947 DIAL:152135 arXiv:1308.1794

[75] , Approximation in Sobolev spaces by piecewise affine interpolation, J. Math. Anal. Appl. 420 (2014), no. 1, 40–47.

doi:10.1016/j.jmaa.2014.05.036 DIAL:152134 arXiv:1312.5986

[76] , and , Density of smooth maps for fractional Sobolev spaces \(W^{s, p}\) into \(\ell\)–simply connected manifolds when \(s \ge 1\), Confluentes Math. 5 (2013), no. 2, 3–22.

doi:10.5802/cml.5 DIAL:135962 arXiv:1210.2525

[77] and , Desingularization of vortex rings and shallow water vortices by a semilinear elliptic problem, Arch. Rat. Mech. Anal. 210 (2013), no. 2, 409–450.

doi:10.1007/s00205-013-0647-3 SharedIt DIAL:136141 arXiv:1209.3988

[78] , A direct proof of the existence of eigenvalues and eigenvectors by Weierstrass’s theorem, Amer. Math. Monthly 120 (2013), no. 8, 741–746.

doi:10.4169/amer.math.monthly.120.08.741 DIAL:131967 arXiv:1109.6821

[79] and , Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265 (2013), no. 2, 153–184.

doi:10.1016/j.jfa.2013.04.007 DIAL:131969 arXiv:1205.6286

[80] and , Stationary solutions of the nonlinear Schrödinger equation with fast-decay potentials concentrating around local maxima, Calc. Var. Partial Differential Equations 47 (2013), no. 1–2, 243–271.

doi:10.1007/s00526-012-0518-z SharedIt DIAL:131965 arXiv:1109.6773

[81] , Limiting Sobolev inequalities for vector fields and canceling linear differential operators, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 3, 877–921.

doi:10.4171/JEMS/380 DIAL:131968 arXiv:1104.0192

[82] and , Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains, J. Differential Equations 254 (2013), no. 8, 3089–3145.

doi:10.1016/j.jde.2012.12.019 DIAL:128740 arXiv:1203.3154

[83] and , Nonlocal Hardy type inequalities with optimal constants and remainder terms, Ann. Univ. Buchar. Math. Ser. 3 (LXI) (2012), no. 2, 187–200.

weblink pdf DIAL:126555 arXiv:1208.6447

[84] and , Finding critical points whose polarization is also a critical point, Topol. Methods Nonlinear Anal. 40 (2012), no. 2, 371–379.

DIAL:126552 arXiv:1108.6217

[85] , and , Nonlinear Schrödinger equation with unbounded or vanishing potentials: solutions concentrating on lower dimensional spheres, J. Differential Equations 252 (2012), no. 1, 941–968.

doi:10.1016/j.jde.2011.10.004 DIAL:92294 arXiv:1009.2600

[86] and , Extremal functions in Poincaré–Sobolev inequalities for functions of bounded variation, in Denis Bonheure, Mabel Cuesta, Enrique J. and Peter Takáč Lami Dozo, Jean Van Schaftingen and Michel Willem (eds.), Nonlinear Elliptic Partial Differential Equations, Amer. Math. Soc., Contemporary Mathematics, No. 540, 2011, 47–58.

ISBN 978-0-8218-4907-1 DIAL:76122 arXiv:1001.4651

[87] and , Desingularization of vortices for the Euler equation, Arch. Rat. Mech. Anal. 198 (2010), no. 3, 869–925.

doi:10.1007/s00205-010-0293-y SharedIt DIAL:34997 arXiv:0909.1166

[88] and , Groundstates for the nonlinear Schrödinger equation with potential vanishing at infinity, Ann. Mat. Pura Appl. (4) 189 (2010), 273–301.

doi:10.1007/s10231-009-0109-6 SharedIt DIAL:34078 preprint

[89] and , Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials, Calc. Var. Partial Differential Equations 37 (2010), no. 1, 1—27.

doi:10.1007/s00526-009-0249-y SharedIt DIAL:35138 arXiv:0902.0722

[90] , Limiting fractional and Lorentz spaces estimates of differential forms, Proc. Amer. Math. Soc. 138 (2010), no. 1, 235–240.

doi:10.1090/S0002-9939-09-10005-9 pdf DIAL:34246 arXiv:0903.2182

[91] and , Closure of Smooth Maps in \(W^{1,p}(B^3;S^2)\), Differential Integral Equations 22 (2009), no. 9–10, 881–900.

euclid.die/1356019513 DIAL:58605 arXiv:0901.4491

[92] , Explicit approximation of the symmetric rearrangement by polarizations, Arch. Math. (Basel) 93 (2009), no. 2, 181–190.

doi:10.1007/s00013-009-0018-3 SharedIt DIAL:35391 arXiv:0902.0637

[93] and , Existence and concentration for nonlinear Schrödinger equations with fast decaying potentials, C. R. Math. Acad. Sci. Paris 347 (2009), no. 15–16, 921–926.

doi:10.1016/j.crma.2009.05.009 DIAL:35386 preprint

[94] , and , Pathological solutions to elliptic problems in divergence form with continuous coefficients, C. R. Math. Acad. Sci. Paris 347 (2009), no. 13–14, 773–778.

doi:10.1016/j.crma.2009.05.008 DIAL:35463 arXiv:0904.1674

[95] and , Subelliptic Bourgain–Brezis estimates on groups, Math. Res. Lett. 16 (2009), no. 3, 487–501.

doi:10.4310/MRL.2009.v16.n3.a9 DIAL:35494 arXiv:0712.3730

[96] and , Circulation integrals and critical Sobolev spaces: problems of optimal constants, in Dorina Mitrea and Marius Mitrea (eds.), Perspectives in Partial Differential Equations, Harmonic Analysis and Applications, Amer. Math. Soc., Proc. Sympos. Pure Math., No. 79, 2008, 33–47.

DIAL:69502

[97] , and , Periodic homogenization for convex functionals using Mosco convergence, Ricerche Mat. 57 (2008), no. 2, 209–249.

doi:10.1007/s11587-008-0038-5 SharedIt DIAL:69506

[98] , Estimates for \(\mathrm{L}^1\) vector fields under higher-order differential conditions, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 4, 867–882.

doi:10.4171/JEMS/133 MR:2443922 DIAL:36302 preprint

[99] , , and , Asymptotics and symmetries of least energy nodal solutions of Lane–Emden problems with slow growth, Commun. Contemp. Math. 10 (2008), no. 4, 609–631.

doi:10.1142/S0219199708002910 MR:2444849 DIAL:36399

[100] , and , A case of density in \(W^{2,p}(M;N)\), C. R. Math. Acad. Sci. Paris 346 (2008), no. 13–14, 735–740.

doi:10.1016/j.crma.2008.05.006 MR:2427072 DIAL:36411

[101] and , Bound state solutions for a class of nonlinear Schrödinger equations, Rev. Mat. Iberoam. 24 (2008), no. 1, 297–351.

doi:10.4171/RMI/537 euclid.rmi/1216247103 MR:2435974 DIAL:36445 preprint

[102] and , Symmetry of solutions of semilinear elliptic problems, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 2, 439–456.

doi:10.4171/JEMS/117 MR:2390331 DIAL:36550 preprint

[103] , and , Periodic homogenization of monotone multivalued operators, Nonlinear Anal. 67 (2007), no. 12, 3217–3239.

doi:10.1016/j.na.2006.10.007 DIAL:37277 preprint

[104] and , Boundary estimates for elliptic systems with \(L^1\)–data, Calc. Var. Partial Differential Equations 30 (2007), no. 3, 369–388.

doi:10.1007/s00526-007-0094-9 SharedIt DIAL:37398 preprint

[105] and , The continuity of functions with \(N\)–th derivative measure, Houston J. Math. 33 (2007), no. 3, 927–939.

weblink MR:2335744 DIAL:36944 preprint

[106] , Approximation of symmetrizations and symmetry of critical points, Topol. Methods Nonlinear Anal. 28 (2006), no. 1, 61–85.

MR:2262256 DIAL:38258 preprint

[107] , Anisotropic symmetrization, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), no. 4, 539–565.

doi:10.1016/j.anihpc.2005.06.001 MR:2245755 DIAL:38319 preprint

[108] , Function spaces between BMO and critical Sobolev spaces, J. Funct. Anal. 236 (2006), no. 2, 490–516.

doi:10.1016/j.jfa.2006.03.011 MR:2240172 DIAL:38381 preprint

[109] and , Nonlinear Schrödinger equations with potentials vanishing at infinity, C. R. Math. Acad. Sci. Paris 342 (2006), no. 12, 903–908.

doi:10.1016/j.crma.2006.04.011 MR:2235608 DIAL:38398 preprint

[110] , Universal approximation of symmetrizations by polarizations, Proc. Amer. Math. Soc. 134 (2006), no. 1, 177–186.

doi:10.1090/S0002-9939-05-08325-5 MR:2170557 DIAL:39089 preprint

[111] and , Periodic reiterated homogenization for elliptic functions, J. Math. Pures Appl. (9) 84 (2005), no. 12, 1716–1743.

doi:10.1016/j.matpur.2005.08.003 MR:2180388 DIAL:38986

[112] , Symmetrization and minimax principles, Commun. Contemp. Math. 7 (2005), no. 4, 463–481.

doi:10.1142/S0219199705001817 MR:2166661 DIAL:39111 preprint

[113] and , Reiterated homogenization for elliptic operators, C. R. Math. Acad. Sci. Paris 340 (2005), no. 3, 209–214.

doi:10.1016/j.crma.2004.10.026 MR:2123030 DIAL:39532 preprint

[114] , Estimates for \(L^1\) vector fields with a second order condition, Acad. Roy. Belg. Bull. Cl. Sci. (6) 15 (2004), no. 1–6, 103–112.

MR:2146098 DIAL:69507 preprint

[115] and , Set transformations, symmetrizations and isoperimetric inequalities, in V. Benci and A. Masiello (eds.), Nonlinear analysis and applications to physical sciences, Springer Italia, Milan, 2004, 135–152.

MR:2085832 DIAL:69344 errata

[116] , Estimates for \(L^1\)–vector fields, C. R. Math. Acad. Sci. Paris 339 (2004), no. 3, 181–186.

doi:10.1016/j.crma.2004.05.013 MR:20708071 Zbl 1049.35069 DIAL:40031 preprint

[117] , A simple proof of an inequality of Bourgain, Brezis and Mironescu, C. R. Math. Acad. Sci. Paris 338 (2004), no. 1, 23–26.

doi:10.1016/j.crma.2003.10.036 MR:2038078 DIAL:40341 preprint

Theses

[118] , Symmetrizations, Symmetry of Critical Points and \(L^1\) Estimates, Thèse de doctorat, Université catholique de Louvain, Faculté des Sciences, 2005.

pdf DIAL:5349

[119] , Symétrisations: mesure, géométrie et approximation, Travail de diplôme d’études approfondies, Université catholique de Louvain, Faculté des Sciences, 2003.

pdf

[120] , Symétrisation et problèmes elliptiques non linéaires, Travail de fin d’études, Université catholique de Louvain, Faculté des Sciences appliquées, 2002.

pdf